]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/arm64/kvm/sys_regs.c
ARM64: KVM: fix vgic_bitmap_get_reg function for BE 64bit case
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / kvm / sys_regs.c
CommitLineData
7c8c5e6a
MZ
1/*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <linux/mm.h>
24#include <linux/kvm_host.h>
25#include <linux/uaccess.h>
26#include <asm/kvm_arm.h>
27#include <asm/kvm_host.h>
28#include <asm/kvm_emulate.h>
29#include <asm/kvm_coproc.h>
9d218a1f 30#include <asm/kvm_mmu.h>
7c8c5e6a
MZ
31#include <asm/cacheflush.h>
32#include <asm/cputype.h>
33#include <trace/events/kvm.h>
34
35#include "sys_regs.h"
36
37/*
38 * All of this file is extremly similar to the ARM coproc.c, but the
39 * types are different. My gut feeling is that it should be pretty
40 * easy to merge, but that would be an ABI breakage -- again. VFP
41 * would also need to be abstracted.
62a89c44
MZ
42 *
43 * For AArch32, we only take care of what is being trapped. Anything
44 * that has to do with init and userspace access has to go via the
45 * 64bit interface.
7c8c5e6a
MZ
46 */
47
48/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
49static u32 cache_levels;
50
51/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
52#define CSSELR_MAX 12
53
54/* Which cache CCSIDR represents depends on CSSELR value. */
55static u32 get_ccsidr(u32 csselr)
56{
57 u32 ccsidr;
58
59 /* Make sure noone else changes CSSELR during this! */
60 local_irq_disable();
61 /* Put value into CSSELR */
62 asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
63 isb();
64 /* Read result out of CCSIDR */
65 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
66 local_irq_enable();
67
68 return ccsidr;
69}
70
71static void do_dc_cisw(u32 val)
72{
73 asm volatile("dc cisw, %x0" : : "r" (val));
98f7685e 74 dsb(ish);
7c8c5e6a
MZ
75}
76
77static void do_dc_csw(u32 val)
78{
79 asm volatile("dc csw, %x0" : : "r" (val));
98f7685e 80 dsb(ish);
7c8c5e6a
MZ
81}
82
83/* See note at ARM ARM B1.14.4 */
84static bool access_dcsw(struct kvm_vcpu *vcpu,
85 const struct sys_reg_params *p,
86 const struct sys_reg_desc *r)
87{
88 unsigned long val;
89 int cpu;
90
91 if (!p->is_write)
92 return read_from_write_only(vcpu, p);
93
94 cpu = get_cpu();
95
96 cpumask_setall(&vcpu->arch.require_dcache_flush);
97 cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
98
99 /* If we were already preempted, take the long way around */
100 if (cpu != vcpu->arch.last_pcpu) {
101 flush_cache_all();
102 goto done;
103 }
104
105 val = *vcpu_reg(vcpu, p->Rt);
106
107 switch (p->CRm) {
108 case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
109 case 14: /* DCCISW */
110 do_dc_cisw(val);
111 break;
112
113 case 10: /* DCCSW */
114 do_dc_csw(val);
115 break;
116 }
117
118done:
119 put_cpu();
120
121 return true;
122}
123
4d44923b
MZ
124/*
125 * Generic accessor for VM registers. Only called as long as HCR_TVM
126 * is set.
127 */
128static bool access_vm_reg(struct kvm_vcpu *vcpu,
129 const struct sys_reg_params *p,
130 const struct sys_reg_desc *r)
131{
132 unsigned long val;
133
134 BUG_ON(!p->is_write);
135
136 val = *vcpu_reg(vcpu, p->Rt);
137 if (!p->is_aarch32) {
138 vcpu_sys_reg(vcpu, r->reg) = val;
139 } else {
140 vcpu_cp15(vcpu, r->reg) = val & 0xffffffffUL;
141 if (!p->is_32bit)
142 vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
143 }
144 return true;
145}
146
147/*
148 * SCTLR_EL1 accessor. Only called as long as HCR_TVM is set. If the
149 * guest enables the MMU, we stop trapping the VM sys_regs and leave
150 * it in complete control of the caches.
151 */
152static bool access_sctlr(struct kvm_vcpu *vcpu,
153 const struct sys_reg_params *p,
154 const struct sys_reg_desc *r)
155{
156 access_vm_reg(vcpu, p, r);
157
9d218a1f 158 if (vcpu_has_cache_enabled(vcpu)) { /* MMU+Caches enabled? */
4d44923b 159 vcpu->arch.hcr_el2 &= ~HCR_TVM;
9d218a1f
MZ
160 stage2_flush_vm(vcpu->kvm);
161 }
4d44923b
MZ
162
163 return true;
164}
165
7c8c5e6a
MZ
166/*
167 * We could trap ID_DFR0 and tell the guest we don't support performance
168 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
169 * NAKed, so it will read the PMCR anyway.
170 *
171 * Therefore we tell the guest we have 0 counters. Unfortunately, we
172 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
173 * all PM registers, which doesn't crash the guest kernel at least.
174 */
175static bool pm_fake(struct kvm_vcpu *vcpu,
176 const struct sys_reg_params *p,
177 const struct sys_reg_desc *r)
178{
179 if (p->is_write)
180 return ignore_write(vcpu, p);
181 else
182 return read_zero(vcpu, p);
183}
184
185static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
186{
187 u64 amair;
188
189 asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
190 vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
191}
192
193static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
194{
195 /*
196 * Simply map the vcpu_id into the Aff0 field of the MPIDR.
197 */
198 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
199}
200
201/*
202 * Architected system registers.
203 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
204 */
205static const struct sys_reg_desc sys_reg_descs[] = {
206 /* DC ISW */
207 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
208 access_dcsw },
209 /* DC CSW */
210 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
211 access_dcsw },
212 /* DC CISW */
213 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
214 access_dcsw },
215
62a89c44
MZ
216 /* TEECR32_EL1 */
217 { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
218 NULL, reset_val, TEECR32_EL1, 0 },
219 /* TEEHBR32_EL1 */
220 { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
221 NULL, reset_val, TEEHBR32_EL1, 0 },
222 /* DBGVCR32_EL2 */
223 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
224 NULL, reset_val, DBGVCR32_EL2, 0 },
225
7c8c5e6a
MZ
226 /* MPIDR_EL1 */
227 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
228 NULL, reset_mpidr, MPIDR_EL1 },
229 /* SCTLR_EL1 */
230 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
4d44923b 231 access_sctlr, reset_val, SCTLR_EL1, 0x00C50078 },
7c8c5e6a
MZ
232 /* CPACR_EL1 */
233 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
234 NULL, reset_val, CPACR_EL1, 0 },
235 /* TTBR0_EL1 */
236 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
4d44923b 237 access_vm_reg, reset_unknown, TTBR0_EL1 },
7c8c5e6a
MZ
238 /* TTBR1_EL1 */
239 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
4d44923b 240 access_vm_reg, reset_unknown, TTBR1_EL1 },
7c8c5e6a
MZ
241 /* TCR_EL1 */
242 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
4d44923b 243 access_vm_reg, reset_val, TCR_EL1, 0 },
7c8c5e6a
MZ
244
245 /* AFSR0_EL1 */
246 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
4d44923b 247 access_vm_reg, reset_unknown, AFSR0_EL1 },
7c8c5e6a
MZ
248 /* AFSR1_EL1 */
249 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
4d44923b 250 access_vm_reg, reset_unknown, AFSR1_EL1 },
7c8c5e6a
MZ
251 /* ESR_EL1 */
252 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
4d44923b 253 access_vm_reg, reset_unknown, ESR_EL1 },
7c8c5e6a
MZ
254 /* FAR_EL1 */
255 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
4d44923b 256 access_vm_reg, reset_unknown, FAR_EL1 },
1bbd8054
MZ
257 /* PAR_EL1 */
258 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
259 NULL, reset_unknown, PAR_EL1 },
7c8c5e6a
MZ
260
261 /* PMINTENSET_EL1 */
262 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
263 pm_fake },
264 /* PMINTENCLR_EL1 */
265 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
266 pm_fake },
267
268 /* MAIR_EL1 */
269 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
4d44923b 270 access_vm_reg, reset_unknown, MAIR_EL1 },
7c8c5e6a
MZ
271 /* AMAIR_EL1 */
272 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
4d44923b 273 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
7c8c5e6a
MZ
274
275 /* VBAR_EL1 */
276 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
277 NULL, reset_val, VBAR_EL1, 0 },
278 /* CONTEXTIDR_EL1 */
279 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
4d44923b 280 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
7c8c5e6a
MZ
281 /* TPIDR_EL1 */
282 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
283 NULL, reset_unknown, TPIDR_EL1 },
284
285 /* CNTKCTL_EL1 */
286 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
287 NULL, reset_val, CNTKCTL_EL1, 0},
288
289 /* CSSELR_EL1 */
290 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
291 NULL, reset_unknown, CSSELR_EL1 },
292
293 /* PMCR_EL0 */
294 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
295 pm_fake },
296 /* PMCNTENSET_EL0 */
297 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
298 pm_fake },
299 /* PMCNTENCLR_EL0 */
300 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
301 pm_fake },
302 /* PMOVSCLR_EL0 */
303 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
304 pm_fake },
305 /* PMSWINC_EL0 */
306 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
307 pm_fake },
308 /* PMSELR_EL0 */
309 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
310 pm_fake },
311 /* PMCEID0_EL0 */
312 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
313 pm_fake },
314 /* PMCEID1_EL0 */
315 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
316 pm_fake },
317 /* PMCCNTR_EL0 */
318 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
319 pm_fake },
320 /* PMXEVTYPER_EL0 */
321 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
322 pm_fake },
323 /* PMXEVCNTR_EL0 */
324 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
325 pm_fake },
326 /* PMUSERENR_EL0 */
327 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
328 pm_fake },
329 /* PMOVSSET_EL0 */
330 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
331 pm_fake },
332
333 /* TPIDR_EL0 */
334 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
335 NULL, reset_unknown, TPIDR_EL0 },
336 /* TPIDRRO_EL0 */
337 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
338 NULL, reset_unknown, TPIDRRO_EL0 },
62a89c44
MZ
339
340 /* DACR32_EL2 */
341 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
342 NULL, reset_unknown, DACR32_EL2 },
343 /* IFSR32_EL2 */
344 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
345 NULL, reset_unknown, IFSR32_EL2 },
346 /* FPEXC32_EL2 */
347 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
348 NULL, reset_val, FPEXC32_EL2, 0x70 },
349};
350
4d44923b
MZ
351/*
352 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
353 * depending on the way they are accessed (as a 32bit or a 64bit
354 * register).
355 */
62a89c44 356static const struct sys_reg_desc cp15_regs[] = {
4d44923b
MZ
357 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
358 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_sctlr, NULL, c1_SCTLR },
359 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
360 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
361 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
362 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
363 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
364 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
365 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
366 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
367 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
368 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
369
62a89c44
MZ
370 /*
371 * DC{C,I,CI}SW operations:
372 */
373 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
374 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
375 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
4d44923b 376
62a89c44
MZ
377 { Op1( 0), CRn( 9), CRm(12), Op2( 0), pm_fake },
378 { Op1( 0), CRn( 9), CRm(12), Op2( 1), pm_fake },
379 { Op1( 0), CRn( 9), CRm(12), Op2( 2), pm_fake },
380 { Op1( 0), CRn( 9), CRm(12), Op2( 3), pm_fake },
381 { Op1( 0), CRn( 9), CRm(12), Op2( 5), pm_fake },
382 { Op1( 0), CRn( 9), CRm(12), Op2( 6), pm_fake },
383 { Op1( 0), CRn( 9), CRm(12), Op2( 7), pm_fake },
384 { Op1( 0), CRn( 9), CRm(13), Op2( 0), pm_fake },
385 { Op1( 0), CRn( 9), CRm(13), Op2( 1), pm_fake },
386 { Op1( 0), CRn( 9), CRm(13), Op2( 2), pm_fake },
387 { Op1( 0), CRn( 9), CRm(14), Op2( 0), pm_fake },
388 { Op1( 0), CRn( 9), CRm(14), Op2( 1), pm_fake },
389 { Op1( 0), CRn( 9), CRm(14), Op2( 2), pm_fake },
4d44923b
MZ
390
391 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
392 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
393 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
394 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
395 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
396
397 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
7c8c5e6a
MZ
398};
399
400/* Target specific emulation tables */
401static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
402
403void kvm_register_target_sys_reg_table(unsigned int target,
404 struct kvm_sys_reg_target_table *table)
405{
406 target_tables[target] = table;
407}
408
409/* Get specific register table for this target. */
62a89c44
MZ
410static const struct sys_reg_desc *get_target_table(unsigned target,
411 bool mode_is_64,
412 size_t *num)
7c8c5e6a
MZ
413{
414 struct kvm_sys_reg_target_table *table;
415
416 table = target_tables[target];
62a89c44
MZ
417 if (mode_is_64) {
418 *num = table->table64.num;
419 return table->table64.table;
420 } else {
421 *num = table->table32.num;
422 return table->table32.table;
423 }
7c8c5e6a
MZ
424}
425
426static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
427 const struct sys_reg_desc table[],
428 unsigned int num)
429{
430 unsigned int i;
431
432 for (i = 0; i < num; i++) {
433 const struct sys_reg_desc *r = &table[i];
434
435 if (params->Op0 != r->Op0)
436 continue;
437 if (params->Op1 != r->Op1)
438 continue;
439 if (params->CRn != r->CRn)
440 continue;
441 if (params->CRm != r->CRm)
442 continue;
443 if (params->Op2 != r->Op2)
444 continue;
445
446 return r;
447 }
448 return NULL;
449}
450
62a89c44
MZ
451int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
452{
453 kvm_inject_undefined(vcpu);
454 return 1;
455}
456
457int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
458{
459 kvm_inject_undefined(vcpu);
460 return 1;
461}
462
463static void emulate_cp15(struct kvm_vcpu *vcpu,
464 const struct sys_reg_params *params)
465{
466 size_t num;
467 const struct sys_reg_desc *table, *r;
468
469 table = get_target_table(vcpu->arch.target, false, &num);
470
471 /* Search target-specific then generic table. */
472 r = find_reg(params, table, num);
473 if (!r)
474 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
475
476 if (likely(r)) {
477 /*
478 * Not having an accessor means that we have
479 * configured a trap that we don't know how to
480 * handle. This certainly qualifies as a gross bug
481 * that should be fixed right away.
482 */
483 BUG_ON(!r->access);
484
485 if (likely(r->access(vcpu, params, r))) {
486 /* Skip instruction, since it was emulated */
487 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
488 return;
489 }
490 /* If access function fails, it should complain. */
491 }
492
493 kvm_err("Unsupported guest CP15 access at: %08lx\n", *vcpu_pc(vcpu));
494 print_sys_reg_instr(params);
495 kvm_inject_undefined(vcpu);
496}
497
498/**
499 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
500 * @vcpu: The VCPU pointer
501 * @run: The kvm_run struct
502 */
503int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
504{
505 struct sys_reg_params params;
506 u32 hsr = kvm_vcpu_get_hsr(vcpu);
507 int Rt2 = (hsr >> 10) & 0xf;
508
2072d29c
MZ
509 params.is_aarch32 = true;
510 params.is_32bit = false;
62a89c44
MZ
511 params.CRm = (hsr >> 1) & 0xf;
512 params.Rt = (hsr >> 5) & 0xf;
513 params.is_write = ((hsr & 1) == 0);
514
515 params.Op0 = 0;
516 params.Op1 = (hsr >> 16) & 0xf;
517 params.Op2 = 0;
518 params.CRn = 0;
519
520 /*
521 * Massive hack here. Store Rt2 in the top 32bits so we only
522 * have one register to deal with. As we use the same trap
523 * backends between AArch32 and AArch64, we get away with it.
524 */
525 if (params.is_write) {
526 u64 val = *vcpu_reg(vcpu, params.Rt);
527 val &= 0xffffffff;
528 val |= *vcpu_reg(vcpu, Rt2) << 32;
529 *vcpu_reg(vcpu, params.Rt) = val;
530 }
531
532 emulate_cp15(vcpu, &params);
533
534 /* Do the opposite hack for the read side */
535 if (!params.is_write) {
536 u64 val = *vcpu_reg(vcpu, params.Rt);
537 val >>= 32;
538 *vcpu_reg(vcpu, Rt2) = val;
539 }
540
541 return 1;
542}
543
544/**
545 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
546 * @vcpu: The VCPU pointer
547 * @run: The kvm_run struct
548 */
549int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
550{
551 struct sys_reg_params params;
552 u32 hsr = kvm_vcpu_get_hsr(vcpu);
553
2072d29c
MZ
554 params.is_aarch32 = true;
555 params.is_32bit = true;
62a89c44
MZ
556 params.CRm = (hsr >> 1) & 0xf;
557 params.Rt = (hsr >> 5) & 0xf;
558 params.is_write = ((hsr & 1) == 0);
559 params.CRn = (hsr >> 10) & 0xf;
560 params.Op0 = 0;
561 params.Op1 = (hsr >> 14) & 0x7;
562 params.Op2 = (hsr >> 17) & 0x7;
563
564 emulate_cp15(vcpu, &params);
565 return 1;
566}
567
7c8c5e6a
MZ
568static int emulate_sys_reg(struct kvm_vcpu *vcpu,
569 const struct sys_reg_params *params)
570{
571 size_t num;
572 const struct sys_reg_desc *table, *r;
573
62a89c44 574 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
575
576 /* Search target-specific then generic table. */
577 r = find_reg(params, table, num);
578 if (!r)
579 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
580
581 if (likely(r)) {
582 /*
583 * Not having an accessor means that we have
584 * configured a trap that we don't know how to
585 * handle. This certainly qualifies as a gross bug
586 * that should be fixed right away.
587 */
588 BUG_ON(!r->access);
589
590 if (likely(r->access(vcpu, params, r))) {
591 /* Skip instruction, since it was emulated */
592 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
593 return 1;
594 }
595 /* If access function fails, it should complain. */
596 } else {
597 kvm_err("Unsupported guest sys_reg access at: %lx\n",
598 *vcpu_pc(vcpu));
599 print_sys_reg_instr(params);
600 }
601 kvm_inject_undefined(vcpu);
602 return 1;
603}
604
605static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
606 const struct sys_reg_desc *table, size_t num)
607{
608 unsigned long i;
609
610 for (i = 0; i < num; i++)
611 if (table[i].reset)
612 table[i].reset(vcpu, &table[i]);
613}
614
615/**
616 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
617 * @vcpu: The VCPU pointer
618 * @run: The kvm_run struct
619 */
620int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
621{
622 struct sys_reg_params params;
623 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
624
2072d29c
MZ
625 params.is_aarch32 = false;
626 params.is_32bit = false;
7c8c5e6a
MZ
627 params.Op0 = (esr >> 20) & 3;
628 params.Op1 = (esr >> 14) & 0x7;
629 params.CRn = (esr >> 10) & 0xf;
630 params.CRm = (esr >> 1) & 0xf;
631 params.Op2 = (esr >> 17) & 0x7;
632 params.Rt = (esr >> 5) & 0x1f;
633 params.is_write = !(esr & 1);
634
635 return emulate_sys_reg(vcpu, &params);
636}
637
638/******************************************************************************
639 * Userspace API
640 *****************************************************************************/
641
642static bool index_to_params(u64 id, struct sys_reg_params *params)
643{
644 switch (id & KVM_REG_SIZE_MASK) {
645 case KVM_REG_SIZE_U64:
646 /* Any unused index bits means it's not valid. */
647 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
648 | KVM_REG_ARM_COPROC_MASK
649 | KVM_REG_ARM64_SYSREG_OP0_MASK
650 | KVM_REG_ARM64_SYSREG_OP1_MASK
651 | KVM_REG_ARM64_SYSREG_CRN_MASK
652 | KVM_REG_ARM64_SYSREG_CRM_MASK
653 | KVM_REG_ARM64_SYSREG_OP2_MASK))
654 return false;
655 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
656 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
657 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
658 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
659 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
660 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
661 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
662 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
663 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
664 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
665 return true;
666 default:
667 return false;
668 }
669}
670
671/* Decode an index value, and find the sys_reg_desc entry. */
672static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
673 u64 id)
674{
675 size_t num;
676 const struct sys_reg_desc *table, *r;
677 struct sys_reg_params params;
678
679 /* We only do sys_reg for now. */
680 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
681 return NULL;
682
683 if (!index_to_params(id, &params))
684 return NULL;
685
62a89c44 686 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
687 r = find_reg(&params, table, num);
688 if (!r)
689 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
690
691 /* Not saved in the sys_reg array? */
692 if (r && !r->reg)
693 r = NULL;
694
695 return r;
696}
697
698/*
699 * These are the invariant sys_reg registers: we let the guest see the
700 * host versions of these, so they're part of the guest state.
701 *
702 * A future CPU may provide a mechanism to present different values to
703 * the guest, or a future kvm may trap them.
704 */
705
706#define FUNCTION_INVARIANT(reg) \
707 static void get_##reg(struct kvm_vcpu *v, \
708 const struct sys_reg_desc *r) \
709 { \
710 u64 val; \
711 \
712 asm volatile("mrs %0, " __stringify(reg) "\n" \
713 : "=r" (val)); \
714 ((struct sys_reg_desc *)r)->val = val; \
715 }
716
717FUNCTION_INVARIANT(midr_el1)
718FUNCTION_INVARIANT(ctr_el0)
719FUNCTION_INVARIANT(revidr_el1)
720FUNCTION_INVARIANT(id_pfr0_el1)
721FUNCTION_INVARIANT(id_pfr1_el1)
722FUNCTION_INVARIANT(id_dfr0_el1)
723FUNCTION_INVARIANT(id_afr0_el1)
724FUNCTION_INVARIANT(id_mmfr0_el1)
725FUNCTION_INVARIANT(id_mmfr1_el1)
726FUNCTION_INVARIANT(id_mmfr2_el1)
727FUNCTION_INVARIANT(id_mmfr3_el1)
728FUNCTION_INVARIANT(id_isar0_el1)
729FUNCTION_INVARIANT(id_isar1_el1)
730FUNCTION_INVARIANT(id_isar2_el1)
731FUNCTION_INVARIANT(id_isar3_el1)
732FUNCTION_INVARIANT(id_isar4_el1)
733FUNCTION_INVARIANT(id_isar5_el1)
734FUNCTION_INVARIANT(clidr_el1)
735FUNCTION_INVARIANT(aidr_el1)
736
737/* ->val is filled in by kvm_sys_reg_table_init() */
738static struct sys_reg_desc invariant_sys_regs[] = {
739 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
740 NULL, get_midr_el1 },
741 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
742 NULL, get_revidr_el1 },
743 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
744 NULL, get_id_pfr0_el1 },
745 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
746 NULL, get_id_pfr1_el1 },
747 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
748 NULL, get_id_dfr0_el1 },
749 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
750 NULL, get_id_afr0_el1 },
751 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
752 NULL, get_id_mmfr0_el1 },
753 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
754 NULL, get_id_mmfr1_el1 },
755 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
756 NULL, get_id_mmfr2_el1 },
757 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
758 NULL, get_id_mmfr3_el1 },
759 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
760 NULL, get_id_isar0_el1 },
761 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
762 NULL, get_id_isar1_el1 },
763 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
764 NULL, get_id_isar2_el1 },
765 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
766 NULL, get_id_isar3_el1 },
767 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
768 NULL, get_id_isar4_el1 },
769 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
770 NULL, get_id_isar5_el1 },
771 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
772 NULL, get_clidr_el1 },
773 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
774 NULL, get_aidr_el1 },
775 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
776 NULL, get_ctr_el0 },
777};
778
779static int reg_from_user(void *val, const void __user *uaddr, u64 id)
780{
781 /* This Just Works because we are little endian. */
782 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
783 return -EFAULT;
784 return 0;
785}
786
787static int reg_to_user(void __user *uaddr, const void *val, u64 id)
788{
789 /* This Just Works because we are little endian. */
790 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
791 return -EFAULT;
792 return 0;
793}
794
795static int get_invariant_sys_reg(u64 id, void __user *uaddr)
796{
797 struct sys_reg_params params;
798 const struct sys_reg_desc *r;
799
800 if (!index_to_params(id, &params))
801 return -ENOENT;
802
803 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
804 if (!r)
805 return -ENOENT;
806
807 return reg_to_user(uaddr, &r->val, id);
808}
809
810static int set_invariant_sys_reg(u64 id, void __user *uaddr)
811{
812 struct sys_reg_params params;
813 const struct sys_reg_desc *r;
814 int err;
815 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
816
817 if (!index_to_params(id, &params))
818 return -ENOENT;
819 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
820 if (!r)
821 return -ENOENT;
822
823 err = reg_from_user(&val, uaddr, id);
824 if (err)
825 return err;
826
827 /* This is what we mean by invariant: you can't change it. */
828 if (r->val != val)
829 return -EINVAL;
830
831 return 0;
832}
833
834static bool is_valid_cache(u32 val)
835{
836 u32 level, ctype;
837
838 if (val >= CSSELR_MAX)
839 return -ENOENT;
840
841 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
842 level = (val >> 1);
843 ctype = (cache_levels >> (level * 3)) & 7;
844
845 switch (ctype) {
846 case 0: /* No cache */
847 return false;
848 case 1: /* Instruction cache only */
849 return (val & 1);
850 case 2: /* Data cache only */
851 case 4: /* Unified cache */
852 return !(val & 1);
853 case 3: /* Separate instruction and data caches */
854 return true;
855 default: /* Reserved: we can't know instruction or data. */
856 return false;
857 }
858}
859
860static int demux_c15_get(u64 id, void __user *uaddr)
861{
862 u32 val;
863 u32 __user *uval = uaddr;
864
865 /* Fail if we have unknown bits set. */
866 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
867 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
868 return -ENOENT;
869
870 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
871 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
872 if (KVM_REG_SIZE(id) != 4)
873 return -ENOENT;
874 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
875 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
876 if (!is_valid_cache(val))
877 return -ENOENT;
878
879 return put_user(get_ccsidr(val), uval);
880 default:
881 return -ENOENT;
882 }
883}
884
885static int demux_c15_set(u64 id, void __user *uaddr)
886{
887 u32 val, newval;
888 u32 __user *uval = uaddr;
889
890 /* Fail if we have unknown bits set. */
891 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
892 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
893 return -ENOENT;
894
895 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
896 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
897 if (KVM_REG_SIZE(id) != 4)
898 return -ENOENT;
899 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
900 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
901 if (!is_valid_cache(val))
902 return -ENOENT;
903
904 if (get_user(newval, uval))
905 return -EFAULT;
906
907 /* This is also invariant: you can't change it. */
908 if (newval != get_ccsidr(val))
909 return -EINVAL;
910 return 0;
911 default:
912 return -ENOENT;
913 }
914}
915
916int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
917{
918 const struct sys_reg_desc *r;
919 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
920
921 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
922 return demux_c15_get(reg->id, uaddr);
923
924 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
925 return -ENOENT;
926
927 r = index_to_sys_reg_desc(vcpu, reg->id);
928 if (!r)
929 return get_invariant_sys_reg(reg->id, uaddr);
930
931 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
932}
933
934int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
935{
936 const struct sys_reg_desc *r;
937 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
938
939 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
940 return demux_c15_set(reg->id, uaddr);
941
942 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
943 return -ENOENT;
944
945 r = index_to_sys_reg_desc(vcpu, reg->id);
946 if (!r)
947 return set_invariant_sys_reg(reg->id, uaddr);
948
949 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
950}
951
952static unsigned int num_demux_regs(void)
953{
954 unsigned int i, count = 0;
955
956 for (i = 0; i < CSSELR_MAX; i++)
957 if (is_valid_cache(i))
958 count++;
959
960 return count;
961}
962
963static int write_demux_regids(u64 __user *uindices)
964{
efd48cea 965 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
7c8c5e6a
MZ
966 unsigned int i;
967
968 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
969 for (i = 0; i < CSSELR_MAX; i++) {
970 if (!is_valid_cache(i))
971 continue;
972 if (put_user(val | i, uindices))
973 return -EFAULT;
974 uindices++;
975 }
976 return 0;
977}
978
979static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
980{
981 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
982 KVM_REG_ARM64_SYSREG |
983 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
984 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
985 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
986 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
987 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
988}
989
990static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
991{
992 if (!*uind)
993 return true;
994
995 if (put_user(sys_reg_to_index(reg), *uind))
996 return false;
997
998 (*uind)++;
999 return true;
1000}
1001
1002/* Assumed ordered tables, see kvm_sys_reg_table_init. */
1003static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1004{
1005 const struct sys_reg_desc *i1, *i2, *end1, *end2;
1006 unsigned int total = 0;
1007 size_t num;
1008
1009 /* We check for duplicates here, to allow arch-specific overrides. */
62a89c44 1010 i1 = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
1011 end1 = i1 + num;
1012 i2 = sys_reg_descs;
1013 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1014
1015 BUG_ON(i1 == end1 || i2 == end2);
1016
1017 /* Walk carefully, as both tables may refer to the same register. */
1018 while (i1 || i2) {
1019 int cmp = cmp_sys_reg(i1, i2);
1020 /* target-specific overrides generic entry. */
1021 if (cmp <= 0) {
1022 /* Ignore registers we trap but don't save. */
1023 if (i1->reg) {
1024 if (!copy_reg_to_user(i1, &uind))
1025 return -EFAULT;
1026 total++;
1027 }
1028 } else {
1029 /* Ignore registers we trap but don't save. */
1030 if (i2->reg) {
1031 if (!copy_reg_to_user(i2, &uind))
1032 return -EFAULT;
1033 total++;
1034 }
1035 }
1036
1037 if (cmp <= 0 && ++i1 == end1)
1038 i1 = NULL;
1039 if (cmp >= 0 && ++i2 == end2)
1040 i2 = NULL;
1041 }
1042 return total;
1043}
1044
1045unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1046{
1047 return ARRAY_SIZE(invariant_sys_regs)
1048 + num_demux_regs()
1049 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1050}
1051
1052int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1053{
1054 unsigned int i;
1055 int err;
1056
1057 /* Then give them all the invariant registers' indices. */
1058 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1059 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1060 return -EFAULT;
1061 uindices++;
1062 }
1063
1064 err = walk_sys_regs(vcpu, uindices);
1065 if (err < 0)
1066 return err;
1067 uindices += err;
1068
1069 return write_demux_regids(uindices);
1070}
1071
1072void kvm_sys_reg_table_init(void)
1073{
1074 unsigned int i;
1075 struct sys_reg_desc clidr;
1076
1077 /* Make sure tables are unique and in order. */
1078 for (i = 1; i < ARRAY_SIZE(sys_reg_descs); i++)
1079 BUG_ON(cmp_sys_reg(&sys_reg_descs[i-1], &sys_reg_descs[i]) >= 0);
1080
1081 /* We abuse the reset function to overwrite the table itself. */
1082 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1083 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1084
1085 /*
1086 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1087 *
1088 * If software reads the Cache Type fields from Ctype1
1089 * upwards, once it has seen a value of 0b000, no caches
1090 * exist at further-out levels of the hierarchy. So, for
1091 * example, if Ctype3 is the first Cache Type field with a
1092 * value of 0b000, the values of Ctype4 to Ctype7 must be
1093 * ignored.
1094 */
1095 get_clidr_el1(NULL, &clidr); /* Ugly... */
1096 cache_levels = clidr.val;
1097 for (i = 0; i < 7; i++)
1098 if (((cache_levels >> (i*3)) & 7) == 0)
1099 break;
1100 /* Clear all higher bits. */
1101 cache_levels &= (1 << (i*3))-1;
1102}
1103
1104/**
1105 * kvm_reset_sys_regs - sets system registers to reset value
1106 * @vcpu: The VCPU pointer
1107 *
1108 * This function finds the right table above and sets the registers on the
1109 * virtual CPU struct to their architecturally defined reset values.
1110 */
1111void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1112{
1113 size_t num;
1114 const struct sys_reg_desc *table;
1115
1116 /* Catch someone adding a register without putting in reset entry. */
1117 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1118
1119 /* Generic chip reset first (so target could override). */
1120 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1121
62a89c44 1122 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
1123 reset_sys_reg_descs(vcpu, table, num);
1124
1125 for (num = 1; num < NR_SYS_REGS; num++)
1126 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1127 panic("Didn't reset vcpu_sys_reg(%zi)", num);
1128}