]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/hexagon/include/asm/pgtable.h
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / arch / hexagon / include / asm / pgtable.h
CommitLineData
08dbd0f8 1/* SPDX-License-Identifier: GPL-2.0-only */
a7e79840
RK
2/*
3 * Page table support for the Hexagon architecture
4 *
e1858b2a 5 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
a7e79840
RK
6 */
7
8#ifndef _ASM_PGTABLE_H
9#define _ASM_PGTABLE_H
10
11/*
12 * Page table definitions for Qualcomm Hexagon processor.
13 */
a7e79840 14#include <asm/page.h>
9849a569 15#define __ARCH_USE_5LEVEL_HACK
a7e79840
RK
16#include <asm-generic/pgtable-nopmd.h>
17
18/* A handy thing to have if one has the RAM. Declared in head.S */
19extern unsigned long empty_zero_page;
a7e79840
RK
20
21/*
22 * The PTE model described here is that of the Hexagon Virtual Machine,
23 * which autonomously walks 2-level page tables. At a lower level, we
24 * also describe the RISCish software-loaded TLB entry structure of
25 * the underlying Hexagon processor. A kernel built to run on the
26 * virtual machine has no need to know about the underlying hardware.
27 */
28#include <asm/vm_mmu.h>
29
30/*
31 * To maximize the comfort level for the PTE manipulation macros,
32 * define the "well known" architecture-specific bits.
33 */
34#define _PAGE_READ __HVM_PTE_R
35#define _PAGE_WRITE __HVM_PTE_W
36#define _PAGE_EXECUTE __HVM_PTE_X
37#define _PAGE_USER __HVM_PTE_U
38
39/*
40 * We have a total of 4 "soft" bits available in the abstract PTE.
41 * The two mandatory software bits are Dirty and Accessed.
42 * To make nonlinear swap work according to the more recent
43 * model, we want a low order "Present" bit to indicate whether
44 * the PTE describes MMU programming or swap space.
45 */
46#define _PAGE_PRESENT (1<<0)
47#define _PAGE_DIRTY (1<<1)
48#define _PAGE_ACCESSED (1<<2)
49
a7e79840
RK
50/*
51 * For now, let's say that Valid and Present are the same thing.
52 * Alternatively, we could say that it's the "or" of R, W, and X
53 * permissions.
54 */
55#define _PAGE_VALID _PAGE_PRESENT
56
57/*
58 * We're not defining _PAGE_GLOBAL here, since there's no concept
59 * of global pages or ASIDs exposed to the Hexagon Virtual Machine,
60 * and we want to use the same page table structures and macros in
61 * the native kernel as we do in the virtual machine kernel.
62 * So we'll put up with a bit of inefficiency for now...
63 */
64
65/*
66 * Top "FOURTH" level (pgd), which for the Hexagon VM is really
67 * only the second from the bottom, pgd and pud both being collapsed.
68 * Each entry represents 4MB of virtual address space, 4K of table
69 * thus maps the full 4GB.
70 */
71#define PGDIR_SHIFT 22
72#define PTRS_PER_PGD 1024
73
74#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
75#define PGDIR_MASK (~(PGDIR_SIZE-1))
76
77#ifdef CONFIG_PAGE_SIZE_4KB
78#define PTRS_PER_PTE 1024
79#endif
80
81#ifdef CONFIG_PAGE_SIZE_16KB
82#define PTRS_PER_PTE 256
83#endif
84
85#ifdef CONFIG_PAGE_SIZE_64KB
86#define PTRS_PER_PTE 64
87#endif
88
89#ifdef CONFIG_PAGE_SIZE_256KB
90#define PTRS_PER_PTE 16
91#endif
92
93#ifdef CONFIG_PAGE_SIZE_1MB
94#define PTRS_PER_PTE 4
95#endif
96
97/* Any bigger and the PTE disappears. */
98#define pgd_ERROR(e) \
99 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\
100 pgd_val(e))
101
102/*
103 * Page Protection Constants. Includes (in this variant) cache attributes.
104 */
105extern unsigned long _dflt_cache_att;
106
107#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | \
108 _dflt_cache_att)
109#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \
110 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
111#define PAGE_COPY PAGE_READONLY
112#define PAGE_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \
113 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
114#define PAGE_COPY_EXEC PAGE_EXEC
115#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
116 _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att)
117#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | \
118 _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att)
119
120
121/*
122 * Aliases for mapping mmap() protection bits to page protections.
123 * These get used for static initialization, so using the _dflt_cache_att
124 * variable for the default cache attribute isn't workable. If the
125 * default gets changed at boot time, the boot option code has to
126 * update data structures like the protaction_map[] array.
127 */
128#define CACHEDEF (CACHE_DEFAULT << 6)
129
130/* Private (copy-on-write) page protections. */
131#define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF)
132#define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF)
133#define __P010 __P000 /* Write-only copy-on-write */
134#define __P011 __P001 /* Read/Write copy-on-write */
135#define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
136 _PAGE_EXECUTE | CACHEDEF)
137#define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \
138 _PAGE_READ | CACHEDEF)
139#define __P110 __P100 /* Write/execute copy-on-write */
140#define __P111 __P101 /* Read/Write/Execute, copy-on-write */
141
142/* Shared page protections. */
143#define __S000 __P000
144#define __S001 __P001
145#define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
146 _PAGE_WRITE | CACHEDEF)
147#define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
148 _PAGE_WRITE | CACHEDEF)
149#define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
150 _PAGE_EXECUTE | CACHEDEF)
151#define __S101 __P101
152#define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
153 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
154#define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
155 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
156
157extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* located in head.S */
158
159/* Seems to be zero even in architectures where the zero page is firewalled? */
d016bf7e 160#define FIRST_USER_ADDRESS 0UL
a7e79840
RK
161#define pte_special(pte) 0
162#define pte_mkspecial(pte) (pte)
163
164/* HUGETLB not working currently */
165#ifdef CONFIG_HUGETLB_PAGE
166#define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE)
167#endif
168
169/*
170 * For now, assume that higher-level code will do TLB/MMU invalidations
171 * and don't insert that overhead into this low-level function.
172 */
173extern void sync_icache_dcache(pte_t pte);
174
175#define pte_present_exec_user(pte) \
176 ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \
177 (_PAGE_EXECUTE | _PAGE_USER))
178
179static inline void set_pte(pte_t *ptep, pte_t pteval)
180{
181 /* should really be using pte_exec, if it weren't declared later. */
182 if (pte_present_exec_user(pteval))
183 sync_icache_dcache(pteval);
184
185 *ptep = pteval;
186}
187
188/*
189 * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid
190 * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE
191 * (Linux PTE), the key is to have bits 11..9 all zero. We'd use 0x7
192 * as a universal null entry, but some of those least significant bits
193 * are interpreted by software.
194 */
195#define _NULL_PMD 0x7
196#define _NULL_PTE 0x0
197
198static inline void pmd_clear(pmd_t *pmd_entry_ptr)
199{
200 pmd_val(*pmd_entry_ptr) = _NULL_PMD;
201}
202
203/*
204 * Conveniently, a null PTE value is invalid.
205 */
206static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
207 pte_t *ptep)
208{
209 pte_val(*ptep) = _NULL_PTE;
210}
211
212#ifdef NEED_PMD_INDEX_DESPITE_BEING_2_LEVEL
213/**
214 * pmd_index - returns the index of the entry in the PMD page
215 * which would control the given virtual address
216 */
217#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
218
219#endif
220
221/**
222 * pgd_index - returns the index of the entry in the PGD page
223 * which would control the given virtual address
224 *
225 * This returns the *index* for the address in the pgd_t
226 */
227#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
228
229/*
230 * pgd_offset - find an offset in a page-table-directory
231 */
232#define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
233
234/*
235 * pgd_offset_k - get kernel (init_mm) pgd entry pointer for addr
236 */
237#define pgd_offset_k(address) pgd_offset(&init_mm, address)
238
239/**
240 * pmd_none - check if pmd_entry is mapped
241 * @pmd_entry: pmd entry
242 *
243 * MIPS checks it against that "invalid pte table" thing.
244 */
245static inline int pmd_none(pmd_t pmd)
246{
247 return pmd_val(pmd) == _NULL_PMD;
248}
249
250/**
251 * pmd_present - is there a page table behind this?
252 * Essentially the inverse of pmd_none. We maybe
253 * save an inline instruction by defining it this
254 * way, instead of simply "!pmd_none".
255 */
256static inline int pmd_present(pmd_t pmd)
257{
258 return pmd_val(pmd) != (unsigned long)_NULL_PMD;
259}
260
261/**
262 * pmd_bad - check if a PMD entry is "bad". That might mean swapped out.
263 * As we have no known cause of badness, it's null, as it is for many
264 * architectures.
265 */
266static inline int pmd_bad(pmd_t pmd)
267{
268 return 0;
269}
270
271/*
272 * pmd_page - converts a PMD entry to a page pointer
273 */
274#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
275#define pmd_pgtable(pmd) pmd_page(pmd)
276
277/**
278 * pte_none - check if pte is mapped
279 * @pte: pte_t entry
280 */
281static inline int pte_none(pte_t pte)
282{
283 return pte_val(pte) == _NULL_PTE;
284};
285
286/*
287 * pte_present - check if page is present
288 */
289static inline int pte_present(pte_t pte)
290{
291 return pte_val(pte) & _PAGE_PRESENT;
292}
293
294/* mk_pte - make a PTE out of a page pointer and protection bits */
295#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
296
297/* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */
298#define pte_page(x) pfn_to_page(pte_pfn(x))
299
300/* pte_mkold - mark PTE as not recently accessed */
301static inline pte_t pte_mkold(pte_t pte)
302{
303 pte_val(pte) &= ~_PAGE_ACCESSED;
304 return pte;
305}
306
307/* pte_mkyoung - mark PTE as recently accessed */
308static inline pte_t pte_mkyoung(pte_t pte)
309{
310 pte_val(pte) |= _PAGE_ACCESSED;
311 return pte;
312}
313
314/* pte_mkclean - mark page as in sync with backing store */
315static inline pte_t pte_mkclean(pte_t pte)
316{
317 pte_val(pte) &= ~_PAGE_DIRTY;
318 return pte;
319}
320
321/* pte_mkdirty - mark page as modified */
322static inline pte_t pte_mkdirty(pte_t pte)
323{
324 pte_val(pte) |= _PAGE_DIRTY;
325 return pte;
326}
327
328/* pte_young - "is PTE marked as accessed"? */
329static inline int pte_young(pte_t pte)
330{
331 return pte_val(pte) & _PAGE_ACCESSED;
332}
333
334/* pte_dirty - "is PTE dirty?" */
335static inline int pte_dirty(pte_t pte)
336{
337 return pte_val(pte) & _PAGE_DIRTY;
338}
339
340/* pte_modify - set protection bits on PTE */
341static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
342{
343 pte_val(pte) &= PAGE_MASK;
344 pte_val(pte) |= pgprot_val(prot);
345 return pte;
346}
347
348/* pte_wrprotect - mark page as not writable */
349static inline pte_t pte_wrprotect(pte_t pte)
350{
351 pte_val(pte) &= ~_PAGE_WRITE;
352 return pte;
353}
354
355/* pte_mkwrite - mark page as writable */
356static inline pte_t pte_mkwrite(pte_t pte)
357{
358 pte_val(pte) |= _PAGE_WRITE;
359 return pte;
360}
361
362/* pte_mkexec - mark PTE as executable */
363static inline pte_t pte_mkexec(pte_t pte)
364{
365 pte_val(pte) |= _PAGE_EXECUTE;
366 return pte;
367}
368
369/* pte_read - "is PTE marked as readable?" */
370static inline int pte_read(pte_t pte)
371{
372 return pte_val(pte) & _PAGE_READ;
373}
374
375/* pte_write - "is PTE marked as writable?" */
376static inline int pte_write(pte_t pte)
377{
378 return pte_val(pte) & _PAGE_WRITE;
379}
380
381
382/* pte_exec - "is PTE marked as executable?" */
383static inline int pte_exec(pte_t pte)
384{
385 return pte_val(pte) & _PAGE_EXECUTE;
386}
387
388/* __pte_to_swp_entry - extract swap entry from PTE */
389#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
390
391/* __swp_entry_to_pte - extract PTE from swap entry */
392#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
393
394/* pfn_pte - convert page number and protection value to page table entry */
395#define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot))
396
397/* pte_pfn - convert pte to page frame number */
398#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
399#define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval))
400
401/*
402 * set_pte_at - update page table and do whatever magic may be
403 * necessary to make the underlying hardware/firmware take note.
404 *
405 * VM may require a virtual instruction to alert the MMU.
406 */
407#define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte)
408
409/*
410 * May need to invoke the virtual machine as well...
411 */
412#define pte_unmap(pte) do { } while (0)
413#define pte_unmap_nested(pte) do { } while (0)
414
415/*
416 * pte_offset_map - returns the linear address of the page table entry
417 * corresponding to an address
418 */
419#define pte_offset_map(dir, address) \
420 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
421
422#define pte_offset_map_nested(pmd, addr) pte_offset_map(pmd, addr)
423
424/* pte_offset_kernel - kernel version of pte_offset */
425#define pte_offset_kernel(dir, address) \
426 ((pte_t *) (unsigned long) __va(pmd_val(*dir) & PAGE_MASK) \
427 + __pte_offset(address))
428
429/* ZERO_PAGE - returns the globally shared zero page */
430#define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page))
431
432#define __pte_offset(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
433
a7e79840
RK
434/* I think this is in case we have page table caches; needed by init/main.c */
435#define pgtable_cache_init() do { } while (0)
436
437/*
d99f95e6
KS
438 * Swap/file PTE definitions. If _PAGE_PRESENT is zero, the rest of the PTE is
439 * interpreted as swap information. The remaining free bits are interpreted as
440 * swap type/offset tuple. Rather than have the TLB fill handler test
441 * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to
442 * all zeros for swap entries, which speeds up the miss handler at the cost of
443 * 3 bits of offset. That trade-off can be revisited if necessary, but Hexagon
444 * processor architecture and target applications suggest a lot of TLB misses
445 * and not much swap space.
a7e79840
RK
446 *
447 * Format of swap PTE:
448 * bit 0: Present (zero)
d99f95e6
KS
449 * bits 1-5: swap type (arch independent layer uses 5 bits max)
450 * bits 6-9: bits 3:0 of offset
451 * bits 10-12: effectively _PAGE_PROTNONE (all zero)
452 * bits 13-31: bits 22:4 of swap offset
a7e79840
RK
453 *
454 * The split offset makes some of the following macros a little gnarly,
455 * but there's plenty of precedent for this sort of thing.
456 */
a7e79840
RK
457
458/* Used for swap PTEs */
d99f95e6 459#define __swp_type(swp_pte) (((swp_pte).val >> 1) & 0x1f)
a7e79840
RK
460
461#define __swp_offset(swp_pte) \
d99f95e6 462 ((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0))
a7e79840
RK
463
464#define __swp_entry(type, offset) \
465 ((swp_entry_t) { \
d99f95e6
KS
466 ((type << 1) | \
467 ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) })
a7e79840
RK
468
469/* Oh boy. There are a lot of possible arch overrides found in this file. */
470#include <asm-generic/pgtable.h>
471
472#endif