]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/cris/arch-v10/kernel/kgdb.c
cris/kgdb: Use #ifdef PROCESS_SUPPORT where needed
[mirror_ubuntu-artful-kernel.git] / arch / cris / arch-v10 / kernel / kgdb.c
CommitLineData
1da177e4
LT
1/*!**************************************************************************
2*!
3*! FILE NAME : kgdb.c
4*!
5*! DESCRIPTION: Implementation of the gdb stub with respect to ETRAX 100.
6*! It is a mix of arch/m68k/kernel/kgdb.c and cris_stub.c.
7*!
8*!---------------------------------------------------------------------------
9*! HISTORY
10*!
11*! DATE NAME CHANGES
12*! ---- ---- -------
13*! Apr 26 1999 Hendrik Ruijter Initial version.
14*! May 6 1999 Hendrik Ruijter Removed call to strlen in libc and removed
15*! struct assignment as it generates calls to
16*! memcpy in libc.
17*! Jun 17 1999 Hendrik Ruijter Added gdb 4.18 support. 'X', 'qC' and 'qL'.
18*! Jul 21 1999 Bjorn Wesen eLinux port
19*!
1da177e4
LT
20*!---------------------------------------------------------------------------
21*!
1da177e4
LT
22*! (C) Copyright 1999, Axis Communications AB, LUND, SWEDEN
23*!
24*!**************************************************************************/
25/* @(#) cris_stub.c 1.3 06/17/99 */
26
27/*
28 * kgdb usage notes:
29 * -----------------
30 *
31 * If you select CONFIG_ETRAX_KGDB in the configuration, the kernel will be
32 * built with different gcc flags: "-g" is added to get debug infos, and
33 * "-fomit-frame-pointer" is omitted to make debugging easier. Since the
34 * resulting kernel will be quite big (approx. > 7 MB), it will be stripped
35 * before compresion. Such a kernel will behave just as usually, except if
36 * given a "debug=<device>" command line option. (Only serial devices are
37 * allowed for <device>, i.e. no printers or the like; possible values are
38 * machine depedend and are the same as for the usual debug device, the one
39 * for logging kernel messages.) If that option is given and the device can be
40 * initialized, the kernel will connect to the remote gdb in trap_init(). The
41 * serial parameters are fixed to 8N1 and 115200 bps, for easyness of
42 * implementation.
43 *
44 * To start a debugging session, start that gdb with the debugging kernel
45 * image (the one with the symbols, vmlinux.debug) named on the command line.
46 * This file will be used by gdb to get symbol and debugging infos about the
47 * kernel. Next, select remote debug mode by
48 * target remote <device>
49 * where <device> is the name of the serial device over which the debugged
50 * machine is connected. Maybe you have to adjust the baud rate by
51 * set remotebaud <rate>
52 * or also other parameters with stty:
53 * shell stty ... </dev/...
54 * If the kernel to debug has already booted, it waited for gdb and now
55 * connects, and you'll see a breakpoint being reported. If the kernel isn't
56 * running yet, start it now. The order of gdb and the kernel doesn't matter.
57 * Another thing worth knowing about in the getting-started phase is how to
58 * debug the remote protocol itself. This is activated with
59 * set remotedebug 1
60 * gdb will then print out each packet sent or received. You'll also get some
61 * messages about the gdb stub on the console of the debugged machine.
62 *
63 * If all that works, you can use lots of the usual debugging techniques on
64 * the kernel, e.g. inspecting and changing variables/memory, setting
65 * breakpoints, single stepping and so on. It's also possible to interrupt the
66 * debugged kernel by pressing C-c in gdb. Have fun! :-)
67 *
68 * The gdb stub is entered (and thus the remote gdb gets control) in the
69 * following situations:
70 *
71 * - If breakpoint() is called. This is just after kgdb initialization, or if
72 * a breakpoint() call has been put somewhere into the kernel source.
73 * (Breakpoints can of course also be set the usual way in gdb.)
74 * In eLinux, we call breakpoint() in init/main.c after IRQ initialization.
75 *
76 * - If there is a kernel exception, i.e. bad_super_trap() or die_if_kernel()
77 * are entered. All the CPU exceptions are mapped to (more or less..., see
78 * the hard_trap_info array below) appropriate signal, which are reported
79 * to gdb. die_if_kernel() is usually called after some kind of access
80 * error and thus is reported as SIGSEGV.
81 *
82 * - When panic() is called. This is reported as SIGABRT.
83 *
84 * - If C-c is received over the serial line, which is treated as
85 * SIGINT.
86 *
87 * Of course, all these signals are just faked for gdb, since there is no
88 * signal concept as such for the kernel. It also isn't possible --obviously--
89 * to set signal handlers from inside gdb, or restart the kernel with a
90 * signal.
91 *
92 * Current limitations:
93 *
94 * - While the kernel is stopped, interrupts are disabled for safety reasons
95 * (i.e., variables not changing magically or the like). But this also
96 * means that the clock isn't running anymore, and that interrupts from the
97 * hardware may get lost/not be served in time. This can cause some device
98 * errors...
99 *
100 * - When single-stepping, only one instruction of the current thread is
101 * executed, but interrupts are allowed for that time and will be serviced
102 * if pending. Be prepared for that.
103 *
104 * - All debugging happens in kernel virtual address space. There's no way to
105 * access physical memory not mapped in kernel space, or to access user
106 * space. A way to work around this is using get_user_long & Co. in gdb
107 * expressions, but only for the current process.
108 *
109 * - Interrupting the kernel only works if interrupts are currently allowed,
110 * and the interrupt of the serial line isn't blocked by some other means
111 * (IPL too high, disabled, ...)
112 *
113 * - The gdb stub is currently not reentrant, i.e. errors that happen therein
114 * (e.g. accessing invalid memory) may not be caught correctly. This could
115 * be removed in future by introducing a stack of struct registers.
116 *
117 */
118
119/*
120 * To enable debugger support, two things need to happen. One, a
121 * call to kgdb_init() is necessary in order to allow any breakpoints
122 * or error conditions to be properly intercepted and reported to gdb.
123 * Two, a breakpoint needs to be generated to begin communication. This
124 * is most easily accomplished by a call to breakpoint().
125 *
126 * The following gdb commands are supported:
127 *
128 * command function Return value
129 *
130 * g return the value of the CPU registers hex data or ENN
131 * G set the value of the CPU registers OK or ENN
132 *
133 * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
134 * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
135 *
136 * c Resume at current address SNN ( signal NN)
137 * cAA..AA Continue at address AA..AA SNN
138 *
139 * s Step one instruction SNN
140 * sAA..AA Step one instruction from AA..AA SNN
141 *
142 * k kill
143 *
144 * ? What was the last sigval ? SNN (signal NN)
145 *
146 * bBB..BB Set baud rate to BB..BB OK or BNN, then sets
147 * baud rate
148 *
149 * All commands and responses are sent with a packet which includes a
150 * checksum. A packet consists of
151 *
152 * $<packet info>#<checksum>.
153 *
154 * where
155 * <packet info> :: <characters representing the command or response>
156 * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
157 *
158 * When a packet is received, it is first acknowledged with either '+' or '-'.
159 * '+' indicates a successful transfer. '-' indicates a failed transfer.
160 *
161 * Example:
162 *
163 * Host: Reply:
164 * $m0,10#2a +$00010203040506070809101112131415#42
165 *
166 */
167
168
169#include <linux/string.h>
170#include <linux/signal.h>
171#include <linux/kernel.h>
172#include <linux/delay.h>
173#include <linux/linkage.h>
7cf32cad 174#include <linux/reboot.h>
1da177e4
LT
175
176#include <asm/setup.h>
177#include <asm/ptrace.h>
178
556dcee7 179#include <arch/svinto.h>
1da177e4
LT
180#include <asm/irq.h>
181
182static int kgdb_started = 0;
183
184/********************************* Register image ****************************/
185/* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
186 Reference", p. 1-1, with the additional register definitions of the
187 ETRAX 100LX in cris-opc.h.
188 There are 16 general 32-bit registers, R0-R15, where R14 is the stack
189 pointer, SP, and R15 is the program counter, PC.
190 There are 16 special registers, P0-P15, where three of the unimplemented
191 registers, P0, P4 and P8, are reserved as zero-registers. A read from
192 any of these registers returns zero and a write has no effect. */
193
194typedef
195struct register_image
196{
197 /* Offset */
198 unsigned int r0; /* 0x00 */
199 unsigned int r1; /* 0x04 */
200 unsigned int r2; /* 0x08 */
201 unsigned int r3; /* 0x0C */
202 unsigned int r4; /* 0x10 */
203 unsigned int r5; /* 0x14 */
204 unsigned int r6; /* 0x18 */
205 unsigned int r7; /* 0x1C */
206 unsigned int r8; /* 0x20 Frame pointer */
207 unsigned int r9; /* 0x24 */
208 unsigned int r10; /* 0x28 */
209 unsigned int r11; /* 0x2C */
210 unsigned int r12; /* 0x30 */
211 unsigned int r13; /* 0x34 */
212 unsigned int sp; /* 0x38 Stack pointer */
213 unsigned int pc; /* 0x3C Program counter */
214
215 unsigned char p0; /* 0x40 8-bit zero-register */
216 unsigned char vr; /* 0x41 Version register */
217
218 unsigned short p4; /* 0x42 16-bit zero-register */
219 unsigned short ccr; /* 0x44 Condition code register */
220
221 unsigned int mof; /* 0x46 Multiply overflow register */
222
223 unsigned int p8; /* 0x4A 32-bit zero-register */
224 unsigned int ibr; /* 0x4E Interrupt base register */
225 unsigned int irp; /* 0x52 Interrupt return pointer */
226 unsigned int srp; /* 0x56 Subroutine return pointer */
227 unsigned int bar; /* 0x5A Breakpoint address register */
228 unsigned int dccr; /* 0x5E Double condition code register */
229 unsigned int brp; /* 0x62 Breakpoint return pointer (pc in caller) */
230 unsigned int usp; /* 0x66 User mode stack pointer */
231} registers;
232
1da177e4
LT
233/* Serial port, reads one character. ETRAX 100 specific. from debugport.c */
234int getDebugChar (void);
235
236/* Serial port, writes one character. ETRAX 100 specific. from debugport.c */
237void putDebugChar (int val);
238
239void enableDebugIRQ (void);
240
1da177e4
LT
241/******************** Prototypes for global functions. ***********************/
242
243/* The string str is prepended with the GDB printout token and sent. */
244void putDebugString (const unsigned char *str, int length); /* used by etrax100ser.c */
245
246/* The hook for both static (compiled) and dynamic breakpoints set by GDB.
247 ETRAX 100 specific. */
248void handle_breakpoint (void); /* used by irq.c */
249
250/* The hook for an interrupt generated by GDB. ETRAX 100 specific. */
251void handle_interrupt (void); /* used by irq.c */
252
253/* A static breakpoint to be used at startup. */
254void breakpoint (void); /* called by init/main.c */
255
256/* From osys_int.c, executing_task contains the number of the current
257 executing task in osys. Does not know of object-oriented threads. */
258extern unsigned char executing_task;
259
260/* The number of characters used for a 64 bit thread identifier. */
261#define HEXCHARS_IN_THREAD_ID 16
262
263/* Avoid warning as the internal_stack is not used in the C-code. */
264#define USEDVAR(name) { if (name) { ; } }
265#define USEDFUN(name) { void (*pf)(void) = (void *)name; USEDVAR(pf) }
266
267/********************************** Packet I/O ******************************/
268/* BUFMAX defines the maximum number of characters in
269 inbound/outbound buffers */
270#define BUFMAX 512
271
272/* Run-length encoding maximum length. Send 64 at most. */
273#define RUNLENMAX 64
274
1da177e4
LT
275/* The inbound/outbound buffers used in packet I/O */
276static char remcomInBuffer[BUFMAX];
277static char remcomOutBuffer[BUFMAX];
278
279/* Error and warning messages. */
280enum error_type
281{
282 SUCCESS, E01, E02, E03, E04, E05, E06, E07
283};
284static char *error_message[] =
285{
286 "",
287 "E01 Set current or general thread - H[c,g] - internal error.",
288 "E02 Change register content - P - cannot change read-only register.",
289 "E03 Thread is not alive.", /* T, not used. */
290 "E04 The command is not supported - [s,C,S,!,R,d,r] - internal error.",
291 "E05 Change register content - P - the register is not implemented..",
292 "E06 Change memory content - M - internal error.",
293 "E07 Change register content - P - the register is not stored on the stack"
294};
295/********************************* Register image ****************************/
296/* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
297 Reference", p. 1-1, with the additional register definitions of the
298 ETRAX 100LX in cris-opc.h.
299 There are 16 general 32-bit registers, R0-R15, where R14 is the stack
300 pointer, SP, and R15 is the program counter, PC.
301 There are 16 special registers, P0-P15, where three of the unimplemented
302 registers, P0, P4 and P8, are reserved as zero-registers. A read from
303 any of these registers returns zero and a write has no effect. */
304enum register_name
305{
306 R0, R1, R2, R3,
307 R4, R5, R6, R7,
308 R8, R9, R10, R11,
309 R12, R13, SP, PC,
310 P0, VR, P2, P3,
311 P4, CCR, P6, MOF,
312 P8, IBR, IRP, SRP,
313 BAR, DCCR, BRP, USP
314};
315
316/* The register sizes of the registers in register_name. An unimplemented register
317 is designated by size 0 in this array. */
318static int register_size[] =
319{
320 4, 4, 4, 4,
321 4, 4, 4, 4,
322 4, 4, 4, 4,
323 4, 4, 4, 4,
324 1, 1, 0, 0,
325 2, 2, 0, 4,
326 4, 4, 4, 4,
327 4, 4, 4, 4
328};
329
330/* Contains the register image of the executing thread in the assembler
331 part of the code in order to avoid horrible addressing modes. */
332static registers reg;
333
334/* FIXME: Should this be used? Delete otherwise. */
335/* Contains the assumed consistency state of the register image. Uses the
336 enum error_type for state information. */
337static int consistency_status = SUCCESS;
338
339/********************************** Handle exceptions ************************/
340/* The variable reg contains the register image associated with the
341 current_thread_c variable. It is a complete register image created at
342 entry. The reg_g contains a register image of a task where the general
343 registers are taken from the stack and all special registers are taken
344 from the executing task. It is associated with current_thread_g and used
345 in order to provide access mainly for 'g', 'G' and 'P'.
346*/
347
d6c97e1c 348#ifdef PROCESS_SUPPORT
1da177e4
LT
349/* Need two task id pointers in order to handle Hct and Hgt commands. */
350static int current_thread_c = 0;
351static int current_thread_g = 0;
352
353/* Need two register images in order to handle Hct and Hgt commands. The
354 variable reg_g is in addition to reg above. */
355static registers reg_g;
d6c97e1c 356#endif /* PROCESS_SUPPORT */
1da177e4
LT
357
358/********************************** Breakpoint *******************************/
359/* Use an internal stack in the breakpoint and interrupt response routines */
360#define INTERNAL_STACK_SIZE 1024
361static char internal_stack[INTERNAL_STACK_SIZE];
362
363/* Due to the breakpoint return pointer, a state variable is needed to keep
364 track of whether it is a static (compiled) or dynamic (gdb-invoked)
365 breakpoint to be handled. A static breakpoint uses the content of register
366 BRP as it is whereas a dynamic breakpoint requires subtraction with 2
367 in order to execute the instruction. The first breakpoint is static. */
368static unsigned char is_dyn_brkp = 0;
369
370/********************************* String library ****************************/
371/* Single-step over library functions creates trap loops. */
372
373/* Copy char s2[] to s1[]. */
374static char*
375gdb_cris_strcpy (char *s1, const char *s2)
376{
377 char *s = s1;
378
379 for (s = s1; (*s++ = *s2++) != '\0'; )
380 ;
381 return (s1);
382}
383
384/* Find length of s[]. */
385static int
386gdb_cris_strlen (const char *s)
387{
388 const char *sc;
389
390 for (sc = s; *sc != '\0'; sc++)
391 ;
392 return (sc - s);
393}
394
395/* Find first occurrence of c in s[n]. */
396static void*
397gdb_cris_memchr (const void *s, int c, int n)
398{
399 const unsigned char uc = c;
400 const unsigned char *su;
401
402 for (su = s; 0 < n; ++su, --n)
403 if (*su == uc)
404 return ((void *)su);
405 return (NULL);
406}
407/******************************* Standard library ****************************/
408/* Single-step over library functions creates trap loops. */
409/* Convert string to long. */
410static int
411gdb_cris_strtol (const char *s, char **endptr, int base)
412{
413 char *s1;
414 char *sd;
415 int x = 0;
416
42a9a583
HH
417 for (s1 = (char*)s; (sd = gdb_cris_memchr(hex_asc, *s1, base)) != NULL; ++s1)
418 x = x * base + (sd - hex_asc);
1da177e4
LT
419
420 if (endptr)
421 {
422 /* Unconverted suffix is stored in endptr unless endptr is NULL. */
423 *endptr = s1;
424 }
425
426 return x;
427}
428
1da177e4 429/********************************** Packet I/O ******************************/
1da177e4
LT
430/* Returns the integer equivalent of a hexadecimal character. */
431static int
432hex (char ch)
433{
434 if ((ch >= 'a') && (ch <= 'f'))
435 return (ch - 'a' + 10);
436 if ((ch >= '0') && (ch <= '9'))
437 return (ch - '0');
438 if ((ch >= 'A') && (ch <= 'F'))
439 return (ch - 'A' + 10);
440 return (-1);
441}
442
443/* Convert the memory, pointed to by mem into hexadecimal representation.
444 Put the result in buf, and return a pointer to the last character
445 in buf (null). */
446
1da177e4
LT
447static char *
448mem2hex(char *buf, unsigned char *mem, int count)
449{
450 int i;
451 int ch;
452
453 if (mem == NULL) {
454 /* Bogus read from m0. FIXME: What constitutes a valid address? */
455 for (i = 0; i < count; i++) {
456 *buf++ = '0';
457 *buf++ = '0';
458 }
459 } else {
460 /* Valid mem address. */
461 for (i = 0; i < count; i++) {
462 ch = *mem++;
50e1499f 463 buf = hex_byte_pack(buf, ch);
1da177e4
LT
464 }
465 }
466
467 /* Terminate properly. */
468 *buf = '\0';
469 return (buf);
470}
471
472/* Convert the array, in hexadecimal representation, pointed to by buf into
473 binary representation. Put the result in mem, and return a pointer to
474 the character after the last byte written. */
475static unsigned char*
476hex2mem (unsigned char *mem, char *buf, int count)
477{
478 int i;
479 unsigned char ch;
480 for (i = 0; i < count; i++) {
481 ch = hex (*buf++) << 4;
482 ch = ch + hex (*buf++);
483 *mem++ = ch;
484 }
485 return (mem);
486}
487
488/* Put the content of the array, in binary representation, pointed to by buf
489 into memory pointed to by mem, and return a pointer to the character after
490 the last byte written.
491 Gdb will escape $, #, and the escape char (0x7d). */
492static unsigned char*
493bin2mem (unsigned char *mem, unsigned char *buf, int count)
494{
495 int i;
496 unsigned char *next;
497 for (i = 0; i < count; i++) {
498 /* Check for any escaped characters. Be paranoid and
499 only unescape chars that should be escaped. */
500 if (*buf == 0x7d) {
501 next = buf + 1;
502 if (*next == 0x3 || *next == 0x4 || *next == 0x5D) /* #, $, ESC */
503 {
504 buf++;
505 *buf += 0x20;
506 }
507 }
508 *mem++ = *buf++;
509 }
510 return (mem);
511}
512
513/* Await the sequence $<data>#<checksum> and store <data> in the array buffer
514 returned. */
515static void
516getpacket (char *buffer)
517{
518 unsigned char checksum;
519 unsigned char xmitcsum;
520 int i;
521 int count;
522 char ch;
523 do {
524 while ((ch = getDebugChar ()) != '$')
525 /* Wait for the start character $ and ignore all other characters */;
526 checksum = 0;
527 xmitcsum = -1;
528 count = 0;
529 /* Read until a # or the end of the buffer is reached */
530 while (count < BUFMAX) {
531 ch = getDebugChar ();
532 if (ch == '#')
533 break;
534 checksum = checksum + ch;
535 buffer[count] = ch;
536 count = count + 1;
537 }
538 buffer[count] = '\0';
539
540 if (ch == '#') {
541 xmitcsum = hex (getDebugChar ()) << 4;
542 xmitcsum += hex (getDebugChar ());
543 if (checksum != xmitcsum) {
544 /* Wrong checksum */
545 putDebugChar ('-');
546 }
547 else {
548 /* Correct checksum */
549 putDebugChar ('+');
550 /* If sequence characters are received, reply with them */
551 if (buffer[2] == ':') {
552 putDebugChar (buffer[0]);
553 putDebugChar (buffer[1]);
554 /* Remove the sequence characters from the buffer */
555 count = gdb_cris_strlen (buffer);
556 for (i = 3; i <= count; i++)
557 buffer[i - 3] = buffer[i];
558 }
559 }
560 }
561 } while (checksum != xmitcsum);
562}
563
564/* Send $<data>#<checksum> from the <data> in the array buffer. */
565
566static void
567putpacket(char *buffer)
568{
569 int checksum;
570 int runlen;
571 int encode;
572
573 do {
574 char *src = buffer;
575 putDebugChar ('$');
576 checksum = 0;
577 while (*src) {
578 /* Do run length encoding */
579 putDebugChar (*src);
580 checksum += *src;
581 runlen = 0;
582 while (runlen < RUNLENMAX && *src == src[runlen]) {
583 runlen++;
584 }
585 if (runlen > 3) {
586 /* Got a useful amount */
587 putDebugChar ('*');
588 checksum += '*';
589 encode = runlen + ' ' - 4;
590 putDebugChar (encode);
591 checksum += encode;
592 src += runlen;
593 }
594 else {
595 src++;
596 }
597 }
42a9a583
HH
598 putDebugChar('#');
599 putDebugChar(hex_asc_hi(checksum));
600 putDebugChar(hex_asc_lo(checksum));
1da177e4
LT
601 } while(kgdb_started && (getDebugChar() != '+'));
602}
603
604/* The string str is prepended with the GDB printout token and sent. Required
605 in traditional implementations. */
606void
607putDebugString (const unsigned char *str, int length)
608{
609 remcomOutBuffer[0] = 'O';
610 mem2hex(&remcomOutBuffer[1], (unsigned char *)str, length);
611 putpacket(remcomOutBuffer);
612}
613
4bf01dda 614/********************************* Register image ****************************/
d6c97e1c 615#ifdef PROCESS_SUPPORT
4bf01dda
GU
616/* Copy the content of a register image into another. The size n is
617 the size of the register image. Due to struct assignment generation of
618 memcpy in libc. */
619static void
620copy_registers (registers *dptr, registers *sptr, int n)
621{
622 unsigned char *dreg;
623 unsigned char *sreg;
624
625 for (dreg = (unsigned char*)dptr, sreg = (unsigned char*)sptr; n > 0; n--)
626 *dreg++ = *sreg++;
627}
628
4bf01dda
GU
629/* Copy the stored registers from the stack. Put the register contents
630 of thread thread_id in the struct reg. */
631static void
632copy_registers_from_stack (int thread_id, registers *regptr)
633{
634 int j;
635 stack_registers *s = (stack_registers *)stack_list[thread_id];
636 unsigned int *d = (unsigned int *)regptr;
637
638 for (j = 13; j >= 0; j--)
639 *d++ = s->r[j];
640 regptr->sp = (unsigned int)stack_list[thread_id];
641 regptr->pc = s->pc;
642 regptr->dccr = s->dccr;
643 regptr->srp = s->srp;
644}
645
646/* Copy the registers to the stack. Put the register contents of thread
647 thread_id from struct reg to the stack. */
648static void
649copy_registers_to_stack (int thread_id, registers *regptr)
650{
651 int i;
652 stack_registers *d = (stack_registers *)stack_list[thread_id];
653 unsigned int *s = (unsigned int *)regptr;
654
655 for (i = 0; i < 14; i++) {
656 d->r[i] = *s++;
657 }
658 d->pc = regptr->pc;
659 d->dccr = regptr->dccr;
660 d->srp = regptr->srp;
661}
662#endif
663
664/* Write a value to a specified register in the register image of the current
665 thread. Returns status code SUCCESS, E02 or E05. */
666static int
667write_register (int regno, char *val)
668{
669 int status = SUCCESS;
670 registers *current_reg = &reg;
671
672 if (regno >= R0 && regno <= PC) {
673 /* 32-bit register with simple offset. */
674 hex2mem ((unsigned char *)current_reg + regno * sizeof(unsigned int),
675 val, sizeof(unsigned int));
676 }
677 else if (regno == P0 || regno == VR || regno == P4 || regno == P8) {
678 /* Do not support read-only registers. */
679 status = E02;
680 }
681 else if (regno == CCR) {
682 /* 16 bit register with complex offset. (P4 is read-only, P6 is not implemented,
683 and P7 (MOF) is 32 bits in ETRAX 100LX. */
684 hex2mem ((unsigned char *)&(current_reg->ccr) + (regno-CCR) * sizeof(unsigned short),
685 val, sizeof(unsigned short));
686 }
687 else if (regno >= MOF && regno <= USP) {
688 /* 32 bit register with complex offset. (P8 has been taken care of.) */
689 hex2mem ((unsigned char *)&(current_reg->ibr) + (regno-IBR) * sizeof(unsigned int),
690 val, sizeof(unsigned int));
691 }
692 else {
693 /* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
694 status = E05;
695 }
696 return status;
697}
698
699#ifdef PROCESS_SUPPORT
700/* Write a value to a specified register in the stack of a thread other
701 than the current thread. Returns status code SUCCESS or E07. */
702static int
703write_stack_register (int thread_id, int regno, char *valptr)
704{
705 int status = SUCCESS;
706 stack_registers *d = (stack_registers *)stack_list[thread_id];
707 unsigned int val;
708
709 hex2mem ((unsigned char *)&val, valptr, sizeof(unsigned int));
710 if (regno >= R0 && regno < SP) {
711 d->r[regno] = val;
712 }
713 else if (regno == SP) {
714 stack_list[thread_id] = val;
715 }
716 else if (regno == PC) {
717 d->pc = val;
718 }
719 else if (regno == SRP) {
720 d->srp = val;
721 }
722 else if (regno == DCCR) {
723 d->dccr = val;
724 }
725 else {
726 /* Do not support registers in the current thread. */
727 status = E07;
728 }
729 return status;
730}
731#endif
732
733/* Read a value from a specified register in the register image. Returns the
734 value in the register or -1 for non-implemented registers.
735 Should check consistency_status after a call which may be E05 after changes
736 in the implementation. */
737static int
738read_register (char regno, unsigned int *valptr)
739{
740 registers *current_reg = &reg;
741
742 if (regno >= R0 && regno <= PC) {
743 /* 32-bit register with simple offset. */
744 *valptr = *(unsigned int *)((char *)current_reg + regno * sizeof(unsigned int));
745 return SUCCESS;
746 }
747 else if (regno == P0 || regno == VR) {
748 /* 8 bit register with complex offset. */
749 *valptr = (unsigned int)(*(unsigned char *)
750 ((char *)&(current_reg->p0) + (regno-P0) * sizeof(char)));
751 return SUCCESS;
752 }
753 else if (regno == P4 || regno == CCR) {
754 /* 16 bit register with complex offset. */
755 *valptr = (unsigned int)(*(unsigned short *)
756 ((char *)&(current_reg->p4) + (regno-P4) * sizeof(unsigned short)));
757 return SUCCESS;
758 }
759 else if (regno >= MOF && regno <= USP) {
760 /* 32 bit register with complex offset. */
761 *valptr = *(unsigned int *)((char *)&(current_reg->p8)
762 + (regno-P8) * sizeof(unsigned int));
763 return SUCCESS;
764 }
765 else {
766 /* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
767 consistency_status = E05;
768 return E05;
769 }
770}
771
1da177e4
LT
772/********************************** Handle exceptions ************************/
773/* Build and send a response packet in order to inform the host the
774 stub is stopped. TAAn...:r...;n...:r...;n...:r...;
775 AA = signal number
776 n... = register number (hex)
777 r... = register contents
778 n... = `thread'
779 r... = thread process ID. This is a hex integer.
780 n... = other string not starting with valid hex digit.
781 gdb should ignore this n,r pair and go on to the next.
782 This way we can extend the protocol. */
783static void
784stub_is_stopped(int sigval)
785{
786 char *ptr = remcomOutBuffer;
787 int regno;
788
789 unsigned int reg_cont;
790 int status;
791
792 /* Send trap type (converted to signal) */
793
42a9a583 794 *ptr++ = 'T';
50e1499f 795 ptr = hex_byte_pack(ptr, sigval);
1da177e4
LT
796
797 /* Send register contents. We probably only need to send the
798 * PC, frame pointer and stack pointer here. Other registers will be
c03983ac 799 * explicitly asked for. But for now, send all.
1da177e4
LT
800 */
801
802 for (regno = R0; regno <= USP; regno++) {
803 /* Store n...:r...; for the registers in the buffer. */
804
805 status = read_register (regno, &reg_cont);
806
807 if (status == SUCCESS) {
50e1499f 808 ptr = hex_byte_pack(ptr, regno);
1da177e4
LT
809 *ptr++ = ':';
810
811 ptr = mem2hex(ptr, (unsigned char *)&reg_cont,
812 register_size[regno]);
813 *ptr++ = ';';
814 }
815
816 }
817
818#ifdef PROCESS_SUPPORT
819 /* Store the registers of the executing thread. Assume that both step,
820 continue, and register content requests are with respect to this
821 thread. The executing task is from the operating system scheduler. */
822
823 current_thread_c = executing_task;
824 current_thread_g = executing_task;
825
826 /* A struct assignment translates into a libc memcpy call. Avoid
827 all libc functions in order to prevent recursive break points. */
828 copy_registers (&reg_g, &reg, sizeof(registers));
829
830 /* Store thread:r...; with the executing task TID. */
831 gdb_cris_strcpy (&remcomOutBuffer[pos], "thread:");
832 pos += gdb_cris_strlen ("thread:");
42a9a583
HH
833 remcomOutBuffer[pos++] = hex_asc_hi(executing_task);
834 remcomOutBuffer[pos++] = hex_asc_lo(executing_task);
1da177e4
LT
835 gdb_cris_strcpy (&remcomOutBuffer[pos], ";");
836#endif
837
838 /* null-terminate and send it off */
839
840 *ptr = 0;
841
842 putpacket (remcomOutBuffer);
843}
844
4bf01dda
GU
845/* Performs a complete re-start from scratch. */
846static void
847kill_restart (void)
848{
849 machine_restart("");
850}
851
1da177e4
LT
852/* All expected commands are sent from remote.c. Send a response according
853 to the description in remote.c. */
854static void
855handle_exception (int sigval)
856{
857 /* Avoid warning of not used. */
858
859 USEDFUN(handle_exception);
860 USEDVAR(internal_stack[0]);
861
862 /* Send response. */
863
864 stub_is_stopped (sigval);
865
866 for (;;) {
867 remcomOutBuffer[0] = '\0';
868 getpacket (remcomInBuffer);
869 switch (remcomInBuffer[0]) {
870 case 'g':
871 /* Read registers: g
872 Success: Each byte of register data is described by two hex digits.
873 Registers are in the internal order for GDB, and the bytes
874 in a register are in the same order the machine uses.
875 Failure: void. */
876
877 {
878#ifdef PROCESS_SUPPORT
879 /* Use the special register content in the executing thread. */
880 copy_registers (&reg_g, &reg, sizeof(registers));
881 /* Replace the content available on the stack. */
882 if (current_thread_g != executing_task) {
883 copy_registers_from_stack (current_thread_g, &reg_g);
884 }
885 mem2hex ((unsigned char *)remcomOutBuffer, (unsigned char *)&reg_g, sizeof(registers));
886#else
887 mem2hex(remcomOutBuffer, (char *)&reg, sizeof(registers));
888#endif
889 }
890 break;
891
892 case 'G':
893 /* Write registers. GXX..XX
894 Each byte of register data is described by two hex digits.
895 Success: OK
896 Failure: void. */
897#ifdef PROCESS_SUPPORT
898 hex2mem ((unsigned char *)&reg_g, &remcomInBuffer[1], sizeof(registers));
899 if (current_thread_g == executing_task) {
900 copy_registers (&reg, &reg_g, sizeof(registers));
901 }
902 else {
903 copy_registers_to_stack(current_thread_g, &reg_g);
904 }
905#else
906 hex2mem((char *)&reg, &remcomInBuffer[1], sizeof(registers));
907#endif
908 gdb_cris_strcpy (remcomOutBuffer, "OK");
909 break;
910
911 case 'P':
912 /* Write register. Pn...=r...
913 Write register n..., hex value without 0x, with value r...,
914 which contains a hex value without 0x and two hex digits
915 for each byte in the register (target byte order). P1f=11223344 means
916 set register 31 to 44332211.
917 Success: OK
918 Failure: E02, E05 */
919 {
920 char *suffix;
921 int regno = gdb_cris_strtol (&remcomInBuffer[1], &suffix, 16);
922 int status;
923#ifdef PROCESS_SUPPORT
924 if (current_thread_g != executing_task)
925 status = write_stack_register (current_thread_g, regno, suffix+1);
926 else
927#endif
928 status = write_register (regno, suffix+1);
929
930 switch (status) {
931 case E02:
932 /* Do not support read-only registers. */
933 gdb_cris_strcpy (remcomOutBuffer, error_message[E02]);
934 break;
935 case E05:
936 /* Do not support non-existing registers. */
937 gdb_cris_strcpy (remcomOutBuffer, error_message[E05]);
938 break;
939 case E07:
940 /* Do not support non-existing registers on the stack. */
941 gdb_cris_strcpy (remcomOutBuffer, error_message[E07]);
942 break;
943 default:
944 /* Valid register number. */
945 gdb_cris_strcpy (remcomOutBuffer, "OK");
946 break;
947 }
948 }
949 break;
950
951 case 'm':
952 /* Read from memory. mAA..AA,LLLL
953 AA..AA is the address and LLLL is the length.
954 Success: XX..XX is the memory content. Can be fewer bytes than
955 requested if only part of the data may be read. m6000120a,6c means
956 retrieve 108 byte from base address 6000120a.
957 Failure: void. */
958 {
959 char *suffix;
960 unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
961 &suffix, 16); int length = gdb_cris_strtol(suffix+1, 0, 16);
962
963 mem2hex(remcomOutBuffer, addr, length);
964 }
965 break;
966
967 case 'X':
968 /* Write to memory. XAA..AA,LLLL:XX..XX
969 AA..AA is the start address, LLLL is the number of bytes, and
970 XX..XX is the binary data.
971 Success: OK
972 Failure: void. */
973 case 'M':
974 /* Write to memory. MAA..AA,LLLL:XX..XX
975 AA..AA is the start address, LLLL is the number of bytes, and
976 XX..XX is the hexadecimal data.
977 Success: OK
978 Failure: void. */
979 {
980 char *lenptr;
981 char *dataptr;
982 unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
983 &lenptr, 16);
984 int length = gdb_cris_strtol(lenptr+1, &dataptr, 16);
985 if (*lenptr == ',' && *dataptr == ':') {
986 if (remcomInBuffer[0] == 'M') {
987 hex2mem(addr, dataptr + 1, length);
988 }
989 else /* X */ {
990 bin2mem(addr, dataptr + 1, length);
991 }
992 gdb_cris_strcpy (remcomOutBuffer, "OK");
993 }
994 else {
995 gdb_cris_strcpy (remcomOutBuffer, error_message[E06]);
996 }
997 }
998 break;
999
1000 case 'c':
1001 /* Continue execution. cAA..AA
1002 AA..AA is the address where execution is resumed. If AA..AA is
1003 omitted, resume at the present address.
1004 Success: return to the executing thread.
1005 Failure: will never know. */
1006 if (remcomInBuffer[1] != '\0') {
1007 reg.pc = gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
1008 }
1009 enableDebugIRQ();
1010 return;
1011
1012 case 's':
1013 /* Step. sAA..AA
1014 AA..AA is the address where execution is resumed. If AA..AA is
1015 omitted, resume at the present address. Success: return to the
1016 executing thread. Failure: will never know.
1017
1018 Should never be invoked. The single-step is implemented on
1019 the host side. If ever invoked, it is an internal error E04. */
1020 gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
1021 putpacket (remcomOutBuffer);
1022 return;
1023
1024 case '?':
1025 /* The last signal which caused a stop. ?
1026 Success: SAA, where AA is the signal number.
1027 Failure: void. */
1028 remcomOutBuffer[0] = 'S';
42a9a583
HH
1029 remcomOutBuffer[1] = hex_asc_hi(sigval);
1030 remcomOutBuffer[2] = hex_asc_lo(sigval);
1da177e4
LT
1031 remcomOutBuffer[3] = 0;
1032 break;
1033
1034 case 'D':
1035 /* Detach from host. D
1036 Success: OK, and return to the executing thread.
1037 Failure: will never know */
1038 putpacket ("OK");
1039 return;
1040
1041 case 'k':
1042 case 'r':
1043 /* kill request or reset request.
1044 Success: restart of target.
1045 Failure: will never know. */
1046 kill_restart ();
1047 break;
1048
1049 case 'C':
1050 case 'S':
1051 case '!':
1052 case 'R':
1053 case 'd':
1054 /* Continue with signal sig. Csig;AA..AA
1055 Step with signal sig. Ssig;AA..AA
1056 Use the extended remote protocol. !
1057 Restart the target system. R0
1058 Toggle debug flag. d
1059 Search backwards. tAA:PP,MM
1060 Not supported: E04 */
1061 gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
1062 break;
1063#ifdef PROCESS_SUPPORT
1064
1065 case 'T':
1066 /* Thread alive. TXX
1067 Is thread XX alive?
1068 Success: OK, thread XX is alive.
1069 Failure: E03, thread XX is dead. */
1070 {
1071 int thread_id = (int)gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
1072 /* Cannot tell whether it is alive or not. */
1073 if (thread_id >= 0 && thread_id < number_of_tasks)
1074 gdb_cris_strcpy (remcomOutBuffer, "OK");
1075 }
1076 break;
1077
1078 case 'H':
1079 /* Set thread for subsequent operations: Hct
1080 c = 'c' for thread used in step and continue;
1081 t can be -1 for all threads.
1082 c = 'g' for thread used in other operations.
1083 t = 0 means pick any thread.
1084 Success: OK
1085 Failure: E01 */
1086 {
1087 int thread_id = gdb_cris_strtol (&remcomInBuffer[2], 0, 16);
1088 if (remcomInBuffer[1] == 'c') {
1089 /* c = 'c' for thread used in step and continue */
1090 /* Do not change current_thread_c here. It would create a mess in
1091 the scheduler. */
1092 gdb_cris_strcpy (remcomOutBuffer, "OK");
1093 }
1094 else if (remcomInBuffer[1] == 'g') {
1095 /* c = 'g' for thread used in other operations.
1096 t = 0 means pick any thread. Impossible since the scheduler does
1097 not allow that. */
1098 if (thread_id >= 0 && thread_id < number_of_tasks) {
1099 current_thread_g = thread_id;
1100 gdb_cris_strcpy (remcomOutBuffer, "OK");
1101 }
1102 else {
1103 /* Not expected - send an error message. */
1104 gdb_cris_strcpy (remcomOutBuffer, error_message[E01]);
1105 }
1106 }
1107 else {
1108 /* Not expected - send an error message. */
1109 gdb_cris_strcpy (remcomOutBuffer, error_message[E01]);
1110 }
1111 }
1112 break;
1113
1114 case 'q':
1115 case 'Q':
1116 /* Query of general interest. qXXXX
1117 Set general value XXXX. QXXXX=yyyy */
1118 {
1119 int pos;
1120 int nextpos;
1121 int thread_id;
1122
1123 switch (remcomInBuffer[1]) {
1124 case 'C':
1125 /* Identify the remote current thread. */
1126 gdb_cris_strcpy (&remcomOutBuffer[0], "QC");
42a9a583
HH
1127 remcomOutBuffer[2] = hex_asc_hi(current_thread_c);
1128 remcomOutBuffer[3] = hex_asc_lo(current_thread_c);
1da177e4
LT
1129 remcomOutBuffer[4] = '\0';
1130 break;
1131 case 'L':
1132 gdb_cris_strcpy (&remcomOutBuffer[0], "QM");
1133 /* Reply with number of threads. */
1134 if (os_is_started()) {
42a9a583
HH
1135 remcomOutBuffer[2] = hex_asc_hi(number_of_tasks);
1136 remcomOutBuffer[3] = hex_asc_lo(number_of_tasks);
1da177e4
LT
1137 }
1138 else {
42a9a583
HH
1139 remcomOutBuffer[2] = hex_asc_hi(0);
1140 remcomOutBuffer[3] = hex_asc_lo(1);
1da177e4
LT
1141 }
1142 /* Done with the reply. */
42a9a583 1143 remcomOutBuffer[4] = hex_asc_lo(1);
1da177e4
LT
1144 pos = 5;
1145 /* Expects the argument thread id. */
1146 for (; pos < (5 + HEXCHARS_IN_THREAD_ID); pos++)
1147 remcomOutBuffer[pos] = remcomInBuffer[pos];
1148 /* Reply with the thread identifiers. */
1149 if (os_is_started()) {
1150 /* Store the thread identifiers of all tasks. */
1151 for (thread_id = 0; thread_id < number_of_tasks; thread_id++) {
1152 nextpos = pos + HEXCHARS_IN_THREAD_ID - 1;
1153 for (; pos < nextpos; pos ++)
42a9a583
HH
1154 remcomOutBuffer[pos] = hex_asc_lo(0);
1155 remcomOutBuffer[pos++] = hex_asc_lo(thread_id);
1da177e4
LT
1156 }
1157 }
1158 else {
1159 /* Store the thread identifier of the boot task. */
1160 nextpos = pos + HEXCHARS_IN_THREAD_ID - 1;
1161 for (; pos < nextpos; pos ++)
42a9a583
HH
1162 remcomOutBuffer[pos] = hex_asc_lo(0);
1163 remcomOutBuffer[pos++] = hex_asc_lo(current_thread_c);
1da177e4
LT
1164 }
1165 remcomOutBuffer[pos] = '\0';
1166 break;
1167 default:
1168 /* Not supported: "" */
1169 /* Request information about section offsets: qOffsets. */
1170 remcomOutBuffer[0] = 0;
1171 break;
1172 }
1173 }
1174 break;
1175#endif /* PROCESS_SUPPORT */
1176
1177 default:
1178 /* The stub should ignore other request and send an empty
1179 response ($#<checksum>). This way we can extend the protocol and GDB
1180 can tell whether the stub it is talking to uses the old or the new. */
1181 remcomOutBuffer[0] = 0;
1182 break;
1183 }
1184 putpacket(remcomOutBuffer);
1185 }
1186}
1187
1da177e4
LT
1188/********************************** Breakpoint *******************************/
1189/* The hook for both a static (compiled) and a dynamic breakpoint set by GDB.
1190 An internal stack is used by the stub. The register image of the caller is
1191 stored in the structure register_image.
1192 Interactive communication with the host is handled by handle_exception and
1193 finally the register image is restored. */
1194
1195void kgdb_handle_breakpoint(void);
1196
7fc6a8ba
GU
1197asm ("\n"
1198" .global kgdb_handle_breakpoint\n"
1199"kgdb_handle_breakpoint:\n"
1200";;\n"
1201";; Response to the break-instruction\n"
1202";;\n"
1203";; Create a register image of the caller\n"
1204";;\n"
1205" move $dccr,[reg+0x5E] ; Save the flags in DCCR before disable interrupts\n"
1206" di ; Disable interrupts\n"
1207" move.d $r0,[reg] ; Save R0\n"
1208" move.d $r1,[reg+0x04] ; Save R1\n"
1209" move.d $r2,[reg+0x08] ; Save R2\n"
1210" move.d $r3,[reg+0x0C] ; Save R3\n"
1211" move.d $r4,[reg+0x10] ; Save R4\n"
1212" move.d $r5,[reg+0x14] ; Save R5\n"
1213" move.d $r6,[reg+0x18] ; Save R6\n"
1214" move.d $r7,[reg+0x1C] ; Save R7\n"
1215" move.d $r8,[reg+0x20] ; Save R8\n"
1216" move.d $r9,[reg+0x24] ; Save R9\n"
1217" move.d $r10,[reg+0x28] ; Save R10\n"
1218" move.d $r11,[reg+0x2C] ; Save R11\n"
1219" move.d $r12,[reg+0x30] ; Save R12\n"
1220" move.d $r13,[reg+0x34] ; Save R13\n"
1221" move.d $sp,[reg+0x38] ; Save SP (R14)\n"
1222";; Due to the old assembler-versions BRP might not be recognized\n"
1223" .word 0xE670 ; move brp,$r0\n"
1224" subq 2,$r0 ; Set to address of previous instruction.\n"
1225" move.d $r0,[reg+0x3c] ; Save the address in PC (R15)\n"
1226" clear.b [reg+0x40] ; Clear P0\n"
1227" move $vr,[reg+0x41] ; Save special register P1\n"
1228" clear.w [reg+0x42] ; Clear P4\n"
1229" move $ccr,[reg+0x44] ; Save special register CCR\n"
1230" move $mof,[reg+0x46] ; P7\n"
1231" clear.d [reg+0x4A] ; Clear P8\n"
1232" move $ibr,[reg+0x4E] ; P9,\n"
1233" move $irp,[reg+0x52] ; P10,\n"
1234" move $srp,[reg+0x56] ; P11,\n"
1235" move $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR\n"
1236" ; P13, register DCCR already saved\n"
1237";; Due to the old assembler-versions BRP might not be recognized\n"
1238" .word 0xE670 ; move brp,r0\n"
1239";; Static (compiled) breakpoints must return to the next instruction in order\n"
1240";; to avoid infinite loops. Dynamic (gdb-invoked) must restore the instruction\n"
1241";; in order to execute it when execution is continued.\n"
1242" test.b [is_dyn_brkp] ; Is this a dynamic breakpoint?\n"
1243" beq is_static ; No, a static breakpoint\n"
1244" nop\n"
1245" subq 2,$r0 ; rerun the instruction the break replaced\n"
1246"is_static:\n"
1247" moveq 1,$r1\n"
1248" move.b $r1,[is_dyn_brkp] ; Set the state variable to dynamic breakpoint\n"
1249" move.d $r0,[reg+0x62] ; Save the return address in BRP\n"
1250" move $usp,[reg+0x66] ; USP\n"
1251";;\n"
1252";; Handle the communication\n"
1253";;\n"
1254" move.d internal_stack+1020,$sp ; Use the internal stack which grows upward\n"
1255" moveq 5,$r10 ; SIGTRAP\n"
1256" jsr handle_exception ; Interactive routine\n"
1257";;\n"
1258";; Return to the caller\n"
1259";;\n"
1260" move.d [reg],$r0 ; Restore R0\n"
1261" move.d [reg+0x04],$r1 ; Restore R1\n"
1262" move.d [reg+0x08],$r2 ; Restore R2\n"
1263" move.d [reg+0x0C],$r3 ; Restore R3\n"
1264" move.d [reg+0x10],$r4 ; Restore R4\n"
1265" move.d [reg+0x14],$r5 ; Restore R5\n"
1266" move.d [reg+0x18],$r6 ; Restore R6\n"
1267" move.d [reg+0x1C],$r7 ; Restore R7\n"
1268" move.d [reg+0x20],$r8 ; Restore R8\n"
1269" move.d [reg+0x24],$r9 ; Restore R9\n"
1270" move.d [reg+0x28],$r10 ; Restore R10\n"
1271" move.d [reg+0x2C],$r11 ; Restore R11\n"
1272" move.d [reg+0x30],$r12 ; Restore R12\n"
1273" move.d [reg+0x34],$r13 ; Restore R13\n"
1274";;\n"
1275";; FIXME: Which registers should be restored?\n"
1276";;\n"
1277" move.d [reg+0x38],$sp ; Restore SP (R14)\n"
1278" move [reg+0x56],$srp ; Restore the subroutine return pointer.\n"
1279" move [reg+0x5E],$dccr ; Restore DCCR\n"
1280" move [reg+0x66],$usp ; Restore USP\n"
1281" jump [reg+0x62] ; A jump to the content in register BRP works.\n"
1282" nop ;\n"
1283"\n");
1da177e4
LT
1284
1285/* The hook for an interrupt generated by GDB. An internal stack is used
1286 by the stub. The register image of the caller is stored in the structure
1287 register_image. Interactive communication with the host is handled by
1288 handle_exception and finally the register image is restored. Due to the
1289 old assembler which does not recognise the break instruction and the
1290 breakpoint return pointer hex-code is used. */
1291
1292void kgdb_handle_serial(void);
1293
7fc6a8ba
GU
1294asm ("\n"
1295" .global kgdb_handle_serial\n"
1296"kgdb_handle_serial:\n"
1297";;\n"
1298";; Response to a serial interrupt\n"
1299";;\n"
1300"\n"
1301" move $dccr,[reg+0x5E] ; Save the flags in DCCR\n"
1302" di ; Disable interrupts\n"
1303" move.d $r0,[reg] ; Save R0\n"
1304" move.d $r1,[reg+0x04] ; Save R1\n"
1305" move.d $r2,[reg+0x08] ; Save R2\n"
1306" move.d $r3,[reg+0x0C] ; Save R3\n"
1307" move.d $r4,[reg+0x10] ; Save R4\n"
1308" move.d $r5,[reg+0x14] ; Save R5\n"
1309" move.d $r6,[reg+0x18] ; Save R6\n"
1310" move.d $r7,[reg+0x1C] ; Save R7\n"
1311" move.d $r8,[reg+0x20] ; Save R8\n"
1312" move.d $r9,[reg+0x24] ; Save R9\n"
1313" move.d $r10,[reg+0x28] ; Save R10\n"
1314" move.d $r11,[reg+0x2C] ; Save R11\n"
1315" move.d $r12,[reg+0x30] ; Save R12\n"
1316" move.d $r13,[reg+0x34] ; Save R13\n"
1317" move.d $sp,[reg+0x38] ; Save SP (R14)\n"
1318" move $irp,[reg+0x3c] ; Save the address in PC (R15)\n"
1319" clear.b [reg+0x40] ; Clear P0\n"
1320" move $vr,[reg+0x41] ; Save special register P1,\n"
1321" clear.w [reg+0x42] ; Clear P4\n"
1322" move $ccr,[reg+0x44] ; Save special register CCR\n"
1323" move $mof,[reg+0x46] ; P7\n"
1324" clear.d [reg+0x4A] ; Clear P8\n"
1325" move $ibr,[reg+0x4E] ; P9,\n"
1326" move $irp,[reg+0x52] ; P10,\n"
1327" move $srp,[reg+0x56] ; P11,\n"
1328" move $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR\n"
1329" ; P13, register DCCR already saved\n"
1330";; Due to the old assembler-versions BRP might not be recognized\n"
1331" .word 0xE670 ; move brp,r0\n"
1332" move.d $r0,[reg+0x62] ; Save the return address in BRP\n"
1333" move $usp,[reg+0x66] ; USP\n"
1334"\n"
1335";; get the serial character (from debugport.c) and check if it is a ctrl-c\n"
1336"\n"
1337" jsr getDebugChar\n"
1338" cmp.b 3, $r10\n"
1339" bne goback\n"
1340" nop\n"
1341"\n"
1342" move.d [reg+0x5E], $r10 ; Get DCCR\n"
1343" btstq 8, $r10 ; Test the U-flag.\n"
1344" bmi goback\n"
1345" nop\n"
1346"\n"
1347";;\n"
1348";; Handle the communication\n"
1349";;\n"
1350" move.d internal_stack+1020,$sp ; Use the internal stack\n"
1351" moveq 2,$r10 ; SIGINT\n"
1352" jsr handle_exception ; Interactive routine\n"
1353"\n"
1354"goback:\n"
1355";;\n"
1356";; Return to the caller\n"
1357";;\n"
1358" move.d [reg],$r0 ; Restore R0\n"
1359" move.d [reg+0x04],$r1 ; Restore R1\n"
1360" move.d [reg+0x08],$r2 ; Restore R2\n"
1361" move.d [reg+0x0C],$r3 ; Restore R3\n"
1362" move.d [reg+0x10],$r4 ; Restore R4\n"
1363" move.d [reg+0x14],$r5 ; Restore R5\n"
1364" move.d [reg+0x18],$r6 ; Restore R6\n"
1365" move.d [reg+0x1C],$r7 ; Restore R7\n"
1366" move.d [reg+0x20],$r8 ; Restore R8\n"
1367" move.d [reg+0x24],$r9 ; Restore R9\n"
1368" move.d [reg+0x28],$r10 ; Restore R10\n"
1369" move.d [reg+0x2C],$r11 ; Restore R11\n"
1370" move.d [reg+0x30],$r12 ; Restore R12\n"
1371" move.d [reg+0x34],$r13 ; Restore R13\n"
1372";;\n"
1373";; FIXME: Which registers should be restored?\n"
1374";;\n"
1375" move.d [reg+0x38],$sp ; Restore SP (R14)\n"
1376" move [reg+0x56],$srp ; Restore the subroutine return pointer.\n"
1377" move [reg+0x5E],$dccr ; Restore DCCR\n"
1378" move [reg+0x66],$usp ; Restore USP\n"
1379" reti ; Return from the interrupt routine\n"
1380" nop\n"
1381"\n");
1da177e4
LT
1382
1383/* Use this static breakpoint in the start-up only. */
1384
1385void
1386breakpoint(void)
1387{
1388 kgdb_started = 1;
1389 is_dyn_brkp = 0; /* This is a static, not a dynamic breakpoint. */
1390 __asm__ volatile ("break 8"); /* Jump to handle_breakpoint. */
1391}
1392
1393/* initialize kgdb. doesn't break into the debugger, but sets up irq and ports */
1394
1395void
1396kgdb_init(void)
1397{
1398 /* could initialize debug port as well but it's done in head.S already... */
1399
1400 /* breakpoint handler is now set in irq.c */
1401 set_int_vector(8, kgdb_handle_serial);
1402
1403 enableDebugIRQ();
1404}
1405
1406/****************************** End of file **********************************/