]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/cris/arch-v32/drivers/axisflashmap.c
CRISv32: Squash compile warnings for axisflashmap
[mirror_ubuntu-artful-kernel.git] / arch / cris / arch-v32 / drivers / axisflashmap.c
CommitLineData
51533b61
MS
1/*
2 * Physical mapping layer for MTD using the Axis partitiontable format
3 *
5fc1f312 4 * Copyright (c) 2001-2007 Axis Communications AB
51533b61
MS
5 *
6 * This file is under the GPL.
7 *
8 * First partition is always sector 0 regardless of if we find a partitiontable
9 * or not. In the start of the next sector, there can be a partitiontable that
10 * tells us what other partitions to define. If there isn't, we use a default
11 * partition split defined below.
12 *
51533b61
MS
13 */
14
15#include <linux/module.h>
16#include <linux/types.h>
17#include <linux/kernel.h>
51533b61 18#include <linux/init.h>
4e57b681 19#include <linux/slab.h>
51533b61
MS
20
21#include <linux/mtd/concat.h>
22#include <linux/mtd/map.h>
23#include <linux/mtd/mtd.h>
24#include <linux/mtd/mtdram.h>
25#include <linux/mtd/partitions.h>
26
51533b61
MS
27#include <asm/axisflashmap.h>
28#include <asm/mmu.h>
29
30#define MEM_CSE0_SIZE (0x04000000)
31#define MEM_CSE1_SIZE (0x04000000)
32
33#define FLASH_UNCACHED_ADDR KSEG_E
34#define FLASH_CACHED_ADDR KSEG_F
35
5fc1f312
JN
36#define PAGESIZE (512)
37
51533b61
MS
38#if CONFIG_ETRAX_FLASH_BUSWIDTH==1
39#define flash_data __u8
40#elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
41#define flash_data __u16
42#elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
5fc1f312 43#define flash_data __u32
51533b61
MS
44#endif
45
46/* From head.S */
5fc1f312
JN
47extern unsigned long romfs_in_flash; /* 1 when romfs_start, _length in flash */
48extern unsigned long romfs_start, romfs_length;
49extern unsigned long nand_boot; /* 1 when booted from nand flash */
50
51struct partition_name {
52 char name[6];
53};
51533b61
MS
54
55/* The master mtd for the entire flash. */
56struct mtd_info* axisflash_mtd = NULL;
57
58/* Map driver functions. */
59
60static map_word flash_read(struct map_info *map, unsigned long ofs)
61{
62 map_word tmp;
63 tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);
64 return tmp;
65}
66
67static void flash_copy_from(struct map_info *map, void *to,
68 unsigned long from, ssize_t len)
69{
70 memcpy(to, (void *)(map->map_priv_1 + from), len);
71}
72
73static void flash_write(struct map_info *map, map_word d, unsigned long adr)
74{
75 *(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];
76}
77
78/*
79 * The map for chip select e0.
80 *
81 * We run into tricky coherence situations if we mix cached with uncached
82 * accesses to we only use the uncached version here.
83 *
84 * The size field is the total size where the flash chips may be mapped on the
85 * chip select. MTD probes should find all devices there and it does not matter
86 * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
87 * probes will ignore them.
88 *
89 * The start address in map_priv_1 is in virtual memory so we cannot use
90 * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
91 * address of cse0.
92 */
93static struct map_info map_cse0 = {
94 .name = "cse0",
95 .size = MEM_CSE0_SIZE,
96 .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
97 .read = flash_read,
98 .copy_from = flash_copy_from,
99 .write = flash_write,
100 .map_priv_1 = FLASH_UNCACHED_ADDR
101};
102
103/*
104 * The map for chip select e1.
105 *
106 * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
107 * address, but there isn't.
108 */
109static struct map_info map_cse1 = {
110 .name = "cse1",
111 .size = MEM_CSE1_SIZE,
112 .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
113 .read = flash_read,
114 .copy_from = flash_copy_from,
115 .write = flash_write,
116 .map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
117};
118
5fc1f312
JN
119#define MAX_PARTITIONS 7
120#ifdef CONFIG_ETRAX_NANDBOOT
121#define NUM_DEFAULT_PARTITIONS 4
122#define DEFAULT_ROOTFS_PARTITION_NO 2
123#define DEFAULT_MEDIA_SIZE 0x2000000 /* 32 megs */
124#else
125#define NUM_DEFAULT_PARTITIONS 3
126#define DEFAULT_ROOTFS_PARTITION_NO (-1)
127#define DEFAULT_MEDIA_SIZE 0x800000 /* 8 megs */
128#endif
51533b61 129
5fc1f312
JN
130#if (MAX_PARTITIONS < NUM_DEFAULT_PARTITIONS)
131#error MAX_PARTITIONS must be >= than NUM_DEFAULT_PARTITIONS
132#endif
51533b61
MS
133
134/* Initialize the ones normally used. */
135static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
136 {
137 .name = "part0",
138 .size = CONFIG_ETRAX_PTABLE_SECTOR,
139 .offset = 0
140 },
141 {
142 .name = "part1",
143 .size = 0,
144 .offset = 0
145 },
146 {
147 .name = "part2",
148 .size = 0,
149 .offset = 0
150 },
151 {
152 .name = "part3",
153 .size = 0,
154 .offset = 0
155 },
156 {
157 .name = "part4",
158 .size = 0,
159 .offset = 0
160 },
161 {
162 .name = "part5",
163 .size = 0,
164 .offset = 0
165 },
166 {
167 .name = "part6",
168 .size = 0,
169 .offset = 0
170 },
171};
172
5fc1f312
JN
173
174/* If no partition-table was found, we use this default-set.
175 * Default flash size is 8MB (NOR). CONFIG_ETRAX_PTABLE_SECTOR is most
176 * likely the size of one flash block and "filesystem"-partition needs
177 * to be >=5 blocks to be able to use JFFS.
178 */
179static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
180 {
181 .name = "boot firmware",
182 .size = CONFIG_ETRAX_PTABLE_SECTOR,
183 .offset = 0
184 },
185 {
186 .name = "kernel",
187 .size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
188 .offset = CONFIG_ETRAX_PTABLE_SECTOR
189 },
190#define FILESYSTEM_SECTOR (11 * CONFIG_ETRAX_PTABLE_SECTOR)
191#ifdef CONFIG_ETRAX_NANDBOOT
192 {
193 .name = "rootfs",
194 .size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
195 .offset = FILESYSTEM_SECTOR
196 },
197#undef FILESYSTEM_SECTOR
198#define FILESYSTEM_SECTOR (21 * CONFIG_ETRAX_PTABLE_SECTOR)
199#endif
200 {
201 .name = "rwfs",
202 .size = DEFAULT_MEDIA_SIZE - FILESYSTEM_SECTOR,
203 .offset = FILESYSTEM_SECTOR
204 }
205};
206
207#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
208/* Main flash device */
209static struct mtd_partition main_partition = {
210 .name = "main",
211 .size = 0,
212 .offset = 0
213};
214#endif
215
25985edc 216/* Auxiliary partition if we find another flash */
5fc1f312
JN
217static struct mtd_partition aux_partition = {
218 .name = "aux",
219 .size = 0,
220 .offset = 0
221};
222
51533b61
MS
223/*
224 * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
225 * chips in that order (because the amd_flash-driver is faster).
226 */
227static struct mtd_info *probe_cs(struct map_info *map_cs)
228{
229 struct mtd_info *mtd_cs = NULL;
230
231 printk(KERN_INFO
232 "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
233 map_cs->name, map_cs->size, map_cs->map_priv_1);
234
51533b61 235#ifdef CONFIG_MTD_CFI
5fc1f312 236 mtd_cs = do_map_probe("cfi_probe", map_cs);
1b8be1d8
JN
237#endif
238#ifdef CONFIG_MTD_JEDECPROBE
239 if (!mtd_cs)
240 mtd_cs = do_map_probe("jedec_probe", map_cs);
51533b61
MS
241#endif
242
243 return mtd_cs;
244}
245
246/*
247 * Probe each chip select individually for flash chips. If there are chips on
248 * both cse0 and cse1, the mtd_info structs will be concatenated to one struct
5fc1f312 249 * so that MTD partitions can cross chip boundries.
51533b61
MS
250 *
251 * The only known restriction to how you can mount your chips is that each
252 * chip select must hold similar flash chips. But you need external hardware
253 * to do that anyway and you can put totally different chips on cse0 and cse1
254 * so it isn't really much of a restriction.
255 */
256extern struct mtd_info* __init crisv32_nand_flash_probe (void);
257static struct mtd_info *flash_probe(void)
258{
259 struct mtd_info *mtd_cse0;
260 struct mtd_info *mtd_cse1;
51533b61 261 struct mtd_info *mtd_total;
5fc1f312 262 struct mtd_info *mtds[2];
51533b61
MS
263 int count = 0;
264
265 if ((mtd_cse0 = probe_cs(&map_cse0)) != NULL)
266 mtds[count++] = mtd_cse0;
267 if ((mtd_cse1 = probe_cs(&map_cse1)) != NULL)
268 mtds[count++] = mtd_cse1;
269
5fc1f312 270 if (!mtd_cse0 && !mtd_cse1) {
51533b61
MS
271 /* No chip found. */
272 return NULL;
273 }
274
275 if (count > 1) {
51533b61
MS
276 /* Since the concatenation layer adds a small overhead we
277 * could try to figure out if the chips in cse0 and cse1 are
278 * identical and reprobe the whole cse0+cse1 window. But since
279 * flash chips are slow, the overhead is relatively small.
280 * So we use the MTD concatenation layer instead of further
281 * complicating the probing procedure.
282 */
5fc1f312 283 mtd_total = mtd_concat_create(mtds, count, "cse0+cse1");
51533b61
MS
284 if (!mtd_total) {
285 printk(KERN_ERR "%s and %s: Concatenation failed!\n",
5fc1f312 286 map_cse0.name, map_cse1.name);
51533b61
MS
287
288 /* The best we can do now is to only use what we found
5fc1f312 289 * at cse0. */
51533b61
MS
290 mtd_total = mtd_cse0;
291 map_destroy(mtd_cse1);
292 }
5fc1f312
JN
293 } else
294 mtd_total = mtd_cse0 ? mtd_cse0 : mtd_cse1;
51533b61
MS
295
296 return mtd_total;
297}
298
51533b61
MS
299/*
300 * Probe the flash chip(s) and, if it succeeds, read the partition-table
301 * and register the partitions with MTD.
302 */
303static int __init init_axis_flash(void)
304{
5fc1f312
JN
305 struct mtd_info *main_mtd;
306 struct mtd_info *aux_mtd = NULL;
51533b61
MS
307 int err = 0;
308 int pidx = 0;
309 struct partitiontable_head *ptable_head = NULL;
310 struct partitiontable_entry *ptable;
5fc1f312
JN
311 int ptable_ok = 0;
312 static char page[PAGESIZE];
51533b61 313 size_t len;
5fc1f312
JN
314 int ram_rootfs_partition = -1; /* -1 => no RAM rootfs partition */
315 int part;
4b867157 316 struct mtd_partition *partition;
5fc1f312
JN
317
318 /* We need a root fs. If it resides in RAM, we need to use an
319 * MTDRAM device, so it must be enabled in the kernel config,
320 * but its size must be configured as 0 so as not to conflict
321 * with our usage.
322 */
323#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
324 if (!romfs_in_flash && !nand_boot) {
325 printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
326 "device; configure CONFIG_MTD_MTDRAM with size = 0!\n");
327 panic("This kernel cannot boot from RAM!\n");
328 }
329#endif
330
5fc1f312
JN
331 main_mtd = flash_probe();
332 if (main_mtd)
4b867157 333 printk(KERN_INFO "%s: 0x%08llx bytes of NOR flash memory.\n",
5fc1f312
JN
334 main_mtd->name, main_mtd->size);
335
336#ifdef CONFIG_ETRAX_NANDFLASH
337 aux_mtd = crisv32_nand_flash_probe();
338 if (aux_mtd)
339 printk(KERN_INFO "%s: 0x%08x bytes of NAND flash memory.\n",
340 aux_mtd->name, aux_mtd->size);
341
342#ifdef CONFIG_ETRAX_NANDBOOT
343 {
344 struct mtd_info *tmp_mtd;
51533b61 345
5fc1f312
JN
346 printk(KERN_INFO "axisflashmap: Set to boot from NAND flash, "
347 "making NAND flash primary device.\n");
348 tmp_mtd = main_mtd;
349 main_mtd = aux_mtd;
350 aux_mtd = tmp_mtd;
351 }
352#endif /* CONFIG_ETRAX_NANDBOOT */
353#endif /* CONFIG_ETRAX_NANDFLASH */
51533b61 354
5fc1f312 355 if (!main_mtd && !aux_mtd) {
51533b61
MS
356 /* There's no reason to use this module if no flash chip can
357 * be identified. Make sure that's understood.
358 */
359 printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
51533b61
MS
360 }
361
5fc1f312
JN
362#if 0 /* Dump flash memory so we can see what is going on */
363 if (main_mtd) {
364 int sectoraddr, i;
365 for (sectoraddr = 0; sectoraddr < 2*65536+4096;
366 sectoraddr += PAGESIZE) {
367 main_mtd->read(main_mtd, sectoraddr, PAGESIZE, &len,
368 page);
369 printk(KERN_INFO
370 "Sector at %d (length %d):\n",
371 sectoraddr, len);
372 for (i = 0; i < PAGESIZE; i += 16) {
373 printk(KERN_INFO
374 "%02x %02x %02x %02x "
375 "%02x %02x %02x %02x "
376 "%02x %02x %02x %02x "
377 "%02x %02x %02x %02x\n",
378 page[i] & 255, page[i+1] & 255,
379 page[i+2] & 255, page[i+3] & 255,
380 page[i+4] & 255, page[i+5] & 255,
381 page[i+6] & 255, page[i+7] & 255,
382 page[i+8] & 255, page[i+9] & 255,
383 page[i+10] & 255, page[i+11] & 255,
384 page[i+12] & 255, page[i+13] & 255,
385 page[i+14] & 255, page[i+15] & 255);
386 }
387 }
388 }
389#endif
390
391 if (main_mtd) {
4b867157 392 loff_t ptable_sector = CONFIG_ETRAX_PTABLE_SECTOR;
5fc1f312
JN
393 main_mtd->owner = THIS_MODULE;
394 axisflash_mtd = main_mtd;
395
5fc1f312
JN
396
397 /* First partition (rescue) is always set to the default. */
398 pidx++;
399#ifdef CONFIG_ETRAX_NANDBOOT
400 /* We know where the partition table should be located,
401 * it will be in first good block after that.
402 */
403 int blockstat;
404 do {
7086c19d 405 blockstat = mtd_block_isbad(main_mtd, ptable_sector);
5fc1f312
JN
406 if (blockstat < 0)
407 ptable_sector = 0; /* read error */
408 else if (blockstat)
409 ptable_sector += main_mtd->erasesize;
410 } while (blockstat && ptable_sector);
411#endif
412 if (ptable_sector) {
329ad399
AB
413 mtd_read(main_mtd, ptable_sector, PAGESIZE, &len,
414 page);
5fc1f312
JN
415 ptable_head = &((struct partitiontable *) page)->head;
416 }
417
418#if 0 /* Dump partition table so we can see what is going on */
419 printk(KERN_INFO
420 "axisflashmap: flash read %d bytes at 0x%08x, data: "
421 "%02x %02x %02x %02x %02x %02x %02x %02x\n",
422 len, CONFIG_ETRAX_PTABLE_SECTOR,
423 page[0] & 255, page[1] & 255,
424 page[2] & 255, page[3] & 255,
425 page[4] & 255, page[5] & 255,
426 page[6] & 255, page[7] & 255);
427 printk(KERN_INFO
428 "axisflashmap: partition table offset %d, data: "
429 "%02x %02x %02x %02x %02x %02x %02x %02x\n",
430 PARTITION_TABLE_OFFSET,
431 page[PARTITION_TABLE_OFFSET+0] & 255,
432 page[PARTITION_TABLE_OFFSET+1] & 255,
433 page[PARTITION_TABLE_OFFSET+2] & 255,
434 page[PARTITION_TABLE_OFFSET+3] & 255,
435 page[PARTITION_TABLE_OFFSET+4] & 255,
436 page[PARTITION_TABLE_OFFSET+5] & 255,
437 page[PARTITION_TABLE_OFFSET+6] & 255,
438 page[PARTITION_TABLE_OFFSET+7] & 255);
439#endif
51533b61 440 }
51533b61
MS
441
442 if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
443 && (ptable_head->size <
444 (MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
445 PARTITIONTABLE_END_MARKER_SIZE))
446 && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
447 ptable_head->size -
448 PARTITIONTABLE_END_MARKER_SIZE)
449 == PARTITIONTABLE_END_MARKER)) {
450 /* Looks like a start, sane length and end of a
451 * partition table, lets check csum etc.
452 */
51533b61
MS
453 struct partitiontable_entry *max_addr =
454 (struct partitiontable_entry *)
455 ((unsigned long)ptable_head + sizeof(*ptable_head) +
456 ptable_head->size);
457 unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
458 unsigned char *p;
459 unsigned long csum = 0;
460
461 ptable = (struct partitiontable_entry *)
462 ((unsigned long)ptable_head + sizeof(*ptable_head));
463
464 /* Lets be PARANOID, and check the checksum. */
465 p = (unsigned char*) ptable;
466
467 while (p <= (unsigned char*)max_addr) {
468 csum += *p++;
469 csum += *p++;
470 csum += *p++;
471 csum += *p++;
472 }
473 ptable_ok = (csum == ptable_head->checksum);
474
475 /* Read the entries and use/show the info. */
5fc1f312
JN
476 printk(KERN_INFO "axisflashmap: "
477 "Found a%s partition table at 0x%p-0x%p.\n",
51533b61
MS
478 (ptable_ok ? " valid" : "n invalid"), ptable_head,
479 max_addr);
480
481 /* We have found a working bootblock. Now read the
5fc1f312 482 * partition table. Scan the table. It ends with 0xffffffff.
51533b61
MS
483 */
484 while (ptable_ok
5fc1f312 485 && ptable->offset != PARTITIONTABLE_END_MARKER
51533b61 486 && ptable < max_addr
5fc1f312 487 && pidx < MAX_PARTITIONS - 1) {
51533b61 488
5fc1f312
JN
489 axis_partitions[pidx].offset = offset + ptable->offset;
490#ifdef CONFIG_ETRAX_NANDFLASH
491 if (main_mtd->type == MTD_NANDFLASH) {
492 axis_partitions[pidx].size =
493 (((ptable+1)->offset ==
494 PARTITIONTABLE_END_MARKER) ?
495 main_mtd->size :
496 ((ptable+1)->offset + offset)) -
497 (ptable->offset + offset);
498
499 } else
500#endif /* CONFIG_ETRAX_NANDFLASH */
501 axis_partitions[pidx].size = ptable->size;
502#ifdef CONFIG_ETRAX_NANDBOOT
503 /* Save partition number of jffs2 ro partition.
504 * Needed if RAM booting or root file system in RAM.
505 */
506 if (!nand_boot &&
507 ram_rootfs_partition < 0 && /* not already set */
508 ptable->type == PARTITION_TYPE_JFFS2 &&
509 (ptable->flags & PARTITION_FLAGS_READONLY_MASK) ==
510 PARTITION_FLAGS_READONLY)
511 ram_rootfs_partition = pidx;
512#endif /* CONFIG_ETRAX_NANDBOOT */
51533b61
MS
513 pidx++;
514 ptable++;
515 }
51533b61
MS
516 }
517
5fc1f312
JN
518 /* Decide whether to use default partition table. */
519 /* Only use default table if we actually have a device (main_mtd) */
51533b61 520
4b867157 521 partition = &axis_partitions[0];
5fc1f312
JN
522 if (main_mtd && !ptable_ok) {
523 memcpy(axis_partitions, axis_default_partitions,
524 sizeof(axis_default_partitions));
525 pidx = NUM_DEFAULT_PARTITIONS;
526 ram_rootfs_partition = DEFAULT_ROOTFS_PARTITION_NO;
527 }
51533b61 528
5fc1f312
JN
529 /* Add artificial partitions for rootfs if necessary */
530 if (romfs_in_flash) {
531 /* rootfs is in directly accessible flash memory = NOR flash.
532 Add an overlapping device for the rootfs partition. */
533 printk(KERN_INFO "axisflashmap: Adding partition for "
534 "overlapping root file system image\n");
535 axis_partitions[pidx].size = romfs_length;
536 axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
537 axis_partitions[pidx].name = "romfs";
51533b61 538 axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
5fc1f312 539 ram_rootfs_partition = -1;
51533b61 540 pidx++;
5fc1f312
JN
541 } else if (romfs_length && !nand_boot) {
542 /* romfs exists in memory, but not in flash, so must be in RAM.
543 * Configure an MTDRAM partition. */
544 if (ram_rootfs_partition < 0) {
545 /* None set yet, put it at the end */
546 ram_rootfs_partition = pidx;
547 pidx++;
51533b61 548 }
5fc1f312
JN
549 printk(KERN_INFO "axisflashmap: Adding partition for "
550 "root file system image in RAM\n");
551 axis_partitions[ram_rootfs_partition].size = romfs_length;
552 axis_partitions[ram_rootfs_partition].offset = romfs_start;
553 axis_partitions[ram_rootfs_partition].name = "romfs";
554 axis_partitions[ram_rootfs_partition].mask_flags |=
555 MTD_WRITEABLE;
556 }
51533b61 557
5fc1f312
JN
558#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
559 if (main_mtd) {
560 main_partition.size = main_mtd->size;
36cda05b 561 err = mtd_device_register(main_mtd, &main_partition, 1);
5fc1f312
JN
562 if (err)
563 panic("axisflashmap: Could not initialize "
564 "partition for whole main mtd device!\n");
51533b61 565 }
51533b61
MS
566#endif
567
5fc1f312
JN
568 /* Now, register all partitions with mtd.
569 * We do this one at a time so we can slip in an MTDRAM device
570 * in the proper place if required. */
571
572 for (part = 0; part < pidx; part++) {
573 if (part == ram_rootfs_partition) {
574 /* add MTDRAM partition here */
575 struct mtd_info *mtd_ram;
576
577 mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
578 if (!mtd_ram)
579 panic("axisflashmap: Couldn't allocate memory "
580 "for mtd_info!\n");
581 printk(KERN_INFO "axisflashmap: Adding RAM partition "
582 "for rootfs image.\n");
583 err = mtdram_init_device(mtd_ram,
4b867157 584 (void *)(u_int32_t)partition[part].offset,
5fc1f312
JN
585 partition[part].size,
586 partition[part].name);
587 if (err)
588 panic("axisflashmap: Could not initialize "
589 "MTD RAM device!\n");
590 /* JFFS2 likes to have an erasesize. Keep potential
591 * JFFS2 rootfs happy by providing one. Since image
592 * was most likely created for main mtd, use that
593 * erasesize, if available. Otherwise, make a guess. */
594 mtd_ram->erasesize = (main_mtd ? main_mtd->erasesize :
595 CONFIG_ETRAX_PTABLE_SECTOR);
596 } else {
36cda05b
JI
597 err = mtd_device_register(main_mtd, &partition[part],
598 1);
5fc1f312
JN
599 if (err)
600 panic("axisflashmap: Could not add mtd "
601 "partition %d\n", part);
602 }
603 }
5fc1f312 604
5fc1f312
JN
605 if (aux_mtd) {
606 aux_partition.size = aux_mtd->size;
36cda05b 607 err = mtd_device_register(aux_mtd, &aux_partition, 1);
5fc1f312
JN
608 if (err)
609 panic("axisflashmap: Could not initialize "
610 "aux mtd device!\n");
51533b61 611
51533b61
MS
612 }
613
614 return err;
615}
616
617/* This adds the above to the kernels init-call chain. */
618module_init(init_axis_flash);
619
620EXPORT_SYMBOL(axisflash_mtd);