]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/blackfin/mach-common/cache.S
Merge git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging-2.6
[mirror_ubuntu-zesty-kernel.git] / arch / blackfin / mach-common / cache.S
CommitLineData
1394f032 1/*
ded963a4 2 * Blackfin cache control code
1394f032 3 *
ded963a4 4 * Copyright 2004-2008 Analog Devices Inc.
1394f032 5 *
ded963a4 6 * Licensed under the GPL-2 or later.
1394f032
BW
7 */
8
9#include <linux/linkage.h>
1394f032
BW
10#include <asm/blackfin.h>
11#include <asm/cache.h>
ded963a4 12#include <asm/page.h>
1394f032
BW
13
14.text
1394f032 15
78f28a0a
MF
16/* 05000443 - IFLUSH cannot be last instruction in hardware loop */
17#if ANOMALY_05000443
18# define BROK_FLUSH_INST "IFLUSH"
19#else
20# define BROK_FLUSH_INST "no anomaly! yeah!"
21#endif
22
ded963a4
MF
23/* Since all L1 caches work the same way, we use the same method for flushing
24 * them. Only the actual flush instruction differs. We write this in asm as
25 * GCC can be hard to coax into writing nice hardware loops.
1394f032 26 *
ded963a4
MF
27 * Also, we assume the following register setup:
28 * R0 = start address
29 * R1 = end address
1394f032 30 */
78f28a0a 31.macro do_flush flushins:req label
ded963a4 32
39e96c88
MF
33 R2 = -L1_CACHE_BYTES;
34
35 /* start = (start & -L1_CACHE_BYTES) */
36 R0 = R0 & R2;
37
ded963a4
MF
38 /* end = ((end - 1) & -L1_CACHE_BYTES) + L1_CACHE_BYTES; */
39 R1 += -1;
ded963a4
MF
40 R1 = R1 & R2;
41 R1 += L1_CACHE_BYTES;
42
43 /* count = (end - start) >> L1_CACHE_SHIFT */
44 R2 = R1 - R0;
45 R2 >>= L1_CACHE_SHIFT;
46 P1 = R2;
47
48.ifnb \label
49\label :
50.endif
51 P0 = R0;
78f28a0a 52
ded963a4 53 LSETUP (1f, 2f) LC1 = P1;
1394f032 541:
78f28a0a 55.ifeqs "\flushins", BROK_FLUSH_INST
ded963a4 56 \flushins [P0++];
78f28a0a
MF
572: nop;
58.else
2cf85113 592: \flushins [P0++];
78f28a0a 60.endif
ded963a4 61
1394f032 62 RTS;
ded963a4 63.endm
1394f032 64
ded963a4
MF
65/* Invalidate all instruction cache lines assocoiated with this memory area */
66ENTRY(_blackfin_icache_flush_range)
d7ff1a90
SZ
67/*
68 * Walkaround to avoid loading wrong instruction after invalidating icache
69 * and following sequence is met.
70 *
71 * 1) One instruction address is cached in the instruction cache.
72 * 2) This instruction in SDRAM is changed.
73 * 3) IFLASH[P0] is executed only once in blackfin_icache_flush_range().
74 * 4) This instruction is executed again, but the old one is loaded.
75 */
76 P0 = R0;
77 IFLUSH[P0];
78f28a0a 78 do_flush IFLUSH
ded963a4 79ENDPROC(_blackfin_icache_flush_range)
1394f032 80
1394f032 81/* Throw away all D-cached data in specified region without any obligation to
ded963a4
MF
82 * write them back. Since the Blackfin ISA does not have an "invalidate"
83 * instruction, we use flush/invalidate. Perhaps as a speed optimization we
84 * could bang on the DTEST MMRs ...
1394f032 85 */
1394f032 86ENTRY(_blackfin_dcache_invalidate_range)
ded963a4 87 do_flush FLUSHINV
51be24c3 88ENDPROC(_blackfin_dcache_invalidate_range)
1394f032 89
ded963a4 90/* Flush all data cache lines assocoiated with this memory area */
1394f032 91ENTRY(_blackfin_dcache_flush_range)
78f28a0a 92 do_flush FLUSH, .Ldfr
51be24c3 93ENDPROC(_blackfin_dcache_flush_range)
1394f032 94
ded963a4
MF
95/* Our headers convert the page structure to an address, so just need to flush
96 * its contents like normal. We know the start address is page aligned (which
97 * greater than our cache alignment), as is the end address. So just jump into
98 * the middle of the dcache flush function.
99 */
1394f032
BW
100ENTRY(_blackfin_dflush_page)
101 P1 = 1 << (PAGE_SHIFT - L1_CACHE_SHIFT);
ded963a4 102 jump .Ldfr;
51be24c3 103ENDPROC(_blackfin_dflush_page)