]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/i386/kernel/smp.c
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
[mirror_ubuntu-bionic-kernel.git] / arch / i386 / kernel / smp.c
CommitLineData
1da177e4
LT
1/*
2 * Intel SMP support routines.
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
6 *
7 * This code is released under the GNU General Public License version 2 or
8 * later.
9 */
10
11#include <linux/init.h>
12
13#include <linux/mm.h>
1da177e4
LT
14#include <linux/delay.h>
15#include <linux/spinlock.h>
16#include <linux/smp_lock.h>
17#include <linux/kernel_stat.h>
18#include <linux/mc146818rtc.h>
19#include <linux/cache.h>
20#include <linux/interrupt.h>
f3705136 21#include <linux/cpu.h>
129f6946 22#include <linux/module.h>
1da177e4
LT
23
24#include <asm/mtrr.h>
25#include <asm/tlbflush.h>
26#include <mach_apic.h>
27
28/*
29 * Some notes on x86 processor bugs affecting SMP operation:
30 *
31 * Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
32 * The Linux implications for SMP are handled as follows:
33 *
34 * Pentium III / [Xeon]
35 * None of the E1AP-E3AP errata are visible to the user.
36 *
37 * E1AP. see PII A1AP
38 * E2AP. see PII A2AP
39 * E3AP. see PII A3AP
40 *
41 * Pentium II / [Xeon]
42 * None of the A1AP-A3AP errata are visible to the user.
43 *
44 * A1AP. see PPro 1AP
45 * A2AP. see PPro 2AP
46 * A3AP. see PPro 7AP
47 *
48 * Pentium Pro
49 * None of 1AP-9AP errata are visible to the normal user,
50 * except occasional delivery of 'spurious interrupt' as trap #15.
51 * This is very rare and a non-problem.
52 *
53 * 1AP. Linux maps APIC as non-cacheable
54 * 2AP. worked around in hardware
55 * 3AP. fixed in C0 and above steppings microcode update.
56 * Linux does not use excessive STARTUP_IPIs.
57 * 4AP. worked around in hardware
58 * 5AP. symmetric IO mode (normal Linux operation) not affected.
59 * 'noapic' mode has vector 0xf filled out properly.
60 * 6AP. 'noapic' mode might be affected - fixed in later steppings
61 * 7AP. We do not assume writes to the LVT deassering IRQs
62 * 8AP. We do not enable low power mode (deep sleep) during MP bootup
63 * 9AP. We do not use mixed mode
64 *
65 * Pentium
66 * There is a marginal case where REP MOVS on 100MHz SMP
67 * machines with B stepping processors can fail. XXX should provide
68 * an L1cache=Writethrough or L1cache=off option.
69 *
70 * B stepping CPUs may hang. There are hardware work arounds
71 * for this. We warn about it in case your board doesn't have the work
72 * arounds. Basically thats so I can tell anyone with a B stepping
73 * CPU and SMP problems "tough".
74 *
75 * Specific items [From Pentium Processor Specification Update]
76 *
77 * 1AP. Linux doesn't use remote read
78 * 2AP. Linux doesn't trust APIC errors
79 * 3AP. We work around this
80 * 4AP. Linux never generated 3 interrupts of the same priority
81 * to cause a lost local interrupt.
82 * 5AP. Remote read is never used
83 * 6AP. not affected - worked around in hardware
84 * 7AP. not affected - worked around in hardware
85 * 8AP. worked around in hardware - we get explicit CS errors if not
86 * 9AP. only 'noapic' mode affected. Might generate spurious
87 * interrupts, we log only the first one and count the
88 * rest silently.
89 * 10AP. not affected - worked around in hardware
90 * 11AP. Linux reads the APIC between writes to avoid this, as per
91 * the documentation. Make sure you preserve this as it affects
92 * the C stepping chips too.
93 * 12AP. not affected - worked around in hardware
94 * 13AP. not affected - worked around in hardware
95 * 14AP. we always deassert INIT during bootup
96 * 15AP. not affected - worked around in hardware
97 * 16AP. not affected - worked around in hardware
98 * 17AP. not affected - worked around in hardware
99 * 18AP. not affected - worked around in hardware
100 * 19AP. not affected - worked around in BIOS
101 *
102 * If this sounds worrying believe me these bugs are either ___RARE___,
103 * or are signal timing bugs worked around in hardware and there's
104 * about nothing of note with C stepping upwards.
105 */
106
107DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0, };
108
109/*
110 * the following functions deal with sending IPIs between CPUs.
111 *
112 * We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
113 */
114
115static inline int __prepare_ICR (unsigned int shortcut, int vector)
116{
45486f81
KO
117 unsigned int icr = shortcut | APIC_DEST_LOGICAL;
118
119 switch (vector) {
120 default:
121 icr |= APIC_DM_FIXED | vector;
122 break;
123 case NMI_VECTOR:
124 icr |= APIC_DM_NMI;
125 break;
126 }
127 return icr;
1da177e4
LT
128}
129
130static inline int __prepare_ICR2 (unsigned int mask)
131{
132 return SET_APIC_DEST_FIELD(mask);
133}
134
135void __send_IPI_shortcut(unsigned int shortcut, int vector)
136{
137 /*
138 * Subtle. In the case of the 'never do double writes' workaround
139 * we have to lock out interrupts to be safe. As we don't care
140 * of the value read we use an atomic rmw access to avoid costly
141 * cli/sti. Otherwise we use an even cheaper single atomic write
142 * to the APIC.
143 */
144 unsigned int cfg;
145
146 /*
147 * Wait for idle.
148 */
149 apic_wait_icr_idle();
150
151 /*
152 * No need to touch the target chip field
153 */
154 cfg = __prepare_ICR(shortcut, vector);
155
156 /*
157 * Send the IPI. The write to APIC_ICR fires this off.
158 */
159 apic_write_around(APIC_ICR, cfg);
160}
161
162void fastcall send_IPI_self(int vector)
163{
164 __send_IPI_shortcut(APIC_DEST_SELF, vector);
165}
166
167/*
168 * This is only used on smaller machines.
169 */
170void send_IPI_mask_bitmask(cpumask_t cpumask, int vector)
171{
172 unsigned long mask = cpus_addr(cpumask)[0];
173 unsigned long cfg;
174 unsigned long flags;
175
176 local_irq_save(flags);
f3705136 177 WARN_ON(mask & ~cpus_addr(cpu_online_map)[0]);
1da177e4
LT
178 /*
179 * Wait for idle.
180 */
181 apic_wait_icr_idle();
182
183 /*
184 * prepare target chip field
185 */
186 cfg = __prepare_ICR2(mask);
187 apic_write_around(APIC_ICR2, cfg);
188
189 /*
190 * program the ICR
191 */
192 cfg = __prepare_ICR(0, vector);
193
194 /*
195 * Send the IPI. The write to APIC_ICR fires this off.
196 */
197 apic_write_around(APIC_ICR, cfg);
198
199 local_irq_restore(flags);
200}
201
202void send_IPI_mask_sequence(cpumask_t mask, int vector)
203{
204 unsigned long cfg, flags;
205 unsigned int query_cpu;
206
207 /*
208 * Hack. The clustered APIC addressing mode doesn't allow us to send
209 * to an arbitrary mask, so I do a unicasts to each CPU instead. This
210 * should be modified to do 1 message per cluster ID - mbligh
211 */
212
213 local_irq_save(flags);
214
215 for (query_cpu = 0; query_cpu < NR_CPUS; ++query_cpu) {
216 if (cpu_isset(query_cpu, mask)) {
217
218 /*
219 * Wait for idle.
220 */
221 apic_wait_icr_idle();
222
223 /*
224 * prepare target chip field
225 */
226 cfg = __prepare_ICR2(cpu_to_logical_apicid(query_cpu));
227 apic_write_around(APIC_ICR2, cfg);
228
229 /*
230 * program the ICR
231 */
232 cfg = __prepare_ICR(0, vector);
233
234 /*
235 * Send the IPI. The write to APIC_ICR fires this off.
236 */
237 apic_write_around(APIC_ICR, cfg);
238 }
239 }
240 local_irq_restore(flags);
241}
242
243#include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */
244
245/*
246 * Smarter SMP flushing macros.
247 * c/o Linus Torvalds.
248 *
249 * These mean you can really definitely utterly forget about
250 * writing to user space from interrupts. (Its not allowed anyway).
251 *
252 * Optimizations Manfred Spraul <manfred@colorfullife.com>
253 */
254
255static cpumask_t flush_cpumask;
256static struct mm_struct * flush_mm;
257static unsigned long flush_va;
258static DEFINE_SPINLOCK(tlbstate_lock);
259#define FLUSH_ALL 0xffffffff
260
261/*
262 * We cannot call mmdrop() because we are in interrupt context,
263 * instead update mm->cpu_vm_mask.
264 *
265 * We need to reload %cr3 since the page tables may be going
266 * away from under us..
267 */
268static inline void leave_mm (unsigned long cpu)
269{
270 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
271 BUG();
272 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
273 load_cr3(swapper_pg_dir);
274}
275
276/*
277 *
278 * The flush IPI assumes that a thread switch happens in this order:
279 * [cpu0: the cpu that switches]
280 * 1) switch_mm() either 1a) or 1b)
281 * 1a) thread switch to a different mm
282 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
283 * Stop ipi delivery for the old mm. This is not synchronized with
284 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
285 * for the wrong mm, and in the worst case we perform a superflous
286 * tlb flush.
287 * 1a2) set cpu_tlbstate to TLBSTATE_OK
288 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
289 * was in lazy tlb mode.
290 * 1a3) update cpu_tlbstate[].active_mm
291 * Now cpu0 accepts tlb flushes for the new mm.
292 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
293 * Now the other cpus will send tlb flush ipis.
294 * 1a4) change cr3.
295 * 1b) thread switch without mm change
296 * cpu_tlbstate[].active_mm is correct, cpu0 already handles
297 * flush ipis.
298 * 1b1) set cpu_tlbstate to TLBSTATE_OK
299 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
300 * Atomically set the bit [other cpus will start sending flush ipis],
301 * and test the bit.
302 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
303 * 2) switch %%esp, ie current
304 *
305 * The interrupt must handle 2 special cases:
306 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
307 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
308 * runs in kernel space, the cpu could load tlb entries for user space
309 * pages.
310 *
311 * The good news is that cpu_tlbstate is local to each cpu, no
312 * write/read ordering problems.
313 */
314
315/*
316 * TLB flush IPI:
317 *
318 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
319 * 2) Leave the mm if we are in the lazy tlb mode.
320 */
321
322fastcall void smp_invalidate_interrupt(struct pt_regs *regs)
323{
7d12e780 324 struct pt_regs *old_regs = set_irq_regs(regs);
1da177e4
LT
325 unsigned long cpu;
326
327 cpu = get_cpu();
328
329 if (!cpu_isset(cpu, flush_cpumask))
330 goto out;
331 /*
332 * This was a BUG() but until someone can quote me the
333 * line from the intel manual that guarantees an IPI to
334 * multiple CPUs is retried _only_ on the erroring CPUs
335 * its staying as a return
336 *
337 * BUG();
338 */
339
340 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
341 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
342 if (flush_va == FLUSH_ALL)
343 local_flush_tlb();
344 else
345 __flush_tlb_one(flush_va);
346 } else
347 leave_mm(cpu);
348 }
349 ack_APIC_irq();
350 smp_mb__before_clear_bit();
351 cpu_clear(cpu, flush_cpumask);
352 smp_mb__after_clear_bit();
353out:
354 put_cpu_no_resched();
7d12e780 355 set_irq_regs(old_regs);
1da177e4
LT
356}
357
358static void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm,
359 unsigned long va)
360{
1da177e4
LT
361 /*
362 * A couple of (to be removed) sanity checks:
363 *
1da177e4
LT
364 * - current CPU must not be in mask
365 * - mask must exist :)
366 */
367 BUG_ON(cpus_empty(cpumask));
1da177e4
LT
368 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
369 BUG_ON(!mm);
370
f3705136
ZM
371 /* If a CPU which we ran on has gone down, OK. */
372 cpus_and(cpumask, cpumask, cpu_online_map);
373 if (cpus_empty(cpumask))
374 return;
375
1da177e4
LT
376 /*
377 * i'm not happy about this global shared spinlock in the
378 * MM hot path, but we'll see how contended it is.
379 * Temporarily this turns IRQs off, so that lockups are
380 * detected by the NMI watchdog.
381 */
382 spin_lock(&tlbstate_lock);
383
384 flush_mm = mm;
385 flush_va = va;
386#if NR_CPUS <= BITS_PER_LONG
387 atomic_set_mask(cpumask, &flush_cpumask);
388#else
389 {
390 int k;
391 unsigned long *flush_mask = (unsigned long *)&flush_cpumask;
392 unsigned long *cpu_mask = (unsigned long *)&cpumask;
393 for (k = 0; k < BITS_TO_LONGS(NR_CPUS); ++k)
394 atomic_set_mask(cpu_mask[k], &flush_mask[k]);
395 }
396#endif
397 /*
398 * We have to send the IPI only to
399 * CPUs affected.
400 */
401 send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);
402
403 while (!cpus_empty(flush_cpumask))
404 /* nothing. lockup detection does not belong here */
405 mb();
406
407 flush_mm = NULL;
408 flush_va = 0;
409 spin_unlock(&tlbstate_lock);
410}
411
412void flush_tlb_current_task(void)
413{
414 struct mm_struct *mm = current->mm;
415 cpumask_t cpu_mask;
416
417 preempt_disable();
418 cpu_mask = mm->cpu_vm_mask;
419 cpu_clear(smp_processor_id(), cpu_mask);
420
421 local_flush_tlb();
422 if (!cpus_empty(cpu_mask))
423 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
424 preempt_enable();
425}
426
427void flush_tlb_mm (struct mm_struct * mm)
428{
429 cpumask_t cpu_mask;
430
431 preempt_disable();
432 cpu_mask = mm->cpu_vm_mask;
433 cpu_clear(smp_processor_id(), cpu_mask);
434
435 if (current->active_mm == mm) {
436 if (current->mm)
437 local_flush_tlb();
438 else
439 leave_mm(smp_processor_id());
440 }
441 if (!cpus_empty(cpu_mask))
442 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
443
444 preempt_enable();
445}
446
447void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
448{
449 struct mm_struct *mm = vma->vm_mm;
450 cpumask_t cpu_mask;
451
452 preempt_disable();
453 cpu_mask = mm->cpu_vm_mask;
454 cpu_clear(smp_processor_id(), cpu_mask);
455
456 if (current->active_mm == mm) {
457 if(current->mm)
458 __flush_tlb_one(va);
459 else
460 leave_mm(smp_processor_id());
461 }
462
463 if (!cpus_empty(cpu_mask))
464 flush_tlb_others(cpu_mask, mm, va);
465
466 preempt_enable();
467}
129f6946 468EXPORT_SYMBOL(flush_tlb_page);
1da177e4
LT
469
470static void do_flush_tlb_all(void* info)
471{
472 unsigned long cpu = smp_processor_id();
473
474 __flush_tlb_all();
475 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
476 leave_mm(cpu);
477}
478
479void flush_tlb_all(void)
480{
481 on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
482}
483
484/*
485 * this function sends a 'reschedule' IPI to another CPU.
486 * it goes straight through and wastes no time serializing
487 * anything. Worst case is that we lose a reschedule ...
488 */
489void smp_send_reschedule(int cpu)
490{
f3705136 491 WARN_ON(cpu_is_offline(cpu));
1da177e4
LT
492 send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
493}
494
495/*
496 * Structure and data for smp_call_function(). This is designed to minimise
497 * static memory requirements. It also looks cleaner.
498 */
499static DEFINE_SPINLOCK(call_lock);
500
501struct call_data_struct {
502 void (*func) (void *info);
503 void *info;
504 atomic_t started;
505 atomic_t finished;
506 int wait;
507};
508
6fe940d6
LS
509void lock_ipi_call_lock(void)
510{
511 spin_lock_irq(&call_lock);
512}
513
514void unlock_ipi_call_lock(void)
515{
516 spin_unlock_irq(&call_lock);
517}
518
78eef01b
AM
519static struct call_data_struct *call_data;
520
521/**
522 * smp_call_function(): Run a function on all other CPUs.
523 * @func: The function to run. This must be fast and non-blocking.
524 * @info: An arbitrary pointer to pass to the function.
525 * @nonatomic: currently unused.
526 * @wait: If true, wait (atomically) until function has completed on other CPUs.
527 *
528 * Returns 0 on success, else a negative status code. Does not return until
1da177e4
LT
529 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
530 *
531 * You must not call this function with disabled interrupts or from a
532 * hardware interrupt handler or from a bottom half handler.
533 */
78eef01b
AM
534int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
535 int wait)
1da177e4
LT
536{
537 struct call_data_struct data;
f3705136 538 int cpus;
1da177e4 539
f3705136
ZM
540 /* Holding any lock stops cpus from going down. */
541 spin_lock(&call_lock);
542 cpus = num_online_cpus() - 1;
543 if (!cpus) {
544 spin_unlock(&call_lock);
1da177e4 545 return 0;
f3705136 546 }
1da177e4
LT
547
548 /* Can deadlock when called with interrupts disabled */
549 WARN_ON(irqs_disabled());
550
551 data.func = func;
552 data.info = info;
553 atomic_set(&data.started, 0);
554 data.wait = wait;
555 if (wait)
556 atomic_set(&data.finished, 0);
557
1da177e4
LT
558 call_data = &data;
559 mb();
560
561 /* Send a message to all other CPUs and wait for them to respond */
562 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
563
564 /* Wait for response */
565 while (atomic_read(&data.started) != cpus)
566 cpu_relax();
567
568 if (wait)
569 while (atomic_read(&data.finished) != cpus)
570 cpu_relax();
571 spin_unlock(&call_lock);
572
573 return 0;
574}
129f6946 575EXPORT_SYMBOL(smp_call_function);
1da177e4
LT
576
577static void stop_this_cpu (void * dummy)
578{
579 /*
580 * Remove this CPU:
581 */
582 cpu_clear(smp_processor_id(), cpu_online_map);
583 local_irq_disable();
584 disable_local_APIC();
585 if (cpu_data[smp_processor_id()].hlt_works_ok)
4bb0d3ec 586 for(;;) halt();
1da177e4
LT
587 for (;;);
588}
589
590/*
591 * this function calls the 'stop' function on all other CPUs in the system.
592 */
593
594void smp_send_stop(void)
595{
596 smp_call_function(stop_this_cpu, NULL, 1, 0);
597
598 local_irq_disable();
599 disable_local_APIC();
600 local_irq_enable();
601}
602
603/*
604 * Reschedule call back. Nothing to do,
605 * all the work is done automatically when
606 * we return from the interrupt.
607 */
608fastcall void smp_reschedule_interrupt(struct pt_regs *regs)
609{
7d12e780 610 struct pt_regs *old_regs = set_irq_regs(regs);
1da177e4 611 ack_APIC_irq();
7d12e780 612 set_irq_regs(old_regs);
1da177e4
LT
613}
614
615fastcall void smp_call_function_interrupt(struct pt_regs *regs)
616{
7d12e780 617 struct pt_regs *old_regs = set_irq_regs(regs);
1da177e4
LT
618 void (*func) (void *info) = call_data->func;
619 void *info = call_data->info;
620 int wait = call_data->wait;
621
622 ack_APIC_irq();
623 /*
624 * Notify initiating CPU that I've grabbed the data and am
625 * about to execute the function
626 */
627 mb();
628 atomic_inc(&call_data->started);
629 /*
630 * At this point the info structure may be out of scope unless wait==1
631 */
632 irq_enter();
633 (*func)(info);
634 irq_exit();
635
636 if (wait) {
637 mb();
638 atomic_inc(&call_data->finished);
639 }
7d12e780 640 set_irq_regs(old_regs);
1da177e4
LT
641}
642
eaa70773
SE
643/*
644 * this function sends a 'generic call function' IPI to one other CPU
645 * in the system.
646 *
647 * cpu is a standard Linux logical CPU number.
648 */
649static void
650__smp_call_function_single(int cpu, void (*func) (void *info), void *info,
651 int nonatomic, int wait)
652{
653 struct call_data_struct data;
654 int cpus = 1;
655
656 data.func = func;
657 data.info = info;
658 atomic_set(&data.started, 0);
659 data.wait = wait;
660 if (wait)
661 atomic_set(&data.finished, 0);
662
663 call_data = &data;
664 wmb();
665 /* Send a message to all other CPUs and wait for them to respond */
666 send_IPI_mask(cpumask_of_cpu(cpu), CALL_FUNCTION_VECTOR);
667
668 /* Wait for response */
669 while (atomic_read(&data.started) != cpus)
670 cpu_relax();
671
672 if (!wait)
673 return;
674
675 while (atomic_read(&data.finished) != cpus)
676 cpu_relax();
677}
678
679/*
680 * smp_call_function_single - Run a function on another CPU
681 * @func: The function to run. This must be fast and non-blocking.
682 * @info: An arbitrary pointer to pass to the function.
683 * @nonatomic: Currently unused.
684 * @wait: If true, wait until function has completed on other CPUs.
685 *
686 * Retrurns 0 on success, else a negative status code.
687 *
688 * Does not return until the remote CPU is nearly ready to execute <func>
689 * or is or has executed.
690 */
691
a3bc0dbc
AM
692int smp_call_function_single(int cpu, void (*func) (void *info), void *info,
693 int nonatomic, int wait)
eaa70773
SE
694{
695 /* prevent preemption and reschedule on another processor */
696 int me = get_cpu();
697 if (cpu == me) {
698 WARN_ON(1);
699 put_cpu();
700 return -EBUSY;
701 }
702 spin_lock_bh(&call_lock);
703 __smp_call_function_single(cpu, func, info, nonatomic, wait);
704 spin_unlock_bh(&call_lock);
705 put_cpu();
706 return 0;
707}
708EXPORT_SYMBOL(smp_call_function_single);
dc2bc768
FV
709
710static int convert_apicid_to_cpu(int apic_id)
711{
712 int i;
713
714 for (i = 0; i < NR_CPUS; i++) {
715 if (x86_cpu_to_apicid[i] == apic_id)
716 return i;
717 }
718 return -1;
719}
720
721int safe_smp_processor_id(void)
722{
723 int apicid, cpuid;
724
725 if (!boot_cpu_has(X86_FEATURE_APIC))
726 return 0;
727
728 apicid = hard_smp_processor_id();
729 if (apicid == BAD_APICID)
730 return 0;
731
732 cpuid = convert_apicid_to_cpu(apicid);
733
734 return cpuid >= 0 ? cpuid : 0;
735}