]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/cris/arch-v10/kernel/kgdb.c
Fix misc .c/.h comment typos
[mirror_ubuntu-artful-kernel.git] / arch / cris / arch-v10 / kernel / kgdb.c
CommitLineData
1da177e4
LT
1/*!**************************************************************************
2*!
3*! FILE NAME : kgdb.c
4*!
5*! DESCRIPTION: Implementation of the gdb stub with respect to ETRAX 100.
6*! It is a mix of arch/m68k/kernel/kgdb.c and cris_stub.c.
7*!
8*!---------------------------------------------------------------------------
9*! HISTORY
10*!
11*! DATE NAME CHANGES
12*! ---- ---- -------
13*! Apr 26 1999 Hendrik Ruijter Initial version.
14*! May 6 1999 Hendrik Ruijter Removed call to strlen in libc and removed
15*! struct assignment as it generates calls to
16*! memcpy in libc.
17*! Jun 17 1999 Hendrik Ruijter Added gdb 4.18 support. 'X', 'qC' and 'qL'.
18*! Jul 21 1999 Bjorn Wesen eLinux port
19*!
20*! $Log: kgdb.c,v $
7cf32cad
MS
21*! Revision 1.6 2005/01/14 10:12:17 starvik
22*! KGDB on separate port.
23*! Console fixes from 2.4.
24*!
1da177e4
LT
25*! Revision 1.5 2004/10/07 13:59:08 starvik
26*! Corrected call to set_int_vector
27*!
28*! Revision 1.4 2003/04/09 05:20:44 starvik
29*! Merge of Linux 2.5.67
30*!
31*! Revision 1.3 2003/01/21 19:11:08 starvik
32*! Modified include path for new dir layout
33*!
34*! Revision 1.2 2002/11/19 14:35:24 starvik
35*! Changes from linux 2.4
0779bf2d 36*! Changed struct initializer syntax to the currently preferred notation
1da177e4
LT
37*!
38*! Revision 1.1 2001/12/17 13:59:27 bjornw
39*! Initial revision
40*!
41*! Revision 1.6 2001/10/09 13:10:03 matsfg
42*! Added $ on registers and removed some underscores
43*!
44*! Revision 1.5 2001/04/17 13:58:39 orjanf
45*! * Renamed CONFIG_KGDB to CONFIG_ETRAX_KGDB.
46*!
47*! Revision 1.4 2001/02/23 13:45:19 bjornw
48*! config.h check
49*!
50*! Revision 1.3 2001/01/31 18:08:23 orjanf
51*! Removed kgdb_handle_breakpoint from being the break 8 handler.
52*!
53*! Revision 1.2 2001/01/12 14:22:25 orjanf
54*! Updated kernel debugging support to work with ETRAX 100LX.
55*!
56*! Revision 1.1 2000/07/10 16:25:21 bjornw
57*! Initial revision
58*!
59*! Revision 1.1.1.1 1999/12/03 14:57:31 bjornw
60*! * Initial version of arch/cris, the latest CRIS architecture with an MMU.
61*! Mostly copied from arch/etrax100 with appropriate renames of files.
62*! The mm/ subdir is copied from arch/i386.
63*! This does not compile yet at all.
64*!
65*!
66*! Revision 1.4 1999/07/22 17:25:25 bjornw
67*! Dont wait for + in putpacket if we havent hit the initial breakpoint yet. Added a kgdb_init function which sets up the break and irq vectors.
68*!
69*! Revision 1.3 1999/07/21 19:51:18 bjornw
70*! Check if the interrupting char is a ctrl-C, ignore otherwise.
71*!
72*! Revision 1.2 1999/07/21 18:09:39 bjornw
73*! Ported to eLinux architecture, and added some kgdb documentation.
74*!
75*!
76*!---------------------------------------------------------------------------
77*!
7cf32cad 78*! $Id: kgdb.c,v 1.6 2005/01/14 10:12:17 starvik Exp $
1da177e4
LT
79*!
80*! (C) Copyright 1999, Axis Communications AB, LUND, SWEDEN
81*!
82*!**************************************************************************/
83/* @(#) cris_stub.c 1.3 06/17/99 */
84
85/*
86 * kgdb usage notes:
87 * -----------------
88 *
89 * If you select CONFIG_ETRAX_KGDB in the configuration, the kernel will be
90 * built with different gcc flags: "-g" is added to get debug infos, and
91 * "-fomit-frame-pointer" is omitted to make debugging easier. Since the
92 * resulting kernel will be quite big (approx. > 7 MB), it will be stripped
93 * before compresion. Such a kernel will behave just as usually, except if
94 * given a "debug=<device>" command line option. (Only serial devices are
95 * allowed for <device>, i.e. no printers or the like; possible values are
96 * machine depedend and are the same as for the usual debug device, the one
97 * for logging kernel messages.) If that option is given and the device can be
98 * initialized, the kernel will connect to the remote gdb in trap_init(). The
99 * serial parameters are fixed to 8N1 and 115200 bps, for easyness of
100 * implementation.
101 *
102 * To start a debugging session, start that gdb with the debugging kernel
103 * image (the one with the symbols, vmlinux.debug) named on the command line.
104 * This file will be used by gdb to get symbol and debugging infos about the
105 * kernel. Next, select remote debug mode by
106 * target remote <device>
107 * where <device> is the name of the serial device over which the debugged
108 * machine is connected. Maybe you have to adjust the baud rate by
109 * set remotebaud <rate>
110 * or also other parameters with stty:
111 * shell stty ... </dev/...
112 * If the kernel to debug has already booted, it waited for gdb and now
113 * connects, and you'll see a breakpoint being reported. If the kernel isn't
114 * running yet, start it now. The order of gdb and the kernel doesn't matter.
115 * Another thing worth knowing about in the getting-started phase is how to
116 * debug the remote protocol itself. This is activated with
117 * set remotedebug 1
118 * gdb will then print out each packet sent or received. You'll also get some
119 * messages about the gdb stub on the console of the debugged machine.
120 *
121 * If all that works, you can use lots of the usual debugging techniques on
122 * the kernel, e.g. inspecting and changing variables/memory, setting
123 * breakpoints, single stepping and so on. It's also possible to interrupt the
124 * debugged kernel by pressing C-c in gdb. Have fun! :-)
125 *
126 * The gdb stub is entered (and thus the remote gdb gets control) in the
127 * following situations:
128 *
129 * - If breakpoint() is called. This is just after kgdb initialization, or if
130 * a breakpoint() call has been put somewhere into the kernel source.
131 * (Breakpoints can of course also be set the usual way in gdb.)
132 * In eLinux, we call breakpoint() in init/main.c after IRQ initialization.
133 *
134 * - If there is a kernel exception, i.e. bad_super_trap() or die_if_kernel()
135 * are entered. All the CPU exceptions are mapped to (more or less..., see
136 * the hard_trap_info array below) appropriate signal, which are reported
137 * to gdb. die_if_kernel() is usually called after some kind of access
138 * error and thus is reported as SIGSEGV.
139 *
140 * - When panic() is called. This is reported as SIGABRT.
141 *
142 * - If C-c is received over the serial line, which is treated as
143 * SIGINT.
144 *
145 * Of course, all these signals are just faked for gdb, since there is no
146 * signal concept as such for the kernel. It also isn't possible --obviously--
147 * to set signal handlers from inside gdb, or restart the kernel with a
148 * signal.
149 *
150 * Current limitations:
151 *
152 * - While the kernel is stopped, interrupts are disabled for safety reasons
153 * (i.e., variables not changing magically or the like). But this also
154 * means that the clock isn't running anymore, and that interrupts from the
155 * hardware may get lost/not be served in time. This can cause some device
156 * errors...
157 *
158 * - When single-stepping, only one instruction of the current thread is
159 * executed, but interrupts are allowed for that time and will be serviced
160 * if pending. Be prepared for that.
161 *
162 * - All debugging happens in kernel virtual address space. There's no way to
163 * access physical memory not mapped in kernel space, or to access user
164 * space. A way to work around this is using get_user_long & Co. in gdb
165 * expressions, but only for the current process.
166 *
167 * - Interrupting the kernel only works if interrupts are currently allowed,
168 * and the interrupt of the serial line isn't blocked by some other means
169 * (IPL too high, disabled, ...)
170 *
171 * - The gdb stub is currently not reentrant, i.e. errors that happen therein
172 * (e.g. accessing invalid memory) may not be caught correctly. This could
173 * be removed in future by introducing a stack of struct registers.
174 *
175 */
176
177/*
178 * To enable debugger support, two things need to happen. One, a
179 * call to kgdb_init() is necessary in order to allow any breakpoints
180 * or error conditions to be properly intercepted and reported to gdb.
181 * Two, a breakpoint needs to be generated to begin communication. This
182 * is most easily accomplished by a call to breakpoint().
183 *
184 * The following gdb commands are supported:
185 *
186 * command function Return value
187 *
188 * g return the value of the CPU registers hex data or ENN
189 * G set the value of the CPU registers OK or ENN
190 *
191 * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
192 * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
193 *
194 * c Resume at current address SNN ( signal NN)
195 * cAA..AA Continue at address AA..AA SNN
196 *
197 * s Step one instruction SNN
198 * sAA..AA Step one instruction from AA..AA SNN
199 *
200 * k kill
201 *
202 * ? What was the last sigval ? SNN (signal NN)
203 *
204 * bBB..BB Set baud rate to BB..BB OK or BNN, then sets
205 * baud rate
206 *
207 * All commands and responses are sent with a packet which includes a
208 * checksum. A packet consists of
209 *
210 * $<packet info>#<checksum>.
211 *
212 * where
213 * <packet info> :: <characters representing the command or response>
214 * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
215 *
216 * When a packet is received, it is first acknowledged with either '+' or '-'.
217 * '+' indicates a successful transfer. '-' indicates a failed transfer.
218 *
219 * Example:
220 *
221 * Host: Reply:
222 * $m0,10#2a +$00010203040506070809101112131415#42
223 *
224 */
225
226
227#include <linux/string.h>
228#include <linux/signal.h>
229#include <linux/kernel.h>
230#include <linux/delay.h>
231#include <linux/linkage.h>
7cf32cad 232#include <linux/reboot.h>
1da177e4
LT
233
234#include <asm/setup.h>
235#include <asm/ptrace.h>
236
237#include <asm/arch/svinto.h>
238#include <asm/irq.h>
239
240static int kgdb_started = 0;
241
242/********************************* Register image ****************************/
243/* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
244 Reference", p. 1-1, with the additional register definitions of the
245 ETRAX 100LX in cris-opc.h.
246 There are 16 general 32-bit registers, R0-R15, where R14 is the stack
247 pointer, SP, and R15 is the program counter, PC.
248 There are 16 special registers, P0-P15, where three of the unimplemented
249 registers, P0, P4 and P8, are reserved as zero-registers. A read from
250 any of these registers returns zero and a write has no effect. */
251
252typedef
253struct register_image
254{
255 /* Offset */
256 unsigned int r0; /* 0x00 */
257 unsigned int r1; /* 0x04 */
258 unsigned int r2; /* 0x08 */
259 unsigned int r3; /* 0x0C */
260 unsigned int r4; /* 0x10 */
261 unsigned int r5; /* 0x14 */
262 unsigned int r6; /* 0x18 */
263 unsigned int r7; /* 0x1C */
264 unsigned int r8; /* 0x20 Frame pointer */
265 unsigned int r9; /* 0x24 */
266 unsigned int r10; /* 0x28 */
267 unsigned int r11; /* 0x2C */
268 unsigned int r12; /* 0x30 */
269 unsigned int r13; /* 0x34 */
270 unsigned int sp; /* 0x38 Stack pointer */
271 unsigned int pc; /* 0x3C Program counter */
272
273 unsigned char p0; /* 0x40 8-bit zero-register */
274 unsigned char vr; /* 0x41 Version register */
275
276 unsigned short p4; /* 0x42 16-bit zero-register */
277 unsigned short ccr; /* 0x44 Condition code register */
278
279 unsigned int mof; /* 0x46 Multiply overflow register */
280
281 unsigned int p8; /* 0x4A 32-bit zero-register */
282 unsigned int ibr; /* 0x4E Interrupt base register */
283 unsigned int irp; /* 0x52 Interrupt return pointer */
284 unsigned int srp; /* 0x56 Subroutine return pointer */
285 unsigned int bar; /* 0x5A Breakpoint address register */
286 unsigned int dccr; /* 0x5E Double condition code register */
287 unsigned int brp; /* 0x62 Breakpoint return pointer (pc in caller) */
288 unsigned int usp; /* 0x66 User mode stack pointer */
289} registers;
290
291/************** Prototypes for local library functions ***********************/
292
293/* Copy of strcpy from libc. */
294static char *gdb_cris_strcpy (char *s1, const char *s2);
295
296/* Copy of strlen from libc. */
297static int gdb_cris_strlen (const char *s);
298
299/* Copy of memchr from libc. */
300static void *gdb_cris_memchr (const void *s, int c, int n);
301
302/* Copy of strtol from libc. Does only support base 16. */
303static int gdb_cris_strtol (const char *s, char **endptr, int base);
304
305/********************** Prototypes for local functions. **********************/
306/* Copy the content of a register image into another. The size n is
307 the size of the register image. Due to struct assignment generation of
308 memcpy in libc. */
309static void copy_registers (registers *dptr, registers *sptr, int n);
310
311/* Copy the stored registers from the stack. Put the register contents
312 of thread thread_id in the struct reg. */
313static void copy_registers_from_stack (int thread_id, registers *reg);
314
315/* Copy the registers to the stack. Put the register contents of thread
316 thread_id from struct reg to the stack. */
317static void copy_registers_to_stack (int thread_id, registers *reg);
318
319/* Write a value to a specified register regno in the register image
320 of the current thread. */
321static int write_register (int regno, char *val);
322
323/* Write a value to a specified register in the stack of a thread other
324 than the current thread. */
325static write_stack_register (int thread_id, int regno, char *valptr);
326
327/* Read a value from a specified register in the register image. Returns the
328 status of the read operation. The register value is returned in valptr. */
329static int read_register (char regno, unsigned int *valptr);
330
331/* Serial port, reads one character. ETRAX 100 specific. from debugport.c */
332int getDebugChar (void);
333
334/* Serial port, writes one character. ETRAX 100 specific. from debugport.c */
335void putDebugChar (int val);
336
337void enableDebugIRQ (void);
338
339/* Returns the character equivalent of a nibble, bit 7, 6, 5, and 4 of a byte,
340 represented by int x. */
341static char highhex (int x);
342
343/* Returns the character equivalent of a nibble, bit 3, 2, 1, and 0 of a byte,
344 represented by int x. */
345static char lowhex (int x);
346
347/* Returns the integer equivalent of a hexadecimal character. */
348static int hex (char ch);
349
350/* Convert the memory, pointed to by mem into hexadecimal representation.
351 Put the result in buf, and return a pointer to the last character
352 in buf (null). */
353static char *mem2hex (char *buf, unsigned char *mem, int count);
354
355/* Convert the array, in hexadecimal representation, pointed to by buf into
356 binary representation. Put the result in mem, and return a pointer to
357 the character after the last byte written. */
358static unsigned char *hex2mem (unsigned char *mem, char *buf, int count);
359
360/* Put the content of the array, in binary representation, pointed to by buf
361 into memory pointed to by mem, and return a pointer to
362 the character after the last byte written. */
363static unsigned char *bin2mem (unsigned char *mem, unsigned char *buf, int count);
364
365/* Await the sequence $<data>#<checksum> and store <data> in the array buffer
366 returned. */
367static void getpacket (char *buffer);
368
369/* Send $<data>#<checksum> from the <data> in the array buffer. */
370static void putpacket (char *buffer);
371
372/* Build and send a response packet in order to inform the host the
373 stub is stopped. */
374static void stub_is_stopped (int sigval);
375
376/* All expected commands are sent from remote.c. Send a response according
377 to the description in remote.c. */
378static void handle_exception (int sigval);
379
380/* Performs a complete re-start from scratch. ETRAX specific. */
381static void kill_restart (void);
382
383/******************** Prototypes for global functions. ***********************/
384
385/* The string str is prepended with the GDB printout token and sent. */
386void putDebugString (const unsigned char *str, int length); /* used by etrax100ser.c */
387
388/* The hook for both static (compiled) and dynamic breakpoints set by GDB.
389 ETRAX 100 specific. */
390void handle_breakpoint (void); /* used by irq.c */
391
392/* The hook for an interrupt generated by GDB. ETRAX 100 specific. */
393void handle_interrupt (void); /* used by irq.c */
394
395/* A static breakpoint to be used at startup. */
396void breakpoint (void); /* called by init/main.c */
397
398/* From osys_int.c, executing_task contains the number of the current
399 executing task in osys. Does not know of object-oriented threads. */
400extern unsigned char executing_task;
401
402/* The number of characters used for a 64 bit thread identifier. */
403#define HEXCHARS_IN_THREAD_ID 16
404
405/* Avoid warning as the internal_stack is not used in the C-code. */
406#define USEDVAR(name) { if (name) { ; } }
407#define USEDFUN(name) { void (*pf)(void) = (void *)name; USEDVAR(pf) }
408
409/********************************** Packet I/O ******************************/
410/* BUFMAX defines the maximum number of characters in
411 inbound/outbound buffers */
412#define BUFMAX 512
413
414/* Run-length encoding maximum length. Send 64 at most. */
415#define RUNLENMAX 64
416
417/* Definition of all valid hexadecimal characters */
418static const char hexchars[] = "0123456789abcdef";
419
420/* The inbound/outbound buffers used in packet I/O */
421static char remcomInBuffer[BUFMAX];
422static char remcomOutBuffer[BUFMAX];
423
424/* Error and warning messages. */
425enum error_type
426{
427 SUCCESS, E01, E02, E03, E04, E05, E06, E07
428};
429static char *error_message[] =
430{
431 "",
432 "E01 Set current or general thread - H[c,g] - internal error.",
433 "E02 Change register content - P - cannot change read-only register.",
434 "E03 Thread is not alive.", /* T, not used. */
435 "E04 The command is not supported - [s,C,S,!,R,d,r] - internal error.",
436 "E05 Change register content - P - the register is not implemented..",
437 "E06 Change memory content - M - internal error.",
438 "E07 Change register content - P - the register is not stored on the stack"
439};
440/********************************* Register image ****************************/
441/* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
442 Reference", p. 1-1, with the additional register definitions of the
443 ETRAX 100LX in cris-opc.h.
444 There are 16 general 32-bit registers, R0-R15, where R14 is the stack
445 pointer, SP, and R15 is the program counter, PC.
446 There are 16 special registers, P0-P15, where three of the unimplemented
447 registers, P0, P4 and P8, are reserved as zero-registers. A read from
448 any of these registers returns zero and a write has no effect. */
449enum register_name
450{
451 R0, R1, R2, R3,
452 R4, R5, R6, R7,
453 R8, R9, R10, R11,
454 R12, R13, SP, PC,
455 P0, VR, P2, P3,
456 P4, CCR, P6, MOF,
457 P8, IBR, IRP, SRP,
458 BAR, DCCR, BRP, USP
459};
460
461/* The register sizes of the registers in register_name. An unimplemented register
462 is designated by size 0 in this array. */
463static int register_size[] =
464{
465 4, 4, 4, 4,
466 4, 4, 4, 4,
467 4, 4, 4, 4,
468 4, 4, 4, 4,
469 1, 1, 0, 0,
470 2, 2, 0, 4,
471 4, 4, 4, 4,
472 4, 4, 4, 4
473};
474
475/* Contains the register image of the executing thread in the assembler
476 part of the code in order to avoid horrible addressing modes. */
477static registers reg;
478
479/* FIXME: Should this be used? Delete otherwise. */
480/* Contains the assumed consistency state of the register image. Uses the
481 enum error_type for state information. */
482static int consistency_status = SUCCESS;
483
484/********************************** Handle exceptions ************************/
485/* The variable reg contains the register image associated with the
486 current_thread_c variable. It is a complete register image created at
487 entry. The reg_g contains a register image of a task where the general
488 registers are taken from the stack and all special registers are taken
489 from the executing task. It is associated with current_thread_g and used
490 in order to provide access mainly for 'g', 'G' and 'P'.
491*/
492
493/* Need two task id pointers in order to handle Hct and Hgt commands. */
494static int current_thread_c = 0;
495static int current_thread_g = 0;
496
497/* Need two register images in order to handle Hct and Hgt commands. The
498 variable reg_g is in addition to reg above. */
499static registers reg_g;
500
501/********************************** Breakpoint *******************************/
502/* Use an internal stack in the breakpoint and interrupt response routines */
503#define INTERNAL_STACK_SIZE 1024
504static char internal_stack[INTERNAL_STACK_SIZE];
505
506/* Due to the breakpoint return pointer, a state variable is needed to keep
507 track of whether it is a static (compiled) or dynamic (gdb-invoked)
508 breakpoint to be handled. A static breakpoint uses the content of register
509 BRP as it is whereas a dynamic breakpoint requires subtraction with 2
510 in order to execute the instruction. The first breakpoint is static. */
511static unsigned char is_dyn_brkp = 0;
512
513/********************************* String library ****************************/
514/* Single-step over library functions creates trap loops. */
515
516/* Copy char s2[] to s1[]. */
517static char*
518gdb_cris_strcpy (char *s1, const char *s2)
519{
520 char *s = s1;
521
522 for (s = s1; (*s++ = *s2++) != '\0'; )
523 ;
524 return (s1);
525}
526
527/* Find length of s[]. */
528static int
529gdb_cris_strlen (const char *s)
530{
531 const char *sc;
532
533 for (sc = s; *sc != '\0'; sc++)
534 ;
535 return (sc - s);
536}
537
538/* Find first occurrence of c in s[n]. */
539static void*
540gdb_cris_memchr (const void *s, int c, int n)
541{
542 const unsigned char uc = c;
543 const unsigned char *su;
544
545 for (su = s; 0 < n; ++su, --n)
546 if (*su == uc)
547 return ((void *)su);
548 return (NULL);
549}
550/******************************* Standard library ****************************/
551/* Single-step over library functions creates trap loops. */
552/* Convert string to long. */
553static int
554gdb_cris_strtol (const char *s, char **endptr, int base)
555{
556 char *s1;
557 char *sd;
558 int x = 0;
559
560 for (s1 = (char*)s; (sd = gdb_cris_memchr(hexchars, *s1, base)) != NULL; ++s1)
561 x = x * base + (sd - hexchars);
562
563 if (endptr)
564 {
565 /* Unconverted suffix is stored in endptr unless endptr is NULL. */
566 *endptr = s1;
567 }
568
569 return x;
570}
571
1da177e4
LT
572/********************************* Register image ****************************/
573/* Copy the content of a register image into another. The size n is
574 the size of the register image. Due to struct assignment generation of
575 memcpy in libc. */
576static void
577copy_registers (registers *dptr, registers *sptr, int n)
578{
579 unsigned char *dreg;
580 unsigned char *sreg;
581
582 for (dreg = (unsigned char*)dptr, sreg = (unsigned char*)sptr; n > 0; n--)
583 *dreg++ = *sreg++;
584}
585
586#ifdef PROCESS_SUPPORT
587/* Copy the stored registers from the stack. Put the register contents
588 of thread thread_id in the struct reg. */
589static void
590copy_registers_from_stack (int thread_id, registers *regptr)
591{
592 int j;
593 stack_registers *s = (stack_registers *)stack_list[thread_id];
594 unsigned int *d = (unsigned int *)regptr;
595
596 for (j = 13; j >= 0; j--)
597 *d++ = s->r[j];
598 regptr->sp = (unsigned int)stack_list[thread_id];
599 regptr->pc = s->pc;
600 regptr->dccr = s->dccr;
601 regptr->srp = s->srp;
602}
603
604/* Copy the registers to the stack. Put the register contents of thread
605 thread_id from struct reg to the stack. */
606static void
607copy_registers_to_stack (int thread_id, registers *regptr)
608{
609 int i;
610 stack_registers *d = (stack_registers *)stack_list[thread_id];
611 unsigned int *s = (unsigned int *)regptr;
612
613 for (i = 0; i < 14; i++) {
614 d->r[i] = *s++;
615 }
616 d->pc = regptr->pc;
617 d->dccr = regptr->dccr;
618 d->srp = regptr->srp;
619}
620#endif
621
622/* Write a value to a specified register in the register image of the current
623 thread. Returns status code SUCCESS, E02 or E05. */
624static int
625write_register (int regno, char *val)
626{
627 int status = SUCCESS;
628 registers *current_reg = &reg;
629
630 if (regno >= R0 && regno <= PC) {
631 /* 32-bit register with simple offset. */
632 hex2mem ((unsigned char *)current_reg + regno * sizeof(unsigned int),
633 val, sizeof(unsigned int));
634 }
635 else if (regno == P0 || regno == VR || regno == P4 || regno == P8) {
636 /* Do not support read-only registers. */
637 status = E02;
638 }
639 else if (regno == CCR) {
640 /* 16 bit register with complex offset. (P4 is read-only, P6 is not implemented,
641 and P7 (MOF) is 32 bits in ETRAX 100LX. */
642 hex2mem ((unsigned char *)&(current_reg->ccr) + (regno-CCR) * sizeof(unsigned short),
643 val, sizeof(unsigned short));
644 }
645 else if (regno >= MOF && regno <= USP) {
646 /* 32 bit register with complex offset. (P8 has been taken care of.) */
647 hex2mem ((unsigned char *)&(current_reg->ibr) + (regno-IBR) * sizeof(unsigned int),
648 val, sizeof(unsigned int));
649 }
650 else {
651 /* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
652 status = E05;
653 }
654 return status;
655}
656
657#ifdef PROCESS_SUPPORT
658/* Write a value to a specified register in the stack of a thread other
659 than the current thread. Returns status code SUCCESS or E07. */
660static int
661write_stack_register (int thread_id, int regno, char *valptr)
662{
663 int status = SUCCESS;
664 stack_registers *d = (stack_registers *)stack_list[thread_id];
665 unsigned int val;
666
667 hex2mem ((unsigned char *)&val, valptr, sizeof(unsigned int));
668 if (regno >= R0 && regno < SP) {
669 d->r[regno] = val;
670 }
671 else if (regno == SP) {
672 stack_list[thread_id] = val;
673 }
674 else if (regno == PC) {
675 d->pc = val;
676 }
677 else if (regno == SRP) {
678 d->srp = val;
679 }
680 else if (regno == DCCR) {
681 d->dccr = val;
682 }
683 else {
684 /* Do not support registers in the current thread. */
685 status = E07;
686 }
687 return status;
688}
689#endif
690
691/* Read a value from a specified register in the register image. Returns the
692 value in the register or -1 for non-implemented registers.
693 Should check consistency_status after a call which may be E05 after changes
694 in the implementation. */
695static int
696read_register (char regno, unsigned int *valptr)
697{
698 registers *current_reg = &reg;
699
700 if (regno >= R0 && regno <= PC) {
701 /* 32-bit register with simple offset. */
702 *valptr = *(unsigned int *)((char *)current_reg + regno * sizeof(unsigned int));
703 return SUCCESS;
704 }
705 else if (regno == P0 || regno == VR) {
706 /* 8 bit register with complex offset. */
707 *valptr = (unsigned int)(*(unsigned char *)
708 ((char *)&(current_reg->p0) + (regno-P0) * sizeof(char)));
709 return SUCCESS;
710 }
711 else if (regno == P4 || regno == CCR) {
712 /* 16 bit register with complex offset. */
713 *valptr = (unsigned int)(*(unsigned short *)
714 ((char *)&(current_reg->p4) + (regno-P4) * sizeof(unsigned short)));
715 return SUCCESS;
716 }
717 else if (regno >= MOF && regno <= USP) {
718 /* 32 bit register with complex offset. */
719 *valptr = *(unsigned int *)((char *)&(current_reg->p8)
720 + (regno-P8) * sizeof(unsigned int));
721 return SUCCESS;
722 }
723 else {
724 /* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
725 consistency_status = E05;
726 return E05;
727 }
728}
729
730/********************************** Packet I/O ******************************/
731/* Returns the character equivalent of a nibble, bit 7, 6, 5, and 4 of a byte,
732 represented by int x. */
733static inline char
734highhex(int x)
735{
736 return hexchars[(x >> 4) & 0xf];
737}
738
739/* Returns the character equivalent of a nibble, bit 3, 2, 1, and 0 of a byte,
740 represented by int x. */
741static inline char
742lowhex(int x)
743{
744 return hexchars[x & 0xf];
745}
746
747/* Returns the integer equivalent of a hexadecimal character. */
748static int
749hex (char ch)
750{
751 if ((ch >= 'a') && (ch <= 'f'))
752 return (ch - 'a' + 10);
753 if ((ch >= '0') && (ch <= '9'))
754 return (ch - '0');
755 if ((ch >= 'A') && (ch <= 'F'))
756 return (ch - 'A' + 10);
757 return (-1);
758}
759
760/* Convert the memory, pointed to by mem into hexadecimal representation.
761 Put the result in buf, and return a pointer to the last character
762 in buf (null). */
763
764static int do_printk = 0;
765
766static char *
767mem2hex(char *buf, unsigned char *mem, int count)
768{
769 int i;
770 int ch;
771
772 if (mem == NULL) {
773 /* Bogus read from m0. FIXME: What constitutes a valid address? */
774 for (i = 0; i < count; i++) {
775 *buf++ = '0';
776 *buf++ = '0';
777 }
778 } else {
779 /* Valid mem address. */
780 for (i = 0; i < count; i++) {
781 ch = *mem++;
782 *buf++ = highhex (ch);
783 *buf++ = lowhex (ch);
784 }
785 }
786
787 /* Terminate properly. */
788 *buf = '\0';
789 return (buf);
790}
791
792/* Convert the array, in hexadecimal representation, pointed to by buf into
793 binary representation. Put the result in mem, and return a pointer to
794 the character after the last byte written. */
795static unsigned char*
796hex2mem (unsigned char *mem, char *buf, int count)
797{
798 int i;
799 unsigned char ch;
800 for (i = 0; i < count; i++) {
801 ch = hex (*buf++) << 4;
802 ch = ch + hex (*buf++);
803 *mem++ = ch;
804 }
805 return (mem);
806}
807
808/* Put the content of the array, in binary representation, pointed to by buf
809 into memory pointed to by mem, and return a pointer to the character after
810 the last byte written.
811 Gdb will escape $, #, and the escape char (0x7d). */
812static unsigned char*
813bin2mem (unsigned char *mem, unsigned char *buf, int count)
814{
815 int i;
816 unsigned char *next;
817 for (i = 0; i < count; i++) {
818 /* Check for any escaped characters. Be paranoid and
819 only unescape chars that should be escaped. */
820 if (*buf == 0x7d) {
821 next = buf + 1;
822 if (*next == 0x3 || *next == 0x4 || *next == 0x5D) /* #, $, ESC */
823 {
824 buf++;
825 *buf += 0x20;
826 }
827 }
828 *mem++ = *buf++;
829 }
830 return (mem);
831}
832
833/* Await the sequence $<data>#<checksum> and store <data> in the array buffer
834 returned. */
835static void
836getpacket (char *buffer)
837{
838 unsigned char checksum;
839 unsigned char xmitcsum;
840 int i;
841 int count;
842 char ch;
843 do {
844 while ((ch = getDebugChar ()) != '$')
845 /* Wait for the start character $ and ignore all other characters */;
846 checksum = 0;
847 xmitcsum = -1;
848 count = 0;
849 /* Read until a # or the end of the buffer is reached */
850 while (count < BUFMAX) {
851 ch = getDebugChar ();
852 if (ch == '#')
853 break;
854 checksum = checksum + ch;
855 buffer[count] = ch;
856 count = count + 1;
857 }
858 buffer[count] = '\0';
859
860 if (ch == '#') {
861 xmitcsum = hex (getDebugChar ()) << 4;
862 xmitcsum += hex (getDebugChar ());
863 if (checksum != xmitcsum) {
864 /* Wrong checksum */
865 putDebugChar ('-');
866 }
867 else {
868 /* Correct checksum */
869 putDebugChar ('+');
870 /* If sequence characters are received, reply with them */
871 if (buffer[2] == ':') {
872 putDebugChar (buffer[0]);
873 putDebugChar (buffer[1]);
874 /* Remove the sequence characters from the buffer */
875 count = gdb_cris_strlen (buffer);
876 for (i = 3; i <= count; i++)
877 buffer[i - 3] = buffer[i];
878 }
879 }
880 }
881 } while (checksum != xmitcsum);
882}
883
884/* Send $<data>#<checksum> from the <data> in the array buffer. */
885
886static void
887putpacket(char *buffer)
888{
889 int checksum;
890 int runlen;
891 int encode;
892
893 do {
894 char *src = buffer;
895 putDebugChar ('$');
896 checksum = 0;
897 while (*src) {
898 /* Do run length encoding */
899 putDebugChar (*src);
900 checksum += *src;
901 runlen = 0;
902 while (runlen < RUNLENMAX && *src == src[runlen]) {
903 runlen++;
904 }
905 if (runlen > 3) {
906 /* Got a useful amount */
907 putDebugChar ('*');
908 checksum += '*';
909 encode = runlen + ' ' - 4;
910 putDebugChar (encode);
911 checksum += encode;
912 src += runlen;
913 }
914 else {
915 src++;
916 }
917 }
918 putDebugChar ('#');
919 putDebugChar (highhex (checksum));
920 putDebugChar (lowhex (checksum));
921 } while(kgdb_started && (getDebugChar() != '+'));
922}
923
924/* The string str is prepended with the GDB printout token and sent. Required
925 in traditional implementations. */
926void
927putDebugString (const unsigned char *str, int length)
928{
929 remcomOutBuffer[0] = 'O';
930 mem2hex(&remcomOutBuffer[1], (unsigned char *)str, length);
931 putpacket(remcomOutBuffer);
932}
933
934/********************************** Handle exceptions ************************/
935/* Build and send a response packet in order to inform the host the
936 stub is stopped. TAAn...:r...;n...:r...;n...:r...;
937 AA = signal number
938 n... = register number (hex)
939 r... = register contents
940 n... = `thread'
941 r... = thread process ID. This is a hex integer.
942 n... = other string not starting with valid hex digit.
943 gdb should ignore this n,r pair and go on to the next.
944 This way we can extend the protocol. */
945static void
946stub_is_stopped(int sigval)
947{
948 char *ptr = remcomOutBuffer;
949 int regno;
950
951 unsigned int reg_cont;
952 int status;
953
954 /* Send trap type (converted to signal) */
955
956 *ptr++ = 'T';
957 *ptr++ = highhex (sigval);
958 *ptr++ = lowhex (sigval);
959
960 /* Send register contents. We probably only need to send the
961 * PC, frame pointer and stack pointer here. Other registers will be
962 * explicitely asked for. But for now, send all.
963 */
964
965 for (regno = R0; regno <= USP; regno++) {
966 /* Store n...:r...; for the registers in the buffer. */
967
968 status = read_register (regno, &reg_cont);
969
970 if (status == SUCCESS) {
971
972 *ptr++ = highhex (regno);
973 *ptr++ = lowhex (regno);
974 *ptr++ = ':';
975
976 ptr = mem2hex(ptr, (unsigned char *)&reg_cont,
977 register_size[regno]);
978 *ptr++ = ';';
979 }
980
981 }
982
983#ifdef PROCESS_SUPPORT
984 /* Store the registers of the executing thread. Assume that both step,
985 continue, and register content requests are with respect to this
986 thread. The executing task is from the operating system scheduler. */
987
988 current_thread_c = executing_task;
989 current_thread_g = executing_task;
990
991 /* A struct assignment translates into a libc memcpy call. Avoid
992 all libc functions in order to prevent recursive break points. */
993 copy_registers (&reg_g, &reg, sizeof(registers));
994
995 /* Store thread:r...; with the executing task TID. */
996 gdb_cris_strcpy (&remcomOutBuffer[pos], "thread:");
997 pos += gdb_cris_strlen ("thread:");
998 remcomOutBuffer[pos++] = highhex (executing_task);
999 remcomOutBuffer[pos++] = lowhex (executing_task);
1000 gdb_cris_strcpy (&remcomOutBuffer[pos], ";");
1001#endif
1002
1003 /* null-terminate and send it off */
1004
1005 *ptr = 0;
1006
1007 putpacket (remcomOutBuffer);
1008}
1009
1010/* All expected commands are sent from remote.c. Send a response according
1011 to the description in remote.c. */
1012static void
1013handle_exception (int sigval)
1014{
1015 /* Avoid warning of not used. */
1016
1017 USEDFUN(handle_exception);
1018 USEDVAR(internal_stack[0]);
1019
1020 /* Send response. */
1021
1022 stub_is_stopped (sigval);
1023
1024 for (;;) {
1025 remcomOutBuffer[0] = '\0';
1026 getpacket (remcomInBuffer);
1027 switch (remcomInBuffer[0]) {
1028 case 'g':
1029 /* Read registers: g
1030 Success: Each byte of register data is described by two hex digits.
1031 Registers are in the internal order for GDB, and the bytes
1032 in a register are in the same order the machine uses.
1033 Failure: void. */
1034
1035 {
1036#ifdef PROCESS_SUPPORT
1037 /* Use the special register content in the executing thread. */
1038 copy_registers (&reg_g, &reg, sizeof(registers));
1039 /* Replace the content available on the stack. */
1040 if (current_thread_g != executing_task) {
1041 copy_registers_from_stack (current_thread_g, &reg_g);
1042 }
1043 mem2hex ((unsigned char *)remcomOutBuffer, (unsigned char *)&reg_g, sizeof(registers));
1044#else
1045 mem2hex(remcomOutBuffer, (char *)&reg, sizeof(registers));
1046#endif
1047 }
1048 break;
1049
1050 case 'G':
1051 /* Write registers. GXX..XX
1052 Each byte of register data is described by two hex digits.
1053 Success: OK
1054 Failure: void. */
1055#ifdef PROCESS_SUPPORT
1056 hex2mem ((unsigned char *)&reg_g, &remcomInBuffer[1], sizeof(registers));
1057 if (current_thread_g == executing_task) {
1058 copy_registers (&reg, &reg_g, sizeof(registers));
1059 }
1060 else {
1061 copy_registers_to_stack(current_thread_g, &reg_g);
1062 }
1063#else
1064 hex2mem((char *)&reg, &remcomInBuffer[1], sizeof(registers));
1065#endif
1066 gdb_cris_strcpy (remcomOutBuffer, "OK");
1067 break;
1068
1069 case 'P':
1070 /* Write register. Pn...=r...
1071 Write register n..., hex value without 0x, with value r...,
1072 which contains a hex value without 0x and two hex digits
1073 for each byte in the register (target byte order). P1f=11223344 means
1074 set register 31 to 44332211.
1075 Success: OK
1076 Failure: E02, E05 */
1077 {
1078 char *suffix;
1079 int regno = gdb_cris_strtol (&remcomInBuffer[1], &suffix, 16);
1080 int status;
1081#ifdef PROCESS_SUPPORT
1082 if (current_thread_g != executing_task)
1083 status = write_stack_register (current_thread_g, regno, suffix+1);
1084 else
1085#endif
1086 status = write_register (regno, suffix+1);
1087
1088 switch (status) {
1089 case E02:
1090 /* Do not support read-only registers. */
1091 gdb_cris_strcpy (remcomOutBuffer, error_message[E02]);
1092 break;
1093 case E05:
1094 /* Do not support non-existing registers. */
1095 gdb_cris_strcpy (remcomOutBuffer, error_message[E05]);
1096 break;
1097 case E07:
1098 /* Do not support non-existing registers on the stack. */
1099 gdb_cris_strcpy (remcomOutBuffer, error_message[E07]);
1100 break;
1101 default:
1102 /* Valid register number. */
1103 gdb_cris_strcpy (remcomOutBuffer, "OK");
1104 break;
1105 }
1106 }
1107 break;
1108
1109 case 'm':
1110 /* Read from memory. mAA..AA,LLLL
1111 AA..AA is the address and LLLL is the length.
1112 Success: XX..XX is the memory content. Can be fewer bytes than
1113 requested if only part of the data may be read. m6000120a,6c means
1114 retrieve 108 byte from base address 6000120a.
1115 Failure: void. */
1116 {
1117 char *suffix;
1118 unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
1119 &suffix, 16); int length = gdb_cris_strtol(suffix+1, 0, 16);
1120
1121 mem2hex(remcomOutBuffer, addr, length);
1122 }
1123 break;
1124
1125 case 'X':
1126 /* Write to memory. XAA..AA,LLLL:XX..XX
1127 AA..AA is the start address, LLLL is the number of bytes, and
1128 XX..XX is the binary data.
1129 Success: OK
1130 Failure: void. */
1131 case 'M':
1132 /* Write to memory. MAA..AA,LLLL:XX..XX
1133 AA..AA is the start address, LLLL is the number of bytes, and
1134 XX..XX is the hexadecimal data.
1135 Success: OK
1136 Failure: void. */
1137 {
1138 char *lenptr;
1139 char *dataptr;
1140 unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
1141 &lenptr, 16);
1142 int length = gdb_cris_strtol(lenptr+1, &dataptr, 16);
1143 if (*lenptr == ',' && *dataptr == ':') {
1144 if (remcomInBuffer[0] == 'M') {
1145 hex2mem(addr, dataptr + 1, length);
1146 }
1147 else /* X */ {
1148 bin2mem(addr, dataptr + 1, length);
1149 }
1150 gdb_cris_strcpy (remcomOutBuffer, "OK");
1151 }
1152 else {
1153 gdb_cris_strcpy (remcomOutBuffer, error_message[E06]);
1154 }
1155 }
1156 break;
1157
1158 case 'c':
1159 /* Continue execution. cAA..AA
1160 AA..AA is the address where execution is resumed. If AA..AA is
1161 omitted, resume at the present address.
1162 Success: return to the executing thread.
1163 Failure: will never know. */
1164 if (remcomInBuffer[1] != '\0') {
1165 reg.pc = gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
1166 }
1167 enableDebugIRQ();
1168 return;
1169
1170 case 's':
1171 /* Step. sAA..AA
1172 AA..AA is the address where execution is resumed. If AA..AA is
1173 omitted, resume at the present address. Success: return to the
1174 executing thread. Failure: will never know.
1175
1176 Should never be invoked. The single-step is implemented on
1177 the host side. If ever invoked, it is an internal error E04. */
1178 gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
1179 putpacket (remcomOutBuffer);
1180 return;
1181
1182 case '?':
1183 /* The last signal which caused a stop. ?
1184 Success: SAA, where AA is the signal number.
1185 Failure: void. */
1186 remcomOutBuffer[0] = 'S';
1187 remcomOutBuffer[1] = highhex (sigval);
1188 remcomOutBuffer[2] = lowhex (sigval);
1189 remcomOutBuffer[3] = 0;
1190 break;
1191
1192 case 'D':
1193 /* Detach from host. D
1194 Success: OK, and return to the executing thread.
1195 Failure: will never know */
1196 putpacket ("OK");
1197 return;
1198
1199 case 'k':
1200 case 'r':
1201 /* kill request or reset request.
1202 Success: restart of target.
1203 Failure: will never know. */
1204 kill_restart ();
1205 break;
1206
1207 case 'C':
1208 case 'S':
1209 case '!':
1210 case 'R':
1211 case 'd':
1212 /* Continue with signal sig. Csig;AA..AA
1213 Step with signal sig. Ssig;AA..AA
1214 Use the extended remote protocol. !
1215 Restart the target system. R0
1216 Toggle debug flag. d
1217 Search backwards. tAA:PP,MM
1218 Not supported: E04 */
1219 gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
1220 break;
1221#ifdef PROCESS_SUPPORT
1222
1223 case 'T':
1224 /* Thread alive. TXX
1225 Is thread XX alive?
1226 Success: OK, thread XX is alive.
1227 Failure: E03, thread XX is dead. */
1228 {
1229 int thread_id = (int)gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
1230 /* Cannot tell whether it is alive or not. */
1231 if (thread_id >= 0 && thread_id < number_of_tasks)
1232 gdb_cris_strcpy (remcomOutBuffer, "OK");
1233 }
1234 break;
1235
1236 case 'H':
1237 /* Set thread for subsequent operations: Hct
1238 c = 'c' for thread used in step and continue;
1239 t can be -1 for all threads.
1240 c = 'g' for thread used in other operations.
1241 t = 0 means pick any thread.
1242 Success: OK
1243 Failure: E01 */
1244 {
1245 int thread_id = gdb_cris_strtol (&remcomInBuffer[2], 0, 16);
1246 if (remcomInBuffer[1] == 'c') {
1247 /* c = 'c' for thread used in step and continue */
1248 /* Do not change current_thread_c here. It would create a mess in
1249 the scheduler. */
1250 gdb_cris_strcpy (remcomOutBuffer, "OK");
1251 }
1252 else if (remcomInBuffer[1] == 'g') {
1253 /* c = 'g' for thread used in other operations.
1254 t = 0 means pick any thread. Impossible since the scheduler does
1255 not allow that. */
1256 if (thread_id >= 0 && thread_id < number_of_tasks) {
1257 current_thread_g = thread_id;
1258 gdb_cris_strcpy (remcomOutBuffer, "OK");
1259 }
1260 else {
1261 /* Not expected - send an error message. */
1262 gdb_cris_strcpy (remcomOutBuffer, error_message[E01]);
1263 }
1264 }
1265 else {
1266 /* Not expected - send an error message. */
1267 gdb_cris_strcpy (remcomOutBuffer, error_message[E01]);
1268 }
1269 }
1270 break;
1271
1272 case 'q':
1273 case 'Q':
1274 /* Query of general interest. qXXXX
1275 Set general value XXXX. QXXXX=yyyy */
1276 {
1277 int pos;
1278 int nextpos;
1279 int thread_id;
1280
1281 switch (remcomInBuffer[1]) {
1282 case 'C':
1283 /* Identify the remote current thread. */
1284 gdb_cris_strcpy (&remcomOutBuffer[0], "QC");
1285 remcomOutBuffer[2] = highhex (current_thread_c);
1286 remcomOutBuffer[3] = lowhex (current_thread_c);
1287 remcomOutBuffer[4] = '\0';
1288 break;
1289 case 'L':
1290 gdb_cris_strcpy (&remcomOutBuffer[0], "QM");
1291 /* Reply with number of threads. */
1292 if (os_is_started()) {
1293 remcomOutBuffer[2] = highhex (number_of_tasks);
1294 remcomOutBuffer[3] = lowhex (number_of_tasks);
1295 }
1296 else {
1297 remcomOutBuffer[2] = highhex (0);
1298 remcomOutBuffer[3] = lowhex (1);
1299 }
1300 /* Done with the reply. */
1301 remcomOutBuffer[4] = lowhex (1);
1302 pos = 5;
1303 /* Expects the argument thread id. */
1304 for (; pos < (5 + HEXCHARS_IN_THREAD_ID); pos++)
1305 remcomOutBuffer[pos] = remcomInBuffer[pos];
1306 /* Reply with the thread identifiers. */
1307 if (os_is_started()) {
1308 /* Store the thread identifiers of all tasks. */
1309 for (thread_id = 0; thread_id < number_of_tasks; thread_id++) {
1310 nextpos = pos + HEXCHARS_IN_THREAD_ID - 1;
1311 for (; pos < nextpos; pos ++)
1312 remcomOutBuffer[pos] = lowhex (0);
1313 remcomOutBuffer[pos++] = lowhex (thread_id);
1314 }
1315 }
1316 else {
1317 /* Store the thread identifier of the boot task. */
1318 nextpos = pos + HEXCHARS_IN_THREAD_ID - 1;
1319 for (; pos < nextpos; pos ++)
1320 remcomOutBuffer[pos] = lowhex (0);
1321 remcomOutBuffer[pos++] = lowhex (current_thread_c);
1322 }
1323 remcomOutBuffer[pos] = '\0';
1324 break;
1325 default:
1326 /* Not supported: "" */
1327 /* Request information about section offsets: qOffsets. */
1328 remcomOutBuffer[0] = 0;
1329 break;
1330 }
1331 }
1332 break;
1333#endif /* PROCESS_SUPPORT */
1334
1335 default:
1336 /* The stub should ignore other request and send an empty
1337 response ($#<checksum>). This way we can extend the protocol and GDB
1338 can tell whether the stub it is talking to uses the old or the new. */
1339 remcomOutBuffer[0] = 0;
1340 break;
1341 }
1342 putpacket(remcomOutBuffer);
1343 }
1344}
1345
7cf32cad 1346/* Performs a complete re-start from scratch. */
1da177e4
LT
1347static void
1348kill_restart ()
1349{
7cf32cad 1350 machine_restart("");
1da177e4
LT
1351}
1352
1353/********************************** Breakpoint *******************************/
1354/* The hook for both a static (compiled) and a dynamic breakpoint set by GDB.
1355 An internal stack is used by the stub. The register image of the caller is
1356 stored in the structure register_image.
1357 Interactive communication with the host is handled by handle_exception and
1358 finally the register image is restored. */
1359
1360void kgdb_handle_breakpoint(void);
1361
1362asm ("
1363 .global kgdb_handle_breakpoint
1364kgdb_handle_breakpoint:
1365;;
1366;; Response to the break-instruction
1367;;
1368;; Create a register image of the caller
1369;;
1370 move $dccr,[reg+0x5E] ; Save the flags in DCCR before disable interrupts
1371 di ; Disable interrupts
1372 move.d $r0,[reg] ; Save R0
1373 move.d $r1,[reg+0x04] ; Save R1
1374 move.d $r2,[reg+0x08] ; Save R2
1375 move.d $r3,[reg+0x0C] ; Save R3
1376 move.d $r4,[reg+0x10] ; Save R4
1377 move.d $r5,[reg+0x14] ; Save R5
1378 move.d $r6,[reg+0x18] ; Save R6
1379 move.d $r7,[reg+0x1C] ; Save R7
1380 move.d $r8,[reg+0x20] ; Save R8
1381 move.d $r9,[reg+0x24] ; Save R9
1382 move.d $r10,[reg+0x28] ; Save R10
1383 move.d $r11,[reg+0x2C] ; Save R11
1384 move.d $r12,[reg+0x30] ; Save R12
1385 move.d $r13,[reg+0x34] ; Save R13
1386 move.d $sp,[reg+0x38] ; Save SP (R14)
1387;; Due to the old assembler-versions BRP might not be recognized
1388 .word 0xE670 ; move brp,$r0
1389 subq 2,$r0 ; Set to address of previous instruction.
1390 move.d $r0,[reg+0x3c] ; Save the address in PC (R15)
1391 clear.b [reg+0x40] ; Clear P0
1392 move $vr,[reg+0x41] ; Save special register P1
1393 clear.w [reg+0x42] ; Clear P4
1394 move $ccr,[reg+0x44] ; Save special register CCR
1395 move $mof,[reg+0x46] ; P7
1396 clear.d [reg+0x4A] ; Clear P8
1397 move $ibr,[reg+0x4E] ; P9,
1398 move $irp,[reg+0x52] ; P10,
1399 move $srp,[reg+0x56] ; P11,
1400 move $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR
1401 ; P13, register DCCR already saved
1402;; Due to the old assembler-versions BRP might not be recognized
1403 .word 0xE670 ; move brp,r0
1404;; Static (compiled) breakpoints must return to the next instruction in order
1405;; to avoid infinite loops. Dynamic (gdb-invoked) must restore the instruction
1406;; in order to execute it when execution is continued.
1407 test.b [is_dyn_brkp] ; Is this a dynamic breakpoint?
1408 beq is_static ; No, a static breakpoint
1409 nop
1410 subq 2,$r0 ; rerun the instruction the break replaced
1411is_static:
1412 moveq 1,$r1
1413 move.b $r1,[is_dyn_brkp] ; Set the state variable to dynamic breakpoint
1414 move.d $r0,[reg+0x62] ; Save the return address in BRP
1415 move $usp,[reg+0x66] ; USP
1416;;
1417;; Handle the communication
1418;;
1419 move.d internal_stack+1020,$sp ; Use the internal stack which grows upward
1420 moveq 5,$r10 ; SIGTRAP
1421 jsr handle_exception ; Interactive routine
1422;;
1423;; Return to the caller
1424;;
1425 move.d [reg],$r0 ; Restore R0
1426 move.d [reg+0x04],$r1 ; Restore R1
1427 move.d [reg+0x08],$r2 ; Restore R2
1428 move.d [reg+0x0C],$r3 ; Restore R3
1429 move.d [reg+0x10],$r4 ; Restore R4
1430 move.d [reg+0x14],$r5 ; Restore R5
1431 move.d [reg+0x18],$r6 ; Restore R6
1432 move.d [reg+0x1C],$r7 ; Restore R7
1433 move.d [reg+0x20],$r8 ; Restore R8
1434 move.d [reg+0x24],$r9 ; Restore R9
1435 move.d [reg+0x28],$r10 ; Restore R10
1436 move.d [reg+0x2C],$r11 ; Restore R11
1437 move.d [reg+0x30],$r12 ; Restore R12
1438 move.d [reg+0x34],$r13 ; Restore R13
1439;;
1440;; FIXME: Which registers should be restored?
1441;;
1442 move.d [reg+0x38],$sp ; Restore SP (R14)
1443 move [reg+0x56],$srp ; Restore the subroutine return pointer.
1444 move [reg+0x5E],$dccr ; Restore DCCR
1445 move [reg+0x66],$usp ; Restore USP
1446 jump [reg+0x62] ; A jump to the content in register BRP works.
1447 nop ;
1448");
1449
1450/* The hook for an interrupt generated by GDB. An internal stack is used
1451 by the stub. The register image of the caller is stored in the structure
1452 register_image. Interactive communication with the host is handled by
1453 handle_exception and finally the register image is restored. Due to the
1454 old assembler which does not recognise the break instruction and the
1455 breakpoint return pointer hex-code is used. */
1456
1457void kgdb_handle_serial(void);
1458
1459asm ("
1460 .global kgdb_handle_serial
1461kgdb_handle_serial:
1462;;
1463;; Response to a serial interrupt
1464;;
1465
1466 move $dccr,[reg+0x5E] ; Save the flags in DCCR
1467 di ; Disable interrupts
1468 move.d $r0,[reg] ; Save R0
1469 move.d $r1,[reg+0x04] ; Save R1
1470 move.d $r2,[reg+0x08] ; Save R2
1471 move.d $r3,[reg+0x0C] ; Save R3
1472 move.d $r4,[reg+0x10] ; Save R4
1473 move.d $r5,[reg+0x14] ; Save R5
1474 move.d $r6,[reg+0x18] ; Save R6
1475 move.d $r7,[reg+0x1C] ; Save R7
1476 move.d $r8,[reg+0x20] ; Save R8
1477 move.d $r9,[reg+0x24] ; Save R9
1478 move.d $r10,[reg+0x28] ; Save R10
1479 move.d $r11,[reg+0x2C] ; Save R11
1480 move.d $r12,[reg+0x30] ; Save R12
1481 move.d $r13,[reg+0x34] ; Save R13
1482 move.d $sp,[reg+0x38] ; Save SP (R14)
1483 move $irp,[reg+0x3c] ; Save the address in PC (R15)
1484 clear.b [reg+0x40] ; Clear P0
1485 move $vr,[reg+0x41] ; Save special register P1,
1486 clear.w [reg+0x42] ; Clear P4
1487 move $ccr,[reg+0x44] ; Save special register CCR
1488 move $mof,[reg+0x46] ; P7
1489 clear.d [reg+0x4A] ; Clear P8
1490 move $ibr,[reg+0x4E] ; P9,
1491 move $irp,[reg+0x52] ; P10,
1492 move $srp,[reg+0x56] ; P11,
1493 move $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR
1494 ; P13, register DCCR already saved
1495;; Due to the old assembler-versions BRP might not be recognized
1496 .word 0xE670 ; move brp,r0
1497 move.d $r0,[reg+0x62] ; Save the return address in BRP
1498 move $usp,[reg+0x66] ; USP
1499
1500;; get the serial character (from debugport.c) and check if it is a ctrl-c
1501
1502 jsr getDebugChar
1503 cmp.b 3, $r10
1504 bne goback
1505 nop
1506
7cf32cad
MS
1507 move.d [reg+0x5E], $r10 ; Get DCCR
1508 btstq 8, $r10 ; Test the U-flag.
1509 bmi goback
1510 nop
1511
1da177e4
LT
1512;;
1513;; Handle the communication
1514;;
1515 move.d internal_stack+1020,$sp ; Use the internal stack
1516 moveq 2,$r10 ; SIGINT
1517 jsr handle_exception ; Interactive routine
1518
1519goback:
1520;;
1521;; Return to the caller
1522;;
1523 move.d [reg],$r0 ; Restore R0
1524 move.d [reg+0x04],$r1 ; Restore R1
1525 move.d [reg+0x08],$r2 ; Restore R2
1526 move.d [reg+0x0C],$r3 ; Restore R3
1527 move.d [reg+0x10],$r4 ; Restore R4
1528 move.d [reg+0x14],$r5 ; Restore R5
1529 move.d [reg+0x18],$r6 ; Restore R6
1530 move.d [reg+0x1C],$r7 ; Restore R7
1531 move.d [reg+0x20],$r8 ; Restore R8
1532 move.d [reg+0x24],$r9 ; Restore R9
1533 move.d [reg+0x28],$r10 ; Restore R10
1534 move.d [reg+0x2C],$r11 ; Restore R11
1535 move.d [reg+0x30],$r12 ; Restore R12
1536 move.d [reg+0x34],$r13 ; Restore R13
1537;;
1538;; FIXME: Which registers should be restored?
1539;;
1540 move.d [reg+0x38],$sp ; Restore SP (R14)
1541 move [reg+0x56],$srp ; Restore the subroutine return pointer.
1542 move [reg+0x5E],$dccr ; Restore DCCR
1543 move [reg+0x66],$usp ; Restore USP
1544 reti ; Return from the interrupt routine
1545 nop
1546");
1547
1548/* Use this static breakpoint in the start-up only. */
1549
1550void
1551breakpoint(void)
1552{
1553 kgdb_started = 1;
1554 is_dyn_brkp = 0; /* This is a static, not a dynamic breakpoint. */
1555 __asm__ volatile ("break 8"); /* Jump to handle_breakpoint. */
1556}
1557
1558/* initialize kgdb. doesn't break into the debugger, but sets up irq and ports */
1559
1560void
1561kgdb_init(void)
1562{
1563 /* could initialize debug port as well but it's done in head.S already... */
1564
1565 /* breakpoint handler is now set in irq.c */
1566 set_int_vector(8, kgdb_handle_serial);
1567
1568 enableDebugIRQ();
1569}
1570
1571/****************************** End of file **********************************/