]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/i386/kernel/kprobes.c
[PATCH] x86_64 specific function return probes
[mirror_ubuntu-artful-kernel.git] / arch / i386 / kernel / kprobes.c
CommitLineData
1da177e4
LT
1/*
2 * Kernel Probes (KProbes)
3 * arch/i386/kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
23 * Rusty Russell).
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
b94cce92
HN
26 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
27 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
28 * <prasanna@in.ibm.com> added function-return probes.
1da177e4
LT
29 */
30
31#include <linux/config.h>
32#include <linux/kprobes.h>
33#include <linux/ptrace.h>
34#include <linux/spinlock.h>
35#include <linux/preempt.h>
36#include <asm/kdebug.h>
37#include <asm/desc.h>
38
39/* kprobe_status settings */
40#define KPROBE_HIT_ACTIVE 0x00000001
41#define KPROBE_HIT_SS 0x00000002
42
43static struct kprobe *current_kprobe;
44static unsigned long kprobe_status, kprobe_old_eflags, kprobe_saved_eflags;
45static struct pt_regs jprobe_saved_regs;
46static long *jprobe_saved_esp;
47/* copy of the kernel stack at the probe fire time */
48static kprobe_opcode_t jprobes_stack[MAX_STACK_SIZE];
49void jprobe_return_end(void);
50
51/*
52 * returns non-zero if opcode modifies the interrupt flag.
53 */
54static inline int is_IF_modifier(kprobe_opcode_t opcode)
55{
56 switch (opcode) {
57 case 0xfa: /* cli */
58 case 0xfb: /* sti */
59 case 0xcf: /* iret/iretd */
60 case 0x9d: /* popf/popfd */
61 return 1;
62 }
63 return 0;
64}
65
66int arch_prepare_kprobe(struct kprobe *p)
67{
68 return 0;
69}
70
71void arch_copy_kprobe(struct kprobe *p)
72{
73 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
74}
75
76void arch_remove_kprobe(struct kprobe *p)
77{
78}
79
80static inline void disarm_kprobe(struct kprobe *p, struct pt_regs *regs)
81{
82 *p->addr = p->opcode;
83 regs->eip = (unsigned long)p->addr;
84}
85
86static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
87{
88 regs->eflags |= TF_MASK;
89 regs->eflags &= ~IF_MASK;
90 /*single step inline if the instruction is an int3*/
91 if (p->opcode == BREAKPOINT_INSTRUCTION)
92 regs->eip = (unsigned long)p->addr;
93 else
94 regs->eip = (unsigned long)&p->ainsn.insn;
95}
96
b94cce92
HN
97struct task_struct *arch_get_kprobe_task(void *ptr)
98{
99 return ((struct thread_info *) (((unsigned long) ptr) &
100 (~(THREAD_SIZE -1))))->task;
101}
102
103void arch_prepare_kretprobe(struct kretprobe *rp, struct pt_regs *regs)
104{
105 unsigned long *sara = (unsigned long *)&regs->esp;
106 struct kretprobe_instance *ri;
107 static void *orig_ret_addr;
108
109 /*
110 * Save the return address when the return probe hits
111 * the first time, and use it to populate the (krprobe
112 * instance)->ret_addr for subsequent return probes at
113 * the same addrress since stack address would have
114 * the kretprobe_trampoline by then.
115 */
116 if (((void*) *sara) != kretprobe_trampoline)
117 orig_ret_addr = (void*) *sara;
118
119 if ((ri = get_free_rp_inst(rp)) != NULL) {
120 ri->rp = rp;
121 ri->stack_addr = sara;
122 ri->ret_addr = orig_ret_addr;
123 add_rp_inst(ri);
124 /* Replace the return addr with trampoline addr */
125 *sara = (unsigned long) &kretprobe_trampoline;
126 } else {
127 rp->nmissed++;
128 }
129}
130
131void arch_kprobe_flush_task(struct task_struct *tk, spinlock_t *kp_lock)
132{
133 unsigned long flags = 0;
134 struct kretprobe_instance *ri;
135 spin_lock_irqsave(kp_lock, flags);
136 while ((ri = get_rp_inst_tsk(tk)) != NULL) {
137 *((unsigned long *)(ri->stack_addr)) =
138 (unsigned long) ri->ret_addr;
139 recycle_rp_inst(ri);
140 }
141 spin_unlock_irqrestore(kp_lock, flags);
142}
143
1da177e4
LT
144/*
145 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
146 * remain disabled thorough out this function.
147 */
148static int kprobe_handler(struct pt_regs *regs)
149{
150 struct kprobe *p;
151 int ret = 0;
152 kprobe_opcode_t *addr = NULL;
153 unsigned long *lp;
154
155 /* We're in an interrupt, but this is clear and BUG()-safe. */
156 preempt_disable();
157 /* Check if the application is using LDT entry for its code segment and
158 * calculate the address by reading the base address from the LDT entry.
159 */
160 if ((regs->xcs & 4) && (current->mm)) {
161 lp = (unsigned long *) ((unsigned long)((regs->xcs >> 3) * 8)
162 + (char *) current->mm->context.ldt);
163 addr = (kprobe_opcode_t *) (get_desc_base(lp) + regs->eip -
164 sizeof(kprobe_opcode_t));
165 } else {
166 addr = (kprobe_opcode_t *)(regs->eip - sizeof(kprobe_opcode_t));
167 }
168 /* Check we're not actually recursing */
169 if (kprobe_running()) {
170 /* We *are* holding lock here, so this is safe.
171 Disarm the probe we just hit, and ignore it. */
172 p = get_kprobe(addr);
173 if (p) {
174 if (kprobe_status == KPROBE_HIT_SS) {
175 regs->eflags &= ~TF_MASK;
176 regs->eflags |= kprobe_saved_eflags;
177 unlock_kprobes();
178 goto no_kprobe;
179 }
180 disarm_kprobe(p, regs);
181 ret = 1;
182 } else {
183 p = current_kprobe;
184 if (p->break_handler && p->break_handler(p, regs)) {
185 goto ss_probe;
186 }
187 }
188 /* If it's not ours, can't be delete race, (we hold lock). */
189 goto no_kprobe;
190 }
191
192 lock_kprobes();
193 p = get_kprobe(addr);
194 if (!p) {
195 unlock_kprobes();
196 if (regs->eflags & VM_MASK) {
197 /* We are in virtual-8086 mode. Return 0 */
198 goto no_kprobe;
199 }
200
201 if (*addr != BREAKPOINT_INSTRUCTION) {
202 /*
203 * The breakpoint instruction was removed right
204 * after we hit it. Another cpu has removed
205 * either a probepoint or a debugger breakpoint
206 * at this address. In either case, no further
207 * handling of this interrupt is appropriate.
208 */
209 ret = 1;
210 }
211 /* Not one of ours: let kernel handle it */
212 goto no_kprobe;
213 }
214
215 kprobe_status = KPROBE_HIT_ACTIVE;
216 current_kprobe = p;
217 kprobe_saved_eflags = kprobe_old_eflags
218 = (regs->eflags & (TF_MASK | IF_MASK));
219 if (is_IF_modifier(p->opcode))
220 kprobe_saved_eflags &= ~IF_MASK;
221
222 if (p->pre_handler && p->pre_handler(p, regs))
223 /* handler has already set things up, so skip ss setup */
224 return 1;
225
226ss_probe:
227 prepare_singlestep(p, regs);
228 kprobe_status = KPROBE_HIT_SS;
229 return 1;
230
231no_kprobe:
232 preempt_enable_no_resched();
233 return ret;
234}
235
b94cce92
HN
236/*
237 * For function-return probes, init_kprobes() establishes a probepoint
238 * here. When a retprobed function returns, this probe is hit and
239 * trampoline_probe_handler() runs, calling the kretprobe's handler.
240 */
241 void kretprobe_trampoline_holder(void)
242 {
243 asm volatile ( ".global kretprobe_trampoline\n"
244 "kretprobe_trampoline: \n"
245 "nop\n");
246 }
247
248/*
249 * Called when we hit the probe point at kretprobe_trampoline
250 */
251int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
252{
253 struct task_struct *tsk;
254 struct kretprobe_instance *ri;
255 struct hlist_head *head;
256 struct hlist_node *node;
257 unsigned long *sara = ((unsigned long *) &regs->esp) - 1;
258
259 tsk = arch_get_kprobe_task(sara);
260 head = kretprobe_inst_table_head(tsk);
261
262 hlist_for_each_entry(ri, node, head, hlist) {
263 if (ri->stack_addr == sara && ri->rp) {
264 if (ri->rp->handler)
265 ri->rp->handler(ri, regs);
266 }
267 }
268 return 0;
269}
270
271void trampoline_post_handler(struct kprobe *p, struct pt_regs *regs,
272 unsigned long flags)
273{
274 struct kretprobe_instance *ri;
275 /* RA already popped */
276 unsigned long *sara = ((unsigned long *)&regs->esp) - 1;
277
278 while ((ri = get_rp_inst(sara))) {
279 regs->eip = (unsigned long)ri->ret_addr;
280 recycle_rp_inst(ri);
281 }
282 regs->eflags &= ~TF_MASK;
283}
284
1da177e4
LT
285/*
286 * Called after single-stepping. p->addr is the address of the
287 * instruction whose first byte has been replaced by the "int 3"
288 * instruction. To avoid the SMP problems that can occur when we
289 * temporarily put back the original opcode to single-step, we
290 * single-stepped a copy of the instruction. The address of this
291 * copy is p->ainsn.insn.
292 *
293 * This function prepares to return from the post-single-step
294 * interrupt. We have to fix up the stack as follows:
295 *
296 * 0) Except in the case of absolute or indirect jump or call instructions,
297 * the new eip is relative to the copied instruction. We need to make
298 * it relative to the original instruction.
299 *
300 * 1) If the single-stepped instruction was pushfl, then the TF and IF
301 * flags are set in the just-pushed eflags, and may need to be cleared.
302 *
303 * 2) If the single-stepped instruction was a call, the return address
304 * that is atop the stack is the address following the copied instruction.
305 * We need to make it the address following the original instruction.
306 */
307static void resume_execution(struct kprobe *p, struct pt_regs *regs)
308{
309 unsigned long *tos = (unsigned long *)&regs->esp;
310 unsigned long next_eip = 0;
311 unsigned long copy_eip = (unsigned long)&p->ainsn.insn;
312 unsigned long orig_eip = (unsigned long)p->addr;
313
314 switch (p->ainsn.insn[0]) {
315 case 0x9c: /* pushfl */
316 *tos &= ~(TF_MASK | IF_MASK);
317 *tos |= kprobe_old_eflags;
318 break;
0b9e2cac
PP
319 case 0xc3: /* ret/lret */
320 case 0xcb:
321 case 0xc2:
322 case 0xca:
323 regs->eflags &= ~TF_MASK;
324 /* eip is already adjusted, no more changes required*/
325 return;
1da177e4
LT
326 case 0xe8: /* call relative - Fix return addr */
327 *tos = orig_eip + (*tos - copy_eip);
328 break;
329 case 0xff:
330 if ((p->ainsn.insn[1] & 0x30) == 0x10) {
331 /* call absolute, indirect */
332 /* Fix return addr; eip is correct. */
333 next_eip = regs->eip;
334 *tos = orig_eip + (*tos - copy_eip);
335 } else if (((p->ainsn.insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
336 ((p->ainsn.insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
337 /* eip is correct. */
338 next_eip = regs->eip;
339 }
340 break;
341 case 0xea: /* jmp absolute -- eip is correct */
342 next_eip = regs->eip;
343 break;
344 default:
345 break;
346 }
347
348 regs->eflags &= ~TF_MASK;
349 if (next_eip) {
350 regs->eip = next_eip;
351 } else {
352 regs->eip = orig_eip + (regs->eip - copy_eip);
353 }
354}
355
356/*
357 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
358 * remain disabled thoroughout this function. And we hold kprobe lock.
359 */
360static inline int post_kprobe_handler(struct pt_regs *regs)
361{
362 if (!kprobe_running())
363 return 0;
364
365 if (current_kprobe->post_handler)
366 current_kprobe->post_handler(current_kprobe, regs, 0);
367
b94cce92
HN
368 if (current_kprobe->post_handler != trampoline_post_handler)
369 resume_execution(current_kprobe, regs);
1da177e4
LT
370 regs->eflags |= kprobe_saved_eflags;
371
372 unlock_kprobes();
373 preempt_enable_no_resched();
374
375 /*
376 * if somebody else is singlestepping across a probe point, eflags
377 * will have TF set, in which case, continue the remaining processing
378 * of do_debug, as if this is not a probe hit.
379 */
380 if (regs->eflags & TF_MASK)
381 return 0;
382
383 return 1;
384}
385
386/* Interrupts disabled, kprobe_lock held. */
387static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
388{
389 if (current_kprobe->fault_handler
390 && current_kprobe->fault_handler(current_kprobe, regs, trapnr))
391 return 1;
392
393 if (kprobe_status & KPROBE_HIT_SS) {
394 resume_execution(current_kprobe, regs);
395 regs->eflags |= kprobe_old_eflags;
396
397 unlock_kprobes();
398 preempt_enable_no_resched();
399 }
400 return 0;
401}
402
403/*
404 * Wrapper routine to for handling exceptions.
405 */
406int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
407 void *data)
408{
409 struct die_args *args = (struct die_args *)data;
410 switch (val) {
411 case DIE_INT3:
412 if (kprobe_handler(args->regs))
413 return NOTIFY_STOP;
414 break;
415 case DIE_DEBUG:
416 if (post_kprobe_handler(args->regs))
417 return NOTIFY_STOP;
418 break;
419 case DIE_GPF:
420 if (kprobe_running() &&
421 kprobe_fault_handler(args->regs, args->trapnr))
422 return NOTIFY_STOP;
423 break;
424 case DIE_PAGE_FAULT:
425 if (kprobe_running() &&
426 kprobe_fault_handler(args->regs, args->trapnr))
427 return NOTIFY_STOP;
428 break;
429 default:
430 break;
431 }
432 return NOTIFY_DONE;
433}
434
435int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
436{
437 struct jprobe *jp = container_of(p, struct jprobe, kp);
438 unsigned long addr;
439
440 jprobe_saved_regs = *regs;
441 jprobe_saved_esp = &regs->esp;
442 addr = (unsigned long)jprobe_saved_esp;
443
444 /*
445 * TBD: As Linus pointed out, gcc assumes that the callee
446 * owns the argument space and could overwrite it, e.g.
447 * tailcall optimization. So, to be absolutely safe
448 * we also save and restore enough stack bytes to cover
449 * the argument area.
450 */
451 memcpy(jprobes_stack, (kprobe_opcode_t *) addr, MIN_STACK_SIZE(addr));
452 regs->eflags &= ~IF_MASK;
453 regs->eip = (unsigned long)(jp->entry);
454 return 1;
455}
456
457void jprobe_return(void)
458{
459 preempt_enable_no_resched();
460 asm volatile (" xchgl %%ebx,%%esp \n"
461 " int3 \n"
462 " .globl jprobe_return_end \n"
463 " jprobe_return_end: \n"
464 " nop \n"::"b"
465 (jprobe_saved_esp):"memory");
466}
467
468int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
469{
470 u8 *addr = (u8 *) (regs->eip - 1);
471 unsigned long stack_addr = (unsigned long)jprobe_saved_esp;
472 struct jprobe *jp = container_of(p, struct jprobe, kp);
473
474 if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
475 if (&regs->esp != jprobe_saved_esp) {
476 struct pt_regs *saved_regs =
477 container_of(jprobe_saved_esp, struct pt_regs, esp);
478 printk("current esp %p does not match saved esp %p\n",
479 &regs->esp, jprobe_saved_esp);
480 printk("Saved registers for jprobe %p\n", jp);
481 show_registers(saved_regs);
482 printk("Current registers\n");
483 show_registers(regs);
484 BUG();
485 }
486 *regs = jprobe_saved_regs;
487 memcpy((kprobe_opcode_t *) stack_addr, jprobes_stack,
488 MIN_STACK_SIZE(stack_addr));
489 return 1;
490 }
491 return 0;
492}