]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/arm64/kvm/sys_regs.c
ARM64: KVM: fix big endian issue in access_vm_reg for 32bit guest
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / kvm / sys_regs.c
CommitLineData
7c8c5e6a
MZ
1/*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <linux/mm.h>
24#include <linux/kvm_host.h>
25#include <linux/uaccess.h>
26#include <asm/kvm_arm.h>
27#include <asm/kvm_host.h>
28#include <asm/kvm_emulate.h>
29#include <asm/kvm_coproc.h>
9d218a1f 30#include <asm/kvm_mmu.h>
7c8c5e6a
MZ
31#include <asm/cacheflush.h>
32#include <asm/cputype.h>
33#include <trace/events/kvm.h>
34
35#include "sys_regs.h"
36
37/*
38 * All of this file is extremly similar to the ARM coproc.c, but the
39 * types are different. My gut feeling is that it should be pretty
40 * easy to merge, but that would be an ABI breakage -- again. VFP
41 * would also need to be abstracted.
62a89c44
MZ
42 *
43 * For AArch32, we only take care of what is being trapped. Anything
44 * that has to do with init and userspace access has to go via the
45 * 64bit interface.
7c8c5e6a
MZ
46 */
47
48/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
49static u32 cache_levels;
50
51/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
52#define CSSELR_MAX 12
53
54/* Which cache CCSIDR represents depends on CSSELR value. */
55static u32 get_ccsidr(u32 csselr)
56{
57 u32 ccsidr;
58
59 /* Make sure noone else changes CSSELR during this! */
60 local_irq_disable();
61 /* Put value into CSSELR */
62 asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
63 isb();
64 /* Read result out of CCSIDR */
65 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
66 local_irq_enable();
67
68 return ccsidr;
69}
70
71static void do_dc_cisw(u32 val)
72{
73 asm volatile("dc cisw, %x0" : : "r" (val));
98f7685e 74 dsb(ish);
7c8c5e6a
MZ
75}
76
77static void do_dc_csw(u32 val)
78{
79 asm volatile("dc csw, %x0" : : "r" (val));
98f7685e 80 dsb(ish);
7c8c5e6a
MZ
81}
82
83/* See note at ARM ARM B1.14.4 */
84static bool access_dcsw(struct kvm_vcpu *vcpu,
85 const struct sys_reg_params *p,
86 const struct sys_reg_desc *r)
87{
88 unsigned long val;
89 int cpu;
90
91 if (!p->is_write)
92 return read_from_write_only(vcpu, p);
93
94 cpu = get_cpu();
95
96 cpumask_setall(&vcpu->arch.require_dcache_flush);
97 cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
98
99 /* If we were already preempted, take the long way around */
100 if (cpu != vcpu->arch.last_pcpu) {
101 flush_cache_all();
102 goto done;
103 }
104
105 val = *vcpu_reg(vcpu, p->Rt);
106
107 switch (p->CRm) {
108 case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
109 case 14: /* DCCISW */
110 do_dc_cisw(val);
111 break;
112
113 case 10: /* DCCSW */
114 do_dc_csw(val);
115 break;
116 }
117
118done:
119 put_cpu();
120
121 return true;
122}
123
4d44923b
MZ
124/*
125 * Generic accessor for VM registers. Only called as long as HCR_TVM
126 * is set.
127 */
128static bool access_vm_reg(struct kvm_vcpu *vcpu,
129 const struct sys_reg_params *p,
130 const struct sys_reg_desc *r)
131{
132 unsigned long val;
133
134 BUG_ON(!p->is_write);
135
136 val = *vcpu_reg(vcpu, p->Rt);
f0a3eaff 137 if (!p->is_aarch32 || !p->is_32bit)
4d44923b 138 vcpu_sys_reg(vcpu, r->reg) = val;
f0a3eaff
VK
139 else
140 vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
141
4d44923b
MZ
142 return true;
143}
144
145/*
146 * SCTLR_EL1 accessor. Only called as long as HCR_TVM is set. If the
147 * guest enables the MMU, we stop trapping the VM sys_regs and leave
148 * it in complete control of the caches.
149 */
150static bool access_sctlr(struct kvm_vcpu *vcpu,
151 const struct sys_reg_params *p,
152 const struct sys_reg_desc *r)
153{
154 access_vm_reg(vcpu, p, r);
155
9d218a1f 156 if (vcpu_has_cache_enabled(vcpu)) { /* MMU+Caches enabled? */
4d44923b 157 vcpu->arch.hcr_el2 &= ~HCR_TVM;
9d218a1f
MZ
158 stage2_flush_vm(vcpu->kvm);
159 }
4d44923b
MZ
160
161 return true;
162}
163
7c8c5e6a
MZ
164/*
165 * We could trap ID_DFR0 and tell the guest we don't support performance
166 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
167 * NAKed, so it will read the PMCR anyway.
168 *
169 * Therefore we tell the guest we have 0 counters. Unfortunately, we
170 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
171 * all PM registers, which doesn't crash the guest kernel at least.
172 */
173static bool pm_fake(struct kvm_vcpu *vcpu,
174 const struct sys_reg_params *p,
175 const struct sys_reg_desc *r)
176{
177 if (p->is_write)
178 return ignore_write(vcpu, p);
179 else
180 return read_zero(vcpu, p);
181}
182
183static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
184{
185 u64 amair;
186
187 asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
188 vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
189}
190
191static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
192{
193 /*
194 * Simply map the vcpu_id into the Aff0 field of the MPIDR.
195 */
196 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
197}
198
199/*
200 * Architected system registers.
201 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
202 */
203static const struct sys_reg_desc sys_reg_descs[] = {
204 /* DC ISW */
205 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
206 access_dcsw },
207 /* DC CSW */
208 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
209 access_dcsw },
210 /* DC CISW */
211 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
212 access_dcsw },
213
62a89c44
MZ
214 /* TEECR32_EL1 */
215 { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
216 NULL, reset_val, TEECR32_EL1, 0 },
217 /* TEEHBR32_EL1 */
218 { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
219 NULL, reset_val, TEEHBR32_EL1, 0 },
220 /* DBGVCR32_EL2 */
221 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
222 NULL, reset_val, DBGVCR32_EL2, 0 },
223
7c8c5e6a
MZ
224 /* MPIDR_EL1 */
225 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
226 NULL, reset_mpidr, MPIDR_EL1 },
227 /* SCTLR_EL1 */
228 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
4d44923b 229 access_sctlr, reset_val, SCTLR_EL1, 0x00C50078 },
7c8c5e6a
MZ
230 /* CPACR_EL1 */
231 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
232 NULL, reset_val, CPACR_EL1, 0 },
233 /* TTBR0_EL1 */
234 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
4d44923b 235 access_vm_reg, reset_unknown, TTBR0_EL1 },
7c8c5e6a
MZ
236 /* TTBR1_EL1 */
237 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
4d44923b 238 access_vm_reg, reset_unknown, TTBR1_EL1 },
7c8c5e6a
MZ
239 /* TCR_EL1 */
240 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
4d44923b 241 access_vm_reg, reset_val, TCR_EL1, 0 },
7c8c5e6a
MZ
242
243 /* AFSR0_EL1 */
244 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
4d44923b 245 access_vm_reg, reset_unknown, AFSR0_EL1 },
7c8c5e6a
MZ
246 /* AFSR1_EL1 */
247 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
4d44923b 248 access_vm_reg, reset_unknown, AFSR1_EL1 },
7c8c5e6a
MZ
249 /* ESR_EL1 */
250 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
4d44923b 251 access_vm_reg, reset_unknown, ESR_EL1 },
7c8c5e6a
MZ
252 /* FAR_EL1 */
253 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
4d44923b 254 access_vm_reg, reset_unknown, FAR_EL1 },
1bbd8054
MZ
255 /* PAR_EL1 */
256 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
257 NULL, reset_unknown, PAR_EL1 },
7c8c5e6a
MZ
258
259 /* PMINTENSET_EL1 */
260 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
261 pm_fake },
262 /* PMINTENCLR_EL1 */
263 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
264 pm_fake },
265
266 /* MAIR_EL1 */
267 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
4d44923b 268 access_vm_reg, reset_unknown, MAIR_EL1 },
7c8c5e6a
MZ
269 /* AMAIR_EL1 */
270 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
4d44923b 271 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
7c8c5e6a
MZ
272
273 /* VBAR_EL1 */
274 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
275 NULL, reset_val, VBAR_EL1, 0 },
276 /* CONTEXTIDR_EL1 */
277 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
4d44923b 278 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
7c8c5e6a
MZ
279 /* TPIDR_EL1 */
280 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
281 NULL, reset_unknown, TPIDR_EL1 },
282
283 /* CNTKCTL_EL1 */
284 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
285 NULL, reset_val, CNTKCTL_EL1, 0},
286
287 /* CSSELR_EL1 */
288 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
289 NULL, reset_unknown, CSSELR_EL1 },
290
291 /* PMCR_EL0 */
292 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
293 pm_fake },
294 /* PMCNTENSET_EL0 */
295 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
296 pm_fake },
297 /* PMCNTENCLR_EL0 */
298 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
299 pm_fake },
300 /* PMOVSCLR_EL0 */
301 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
302 pm_fake },
303 /* PMSWINC_EL0 */
304 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
305 pm_fake },
306 /* PMSELR_EL0 */
307 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
308 pm_fake },
309 /* PMCEID0_EL0 */
310 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
311 pm_fake },
312 /* PMCEID1_EL0 */
313 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
314 pm_fake },
315 /* PMCCNTR_EL0 */
316 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
317 pm_fake },
318 /* PMXEVTYPER_EL0 */
319 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
320 pm_fake },
321 /* PMXEVCNTR_EL0 */
322 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
323 pm_fake },
324 /* PMUSERENR_EL0 */
325 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
326 pm_fake },
327 /* PMOVSSET_EL0 */
328 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
329 pm_fake },
330
331 /* TPIDR_EL0 */
332 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
333 NULL, reset_unknown, TPIDR_EL0 },
334 /* TPIDRRO_EL0 */
335 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
336 NULL, reset_unknown, TPIDRRO_EL0 },
62a89c44
MZ
337
338 /* DACR32_EL2 */
339 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
340 NULL, reset_unknown, DACR32_EL2 },
341 /* IFSR32_EL2 */
342 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
343 NULL, reset_unknown, IFSR32_EL2 },
344 /* FPEXC32_EL2 */
345 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
346 NULL, reset_val, FPEXC32_EL2, 0x70 },
347};
348
4d44923b
MZ
349/*
350 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
351 * depending on the way they are accessed (as a 32bit or a 64bit
352 * register).
353 */
62a89c44 354static const struct sys_reg_desc cp15_regs[] = {
4d44923b
MZ
355 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
356 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_sctlr, NULL, c1_SCTLR },
357 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
358 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
359 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
360 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
361 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
362 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
363 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
364 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
365 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
366 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
367
62a89c44
MZ
368 /*
369 * DC{C,I,CI}SW operations:
370 */
371 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
372 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
373 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
4d44923b 374
62a89c44
MZ
375 { Op1( 0), CRn( 9), CRm(12), Op2( 0), pm_fake },
376 { Op1( 0), CRn( 9), CRm(12), Op2( 1), pm_fake },
377 { Op1( 0), CRn( 9), CRm(12), Op2( 2), pm_fake },
378 { Op1( 0), CRn( 9), CRm(12), Op2( 3), pm_fake },
379 { Op1( 0), CRn( 9), CRm(12), Op2( 5), pm_fake },
380 { Op1( 0), CRn( 9), CRm(12), Op2( 6), pm_fake },
381 { Op1( 0), CRn( 9), CRm(12), Op2( 7), pm_fake },
382 { Op1( 0), CRn( 9), CRm(13), Op2( 0), pm_fake },
383 { Op1( 0), CRn( 9), CRm(13), Op2( 1), pm_fake },
384 { Op1( 0), CRn( 9), CRm(13), Op2( 2), pm_fake },
385 { Op1( 0), CRn( 9), CRm(14), Op2( 0), pm_fake },
386 { Op1( 0), CRn( 9), CRm(14), Op2( 1), pm_fake },
387 { Op1( 0), CRn( 9), CRm(14), Op2( 2), pm_fake },
4d44923b
MZ
388
389 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
390 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
391 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
392 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
393 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
394
395 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
7c8c5e6a
MZ
396};
397
398/* Target specific emulation tables */
399static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
400
401void kvm_register_target_sys_reg_table(unsigned int target,
402 struct kvm_sys_reg_target_table *table)
403{
404 target_tables[target] = table;
405}
406
407/* Get specific register table for this target. */
62a89c44
MZ
408static const struct sys_reg_desc *get_target_table(unsigned target,
409 bool mode_is_64,
410 size_t *num)
7c8c5e6a
MZ
411{
412 struct kvm_sys_reg_target_table *table;
413
414 table = target_tables[target];
62a89c44
MZ
415 if (mode_is_64) {
416 *num = table->table64.num;
417 return table->table64.table;
418 } else {
419 *num = table->table32.num;
420 return table->table32.table;
421 }
7c8c5e6a
MZ
422}
423
424static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
425 const struct sys_reg_desc table[],
426 unsigned int num)
427{
428 unsigned int i;
429
430 for (i = 0; i < num; i++) {
431 const struct sys_reg_desc *r = &table[i];
432
433 if (params->Op0 != r->Op0)
434 continue;
435 if (params->Op1 != r->Op1)
436 continue;
437 if (params->CRn != r->CRn)
438 continue;
439 if (params->CRm != r->CRm)
440 continue;
441 if (params->Op2 != r->Op2)
442 continue;
443
444 return r;
445 }
446 return NULL;
447}
448
62a89c44
MZ
449int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
450{
451 kvm_inject_undefined(vcpu);
452 return 1;
453}
454
455int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
456{
457 kvm_inject_undefined(vcpu);
458 return 1;
459}
460
461static void emulate_cp15(struct kvm_vcpu *vcpu,
462 const struct sys_reg_params *params)
463{
464 size_t num;
465 const struct sys_reg_desc *table, *r;
466
467 table = get_target_table(vcpu->arch.target, false, &num);
468
469 /* Search target-specific then generic table. */
470 r = find_reg(params, table, num);
471 if (!r)
472 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
473
474 if (likely(r)) {
475 /*
476 * Not having an accessor means that we have
477 * configured a trap that we don't know how to
478 * handle. This certainly qualifies as a gross bug
479 * that should be fixed right away.
480 */
481 BUG_ON(!r->access);
482
483 if (likely(r->access(vcpu, params, r))) {
484 /* Skip instruction, since it was emulated */
485 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
486 return;
487 }
488 /* If access function fails, it should complain. */
489 }
490
491 kvm_err("Unsupported guest CP15 access at: %08lx\n", *vcpu_pc(vcpu));
492 print_sys_reg_instr(params);
493 kvm_inject_undefined(vcpu);
494}
495
496/**
497 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
498 * @vcpu: The VCPU pointer
499 * @run: The kvm_run struct
500 */
501int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
502{
503 struct sys_reg_params params;
504 u32 hsr = kvm_vcpu_get_hsr(vcpu);
505 int Rt2 = (hsr >> 10) & 0xf;
506
2072d29c
MZ
507 params.is_aarch32 = true;
508 params.is_32bit = false;
62a89c44
MZ
509 params.CRm = (hsr >> 1) & 0xf;
510 params.Rt = (hsr >> 5) & 0xf;
511 params.is_write = ((hsr & 1) == 0);
512
513 params.Op0 = 0;
514 params.Op1 = (hsr >> 16) & 0xf;
515 params.Op2 = 0;
516 params.CRn = 0;
517
518 /*
519 * Massive hack here. Store Rt2 in the top 32bits so we only
520 * have one register to deal with. As we use the same trap
521 * backends between AArch32 and AArch64, we get away with it.
522 */
523 if (params.is_write) {
524 u64 val = *vcpu_reg(vcpu, params.Rt);
525 val &= 0xffffffff;
526 val |= *vcpu_reg(vcpu, Rt2) << 32;
527 *vcpu_reg(vcpu, params.Rt) = val;
528 }
529
530 emulate_cp15(vcpu, &params);
531
532 /* Do the opposite hack for the read side */
533 if (!params.is_write) {
534 u64 val = *vcpu_reg(vcpu, params.Rt);
535 val >>= 32;
536 *vcpu_reg(vcpu, Rt2) = val;
537 }
538
539 return 1;
540}
541
542/**
543 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
544 * @vcpu: The VCPU pointer
545 * @run: The kvm_run struct
546 */
547int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
548{
549 struct sys_reg_params params;
550 u32 hsr = kvm_vcpu_get_hsr(vcpu);
551
2072d29c
MZ
552 params.is_aarch32 = true;
553 params.is_32bit = true;
62a89c44
MZ
554 params.CRm = (hsr >> 1) & 0xf;
555 params.Rt = (hsr >> 5) & 0xf;
556 params.is_write = ((hsr & 1) == 0);
557 params.CRn = (hsr >> 10) & 0xf;
558 params.Op0 = 0;
559 params.Op1 = (hsr >> 14) & 0x7;
560 params.Op2 = (hsr >> 17) & 0x7;
561
562 emulate_cp15(vcpu, &params);
563 return 1;
564}
565
7c8c5e6a
MZ
566static int emulate_sys_reg(struct kvm_vcpu *vcpu,
567 const struct sys_reg_params *params)
568{
569 size_t num;
570 const struct sys_reg_desc *table, *r;
571
62a89c44 572 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
573
574 /* Search target-specific then generic table. */
575 r = find_reg(params, table, num);
576 if (!r)
577 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
578
579 if (likely(r)) {
580 /*
581 * Not having an accessor means that we have
582 * configured a trap that we don't know how to
583 * handle. This certainly qualifies as a gross bug
584 * that should be fixed right away.
585 */
586 BUG_ON(!r->access);
587
588 if (likely(r->access(vcpu, params, r))) {
589 /* Skip instruction, since it was emulated */
590 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
591 return 1;
592 }
593 /* If access function fails, it should complain. */
594 } else {
595 kvm_err("Unsupported guest sys_reg access at: %lx\n",
596 *vcpu_pc(vcpu));
597 print_sys_reg_instr(params);
598 }
599 kvm_inject_undefined(vcpu);
600 return 1;
601}
602
603static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
604 const struct sys_reg_desc *table, size_t num)
605{
606 unsigned long i;
607
608 for (i = 0; i < num; i++)
609 if (table[i].reset)
610 table[i].reset(vcpu, &table[i]);
611}
612
613/**
614 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
615 * @vcpu: The VCPU pointer
616 * @run: The kvm_run struct
617 */
618int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
619{
620 struct sys_reg_params params;
621 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
622
2072d29c
MZ
623 params.is_aarch32 = false;
624 params.is_32bit = false;
7c8c5e6a
MZ
625 params.Op0 = (esr >> 20) & 3;
626 params.Op1 = (esr >> 14) & 0x7;
627 params.CRn = (esr >> 10) & 0xf;
628 params.CRm = (esr >> 1) & 0xf;
629 params.Op2 = (esr >> 17) & 0x7;
630 params.Rt = (esr >> 5) & 0x1f;
631 params.is_write = !(esr & 1);
632
633 return emulate_sys_reg(vcpu, &params);
634}
635
636/******************************************************************************
637 * Userspace API
638 *****************************************************************************/
639
640static bool index_to_params(u64 id, struct sys_reg_params *params)
641{
642 switch (id & KVM_REG_SIZE_MASK) {
643 case KVM_REG_SIZE_U64:
644 /* Any unused index bits means it's not valid. */
645 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
646 | KVM_REG_ARM_COPROC_MASK
647 | KVM_REG_ARM64_SYSREG_OP0_MASK
648 | KVM_REG_ARM64_SYSREG_OP1_MASK
649 | KVM_REG_ARM64_SYSREG_CRN_MASK
650 | KVM_REG_ARM64_SYSREG_CRM_MASK
651 | KVM_REG_ARM64_SYSREG_OP2_MASK))
652 return false;
653 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
654 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
655 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
656 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
657 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
658 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
659 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
660 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
661 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
662 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
663 return true;
664 default:
665 return false;
666 }
667}
668
669/* Decode an index value, and find the sys_reg_desc entry. */
670static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
671 u64 id)
672{
673 size_t num;
674 const struct sys_reg_desc *table, *r;
675 struct sys_reg_params params;
676
677 /* We only do sys_reg for now. */
678 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
679 return NULL;
680
681 if (!index_to_params(id, &params))
682 return NULL;
683
62a89c44 684 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
685 r = find_reg(&params, table, num);
686 if (!r)
687 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
688
689 /* Not saved in the sys_reg array? */
690 if (r && !r->reg)
691 r = NULL;
692
693 return r;
694}
695
696/*
697 * These are the invariant sys_reg registers: we let the guest see the
698 * host versions of these, so they're part of the guest state.
699 *
700 * A future CPU may provide a mechanism to present different values to
701 * the guest, or a future kvm may trap them.
702 */
703
704#define FUNCTION_INVARIANT(reg) \
705 static void get_##reg(struct kvm_vcpu *v, \
706 const struct sys_reg_desc *r) \
707 { \
708 u64 val; \
709 \
710 asm volatile("mrs %0, " __stringify(reg) "\n" \
711 : "=r" (val)); \
712 ((struct sys_reg_desc *)r)->val = val; \
713 }
714
715FUNCTION_INVARIANT(midr_el1)
716FUNCTION_INVARIANT(ctr_el0)
717FUNCTION_INVARIANT(revidr_el1)
718FUNCTION_INVARIANT(id_pfr0_el1)
719FUNCTION_INVARIANT(id_pfr1_el1)
720FUNCTION_INVARIANT(id_dfr0_el1)
721FUNCTION_INVARIANT(id_afr0_el1)
722FUNCTION_INVARIANT(id_mmfr0_el1)
723FUNCTION_INVARIANT(id_mmfr1_el1)
724FUNCTION_INVARIANT(id_mmfr2_el1)
725FUNCTION_INVARIANT(id_mmfr3_el1)
726FUNCTION_INVARIANT(id_isar0_el1)
727FUNCTION_INVARIANT(id_isar1_el1)
728FUNCTION_INVARIANT(id_isar2_el1)
729FUNCTION_INVARIANT(id_isar3_el1)
730FUNCTION_INVARIANT(id_isar4_el1)
731FUNCTION_INVARIANT(id_isar5_el1)
732FUNCTION_INVARIANT(clidr_el1)
733FUNCTION_INVARIANT(aidr_el1)
734
735/* ->val is filled in by kvm_sys_reg_table_init() */
736static struct sys_reg_desc invariant_sys_regs[] = {
737 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
738 NULL, get_midr_el1 },
739 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
740 NULL, get_revidr_el1 },
741 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
742 NULL, get_id_pfr0_el1 },
743 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
744 NULL, get_id_pfr1_el1 },
745 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
746 NULL, get_id_dfr0_el1 },
747 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
748 NULL, get_id_afr0_el1 },
749 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
750 NULL, get_id_mmfr0_el1 },
751 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
752 NULL, get_id_mmfr1_el1 },
753 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
754 NULL, get_id_mmfr2_el1 },
755 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
756 NULL, get_id_mmfr3_el1 },
757 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
758 NULL, get_id_isar0_el1 },
759 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
760 NULL, get_id_isar1_el1 },
761 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
762 NULL, get_id_isar2_el1 },
763 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
764 NULL, get_id_isar3_el1 },
765 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
766 NULL, get_id_isar4_el1 },
767 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
768 NULL, get_id_isar5_el1 },
769 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
770 NULL, get_clidr_el1 },
771 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
772 NULL, get_aidr_el1 },
773 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
774 NULL, get_ctr_el0 },
775};
776
26c99af1 777static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
7c8c5e6a 778{
7c8c5e6a
MZ
779 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
780 return -EFAULT;
781 return 0;
782}
783
26c99af1 784static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
7c8c5e6a 785{
7c8c5e6a
MZ
786 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
787 return -EFAULT;
788 return 0;
789}
790
791static int get_invariant_sys_reg(u64 id, void __user *uaddr)
792{
793 struct sys_reg_params params;
794 const struct sys_reg_desc *r;
795
796 if (!index_to_params(id, &params))
797 return -ENOENT;
798
799 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
800 if (!r)
801 return -ENOENT;
802
803 return reg_to_user(uaddr, &r->val, id);
804}
805
806static int set_invariant_sys_reg(u64 id, void __user *uaddr)
807{
808 struct sys_reg_params params;
809 const struct sys_reg_desc *r;
810 int err;
811 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
812
813 if (!index_to_params(id, &params))
814 return -ENOENT;
815 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
816 if (!r)
817 return -ENOENT;
818
819 err = reg_from_user(&val, uaddr, id);
820 if (err)
821 return err;
822
823 /* This is what we mean by invariant: you can't change it. */
824 if (r->val != val)
825 return -EINVAL;
826
827 return 0;
828}
829
830static bool is_valid_cache(u32 val)
831{
832 u32 level, ctype;
833
834 if (val >= CSSELR_MAX)
835 return -ENOENT;
836
837 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
838 level = (val >> 1);
839 ctype = (cache_levels >> (level * 3)) & 7;
840
841 switch (ctype) {
842 case 0: /* No cache */
843 return false;
844 case 1: /* Instruction cache only */
845 return (val & 1);
846 case 2: /* Data cache only */
847 case 4: /* Unified cache */
848 return !(val & 1);
849 case 3: /* Separate instruction and data caches */
850 return true;
851 default: /* Reserved: we can't know instruction or data. */
852 return false;
853 }
854}
855
856static int demux_c15_get(u64 id, void __user *uaddr)
857{
858 u32 val;
859 u32 __user *uval = uaddr;
860
861 /* Fail if we have unknown bits set. */
862 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
863 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
864 return -ENOENT;
865
866 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
867 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
868 if (KVM_REG_SIZE(id) != 4)
869 return -ENOENT;
870 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
871 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
872 if (!is_valid_cache(val))
873 return -ENOENT;
874
875 return put_user(get_ccsidr(val), uval);
876 default:
877 return -ENOENT;
878 }
879}
880
881static int demux_c15_set(u64 id, void __user *uaddr)
882{
883 u32 val, newval;
884 u32 __user *uval = uaddr;
885
886 /* Fail if we have unknown bits set. */
887 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
888 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
889 return -ENOENT;
890
891 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
892 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
893 if (KVM_REG_SIZE(id) != 4)
894 return -ENOENT;
895 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
896 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
897 if (!is_valid_cache(val))
898 return -ENOENT;
899
900 if (get_user(newval, uval))
901 return -EFAULT;
902
903 /* This is also invariant: you can't change it. */
904 if (newval != get_ccsidr(val))
905 return -EINVAL;
906 return 0;
907 default:
908 return -ENOENT;
909 }
910}
911
912int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
913{
914 const struct sys_reg_desc *r;
915 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
916
917 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
918 return demux_c15_get(reg->id, uaddr);
919
920 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
921 return -ENOENT;
922
923 r = index_to_sys_reg_desc(vcpu, reg->id);
924 if (!r)
925 return get_invariant_sys_reg(reg->id, uaddr);
926
927 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
928}
929
930int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
931{
932 const struct sys_reg_desc *r;
933 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
934
935 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
936 return demux_c15_set(reg->id, uaddr);
937
938 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
939 return -ENOENT;
940
941 r = index_to_sys_reg_desc(vcpu, reg->id);
942 if (!r)
943 return set_invariant_sys_reg(reg->id, uaddr);
944
945 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
946}
947
948static unsigned int num_demux_regs(void)
949{
950 unsigned int i, count = 0;
951
952 for (i = 0; i < CSSELR_MAX; i++)
953 if (is_valid_cache(i))
954 count++;
955
956 return count;
957}
958
959static int write_demux_regids(u64 __user *uindices)
960{
efd48cea 961 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
7c8c5e6a
MZ
962 unsigned int i;
963
964 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
965 for (i = 0; i < CSSELR_MAX; i++) {
966 if (!is_valid_cache(i))
967 continue;
968 if (put_user(val | i, uindices))
969 return -EFAULT;
970 uindices++;
971 }
972 return 0;
973}
974
975static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
976{
977 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
978 KVM_REG_ARM64_SYSREG |
979 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
980 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
981 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
982 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
983 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
984}
985
986static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
987{
988 if (!*uind)
989 return true;
990
991 if (put_user(sys_reg_to_index(reg), *uind))
992 return false;
993
994 (*uind)++;
995 return true;
996}
997
998/* Assumed ordered tables, see kvm_sys_reg_table_init. */
999static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1000{
1001 const struct sys_reg_desc *i1, *i2, *end1, *end2;
1002 unsigned int total = 0;
1003 size_t num;
1004
1005 /* We check for duplicates here, to allow arch-specific overrides. */
62a89c44 1006 i1 = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
1007 end1 = i1 + num;
1008 i2 = sys_reg_descs;
1009 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1010
1011 BUG_ON(i1 == end1 || i2 == end2);
1012
1013 /* Walk carefully, as both tables may refer to the same register. */
1014 while (i1 || i2) {
1015 int cmp = cmp_sys_reg(i1, i2);
1016 /* target-specific overrides generic entry. */
1017 if (cmp <= 0) {
1018 /* Ignore registers we trap but don't save. */
1019 if (i1->reg) {
1020 if (!copy_reg_to_user(i1, &uind))
1021 return -EFAULT;
1022 total++;
1023 }
1024 } else {
1025 /* Ignore registers we trap but don't save. */
1026 if (i2->reg) {
1027 if (!copy_reg_to_user(i2, &uind))
1028 return -EFAULT;
1029 total++;
1030 }
1031 }
1032
1033 if (cmp <= 0 && ++i1 == end1)
1034 i1 = NULL;
1035 if (cmp >= 0 && ++i2 == end2)
1036 i2 = NULL;
1037 }
1038 return total;
1039}
1040
1041unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1042{
1043 return ARRAY_SIZE(invariant_sys_regs)
1044 + num_demux_regs()
1045 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1046}
1047
1048int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1049{
1050 unsigned int i;
1051 int err;
1052
1053 /* Then give them all the invariant registers' indices. */
1054 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1055 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1056 return -EFAULT;
1057 uindices++;
1058 }
1059
1060 err = walk_sys_regs(vcpu, uindices);
1061 if (err < 0)
1062 return err;
1063 uindices += err;
1064
1065 return write_demux_regids(uindices);
1066}
1067
1068void kvm_sys_reg_table_init(void)
1069{
1070 unsigned int i;
1071 struct sys_reg_desc clidr;
1072
1073 /* Make sure tables are unique and in order. */
1074 for (i = 1; i < ARRAY_SIZE(sys_reg_descs); i++)
1075 BUG_ON(cmp_sys_reg(&sys_reg_descs[i-1], &sys_reg_descs[i]) >= 0);
1076
1077 /* We abuse the reset function to overwrite the table itself. */
1078 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1079 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1080
1081 /*
1082 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1083 *
1084 * If software reads the Cache Type fields from Ctype1
1085 * upwards, once it has seen a value of 0b000, no caches
1086 * exist at further-out levels of the hierarchy. So, for
1087 * example, if Ctype3 is the first Cache Type field with a
1088 * value of 0b000, the values of Ctype4 to Ctype7 must be
1089 * ignored.
1090 */
1091 get_clidr_el1(NULL, &clidr); /* Ugly... */
1092 cache_levels = clidr.val;
1093 for (i = 0; i < 7; i++)
1094 if (((cache_levels >> (i*3)) & 7) == 0)
1095 break;
1096 /* Clear all higher bits. */
1097 cache_levels &= (1 << (i*3))-1;
1098}
1099
1100/**
1101 * kvm_reset_sys_regs - sets system registers to reset value
1102 * @vcpu: The VCPU pointer
1103 *
1104 * This function finds the right table above and sets the registers on the
1105 * virtual CPU struct to their architecturally defined reset values.
1106 */
1107void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1108{
1109 size_t num;
1110 const struct sys_reg_desc *table;
1111
1112 /* Catch someone adding a register without putting in reset entry. */
1113 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1114
1115 /* Generic chip reset first (so target could override). */
1116 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1117
62a89c44 1118 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
1119 reset_sys_reg_descs(vcpu, table, num);
1120
1121 for (num = 1; num < NR_SYS_REGS; num++)
1122 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1123 panic("Didn't reset vcpu_sys_reg(%zi)", num);
1124}