]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/arm64/lib/memcmp.S
KVM: arm64: vgic-v3: Add ICV_RPR_EL1 handler
[mirror_ubuntu-zesty-kernel.git] / arch / arm64 / lib / memcmp.S
CommitLineData
d875c9b3 1/*
2 * Copyright (C) 2013 ARM Ltd.
3 * Copyright (C) 2013 Linaro.
4 *
5 * This code is based on glibc cortex strings work originally authored by Linaro
6 * and re-licensed under GPLv2 for the Linux kernel. The original code can
7 * be found @
8 *
9 * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
10 * files/head:/src/aarch64/
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program. If not, see <http://www.gnu.org/licenses/>.
23 */
24
25#include <linux/linkage.h>
26#include <asm/assembler.h>
27
28/*
29* compare memory areas(when two memory areas' offset are different,
30* alignment handled by the hardware)
31*
32* Parameters:
33* x0 - const memory area 1 pointer
34* x1 - const memory area 2 pointer
35* x2 - the maximal compare byte length
36* Returns:
37* x0 - a compare result, maybe less than, equal to, or greater than ZERO
38*/
39
40/* Parameters and result. */
41src1 .req x0
42src2 .req x1
43limit .req x2
44result .req x0
45
46/* Internal variables. */
47data1 .req x3
48data1w .req w3
49data2 .req x4
50data2w .req w4
51has_nul .req x5
52diff .req x6
53endloop .req x7
54tmp1 .req x8
55tmp2 .req x9
56tmp3 .req x10
57pos .req x11
58limit_wd .req x12
59mask .req x13
60
61ENTRY(memcmp)
62 cbz limit, .Lret0
63 eor tmp1, src1, src2
64 tst tmp1, #7
65 b.ne .Lmisaligned8
66 ands tmp1, src1, #7
67 b.ne .Lmutual_align
68 sub limit_wd, limit, #1 /* limit != 0, so no underflow. */
69 lsr limit_wd, limit_wd, #3 /* Convert to Dwords. */
70 /*
71 * The input source addresses are at alignment boundary.
72 * Directly compare eight bytes each time.
73 */
74.Lloop_aligned:
75 ldr data1, [src1], #8
76 ldr data2, [src2], #8
77.Lstart_realigned:
78 subs limit_wd, limit_wd, #1
79 eor diff, data1, data2 /* Non-zero if differences found. */
80 csinv endloop, diff, xzr, cs /* Last Dword or differences. */
81 cbz endloop, .Lloop_aligned
82
83 /* Not reached the limit, must have found a diff. */
84 tbz limit_wd, #63, .Lnot_limit
85
86 /* Limit % 8 == 0 => the diff is in the last 8 bytes. */
87 ands limit, limit, #7
88 b.eq .Lnot_limit
89 /*
90 * The remained bytes less than 8. It is needed to extract valid data
91 * from last eight bytes of the intended memory range.
92 */
93 lsl limit, limit, #3 /* bytes-> bits. */
94 mov mask, #~0
95CPU_BE( lsr mask, mask, limit )
96CPU_LE( lsl mask, mask, limit )
97 bic data1, data1, mask
98 bic data2, data2, mask
99
100 orr diff, diff, mask
101 b .Lnot_limit
102
103.Lmutual_align:
104 /*
105 * Sources are mutually aligned, but are not currently at an
106 * alignment boundary. Round down the addresses and then mask off
107 * the bytes that precede the start point.
108 */
109 bic src1, src1, #7
110 bic src2, src2, #7
111 ldr data1, [src1], #8
112 ldr data2, [src2], #8
113 /*
114 * We can not add limit with alignment offset(tmp1) here. Since the
115 * addition probably make the limit overflown.
116 */
117 sub limit_wd, limit, #1/*limit != 0, so no underflow.*/
118 and tmp3, limit_wd, #7
119 lsr limit_wd, limit_wd, #3
120 add tmp3, tmp3, tmp1
121 add limit_wd, limit_wd, tmp3, lsr #3
122 add limit, limit, tmp1/* Adjust the limit for the extra. */
123
124 lsl tmp1, tmp1, #3/* Bytes beyond alignment -> bits.*/
125 neg tmp1, tmp1/* Bits to alignment -64. */
126 mov tmp2, #~0
127 /*mask off the non-intended bytes before the start address.*/
128CPU_BE( lsl tmp2, tmp2, tmp1 )/*Big-endian.Early bytes are at MSB*/
129 /* Little-endian. Early bytes are at LSB. */
130CPU_LE( lsr tmp2, tmp2, tmp1 )
131
132 orr data1, data1, tmp2
133 orr data2, data2, tmp2
134 b .Lstart_realigned
135
136 /*src1 and src2 have different alignment offset.*/
137.Lmisaligned8:
138 cmp limit, #8
139 b.lo .Ltiny8proc /*limit < 8: compare byte by byte*/
140
141 and tmp1, src1, #7
142 neg tmp1, tmp1
143 add tmp1, tmp1, #8/*valid length in the first 8 bytes of src1*/
144 and tmp2, src2, #7
145 neg tmp2, tmp2
146 add tmp2, tmp2, #8/*valid length in the first 8 bytes of src2*/
147 subs tmp3, tmp1, tmp2
148 csel pos, tmp1, tmp2, hi /*Choose the maximum.*/
149
150 sub limit, limit, pos
151 /*compare the proceeding bytes in the first 8 byte segment.*/
152.Ltinycmp:
153 ldrb data1w, [src1], #1
154 ldrb data2w, [src2], #1
155 subs pos, pos, #1
156 ccmp data1w, data2w, #0, ne /* NZCV = 0b0000. */
157 b.eq .Ltinycmp
158 cbnz pos, 1f /*diff occurred before the last byte.*/
159 cmp data1w, data2w
160 b.eq .Lstart_align
1611:
162 sub result, data1, data2
163 ret
164
165.Lstart_align:
166 lsr limit_wd, limit, #3
167 cbz limit_wd, .Lremain8
168
169 ands xzr, src1, #7
170 b.eq .Lrecal_offset
171 /*process more leading bytes to make src1 aligned...*/
172 add src1, src1, tmp3 /*backwards src1 to alignment boundary*/
173 add src2, src2, tmp3
174 sub limit, limit, tmp3
175 lsr limit_wd, limit, #3
176 cbz limit_wd, .Lremain8
177 /*load 8 bytes from aligned SRC1..*/
178 ldr data1, [src1], #8
179 ldr data2, [src2], #8
180
181 subs limit_wd, limit_wd, #1
182 eor diff, data1, data2 /*Non-zero if differences found.*/
183 csinv endloop, diff, xzr, ne
184 cbnz endloop, .Lunequal_proc
185 /*How far is the current SRC2 from the alignment boundary...*/
186 and tmp3, tmp3, #7
187
188.Lrecal_offset:/*src1 is aligned now..*/
189 neg pos, tmp3
190.Lloopcmp_proc:
191 /*
192 * Divide the eight bytes into two parts. First,backwards the src2
193 * to an alignment boundary,load eight bytes and compare from
194 * the SRC2 alignment boundary. If all 8 bytes are equal,then start
195 * the second part's comparison. Otherwise finish the comparison.
196 * This special handle can garantee all the accesses are in the
197 * thread/task space in avoid to overrange access.
198 */
199 ldr data1, [src1,pos]
200 ldr data2, [src2,pos]
201 eor diff, data1, data2 /* Non-zero if differences found. */
202 cbnz diff, .Lnot_limit
203
204 /*The second part process*/
205 ldr data1, [src1], #8
206 ldr data2, [src2], #8
207 eor diff, data1, data2 /* Non-zero if differences found. */
208 subs limit_wd, limit_wd, #1
209 csinv endloop, diff, xzr, ne/*if limit_wd is 0,will finish the cmp*/
210 cbz endloop, .Lloopcmp_proc
211.Lunequal_proc:
212 cbz diff, .Lremain8
213
ef769e32 214/* There is difference occurred in the latest comparison. */
d875c9b3 215.Lnot_limit:
216/*
217* For little endian,reverse the low significant equal bits into MSB,then
218* following CLZ can find how many equal bits exist.
219*/
220CPU_LE( rev diff, diff )
221CPU_LE( rev data1, data1 )
222CPU_LE( rev data2, data2 )
223
224 /*
225 * The MS-non-zero bit of DIFF marks either the first bit
226 * that is different, or the end of the significant data.
227 * Shifting left now will bring the critical information into the
228 * top bits.
229 */
230 clz pos, diff
231 lsl data1, data1, pos
232 lsl data2, data2, pos
233 /*
234 * We need to zero-extend (char is unsigned) the value and then
235 * perform a signed subtraction.
236 */
237 lsr data1, data1, #56
238 sub result, data1, data2, lsr #56
239 ret
240
241.Lremain8:
242 /* Limit % 8 == 0 =>. all data are equal.*/
243 ands limit, limit, #7
244 b.eq .Lret0
245
246.Ltiny8proc:
247 ldrb data1w, [src1], #1
248 ldrb data2w, [src2], #1
249 subs limit, limit, #1
250
251 ccmp data1w, data2w, #0, ne /* NZCV = 0b0000. */
252 b.eq .Ltiny8proc
253 sub result, data1, data2
254 ret
255.Lret0:
256 mov result, #0
257 ret
20791846 258ENDPIPROC(memcmp)