]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/i386/kernel/traps.c
[PATCH] lightweight robust futexes updates 2
[mirror_ubuntu-bionic-kernel.git] / arch / i386 / kernel / traps.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/i386/traps.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9
10/*
11 * 'Traps.c' handles hardware traps and faults after we have saved some
12 * state in 'asm.s'.
13 */
14#include <linux/config.h>
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/string.h>
18#include <linux/errno.h>
19#include <linux/timer.h>
20#include <linux/mm.h>
21#include <linux/init.h>
22#include <linux/delay.h>
23#include <linux/spinlock.h>
24#include <linux/interrupt.h>
25#include <linux/highmem.h>
26#include <linux/kallsyms.h>
27#include <linux/ptrace.h>
28#include <linux/utsname.h>
29#include <linux/kprobes.h>
6e274d14 30#include <linux/kexec.h>
1da177e4
LT
31
32#ifdef CONFIG_EISA
33#include <linux/ioport.h>
34#include <linux/eisa.h>
35#endif
36
37#ifdef CONFIG_MCA
38#include <linux/mca.h>
39#endif
40
41#include <asm/processor.h>
42#include <asm/system.h>
43#include <asm/uaccess.h>
44#include <asm/io.h>
45#include <asm/atomic.h>
46#include <asm/debugreg.h>
47#include <asm/desc.h>
48#include <asm/i387.h>
49#include <asm/nmi.h>
50
51#include <asm/smp.h>
52#include <asm/arch_hooks.h>
53#include <asm/kdebug.h>
54
1da177e4
LT
55#include <linux/module.h>
56
57#include "mach_traps.h"
58
59asmlinkage int system_call(void);
60
61struct desc_struct default_ldt[] = { { 0, 0 }, { 0, 0 }, { 0, 0 },
62 { 0, 0 }, { 0, 0 } };
63
64/* Do we ignore FPU interrupts ? */
65char ignore_fpu_irq = 0;
66
67/*
68 * The IDT has to be page-aligned to simplify the Pentium
69 * F0 0F bug workaround.. We have a special link segment
70 * for this.
71 */
72struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, };
73
74asmlinkage void divide_error(void);
75asmlinkage void debug(void);
76asmlinkage void nmi(void);
77asmlinkage void int3(void);
78asmlinkage void overflow(void);
79asmlinkage void bounds(void);
80asmlinkage void invalid_op(void);
81asmlinkage void device_not_available(void);
82asmlinkage void coprocessor_segment_overrun(void);
83asmlinkage void invalid_TSS(void);
84asmlinkage void segment_not_present(void);
85asmlinkage void stack_segment(void);
86asmlinkage void general_protection(void);
87asmlinkage void page_fault(void);
88asmlinkage void coprocessor_error(void);
89asmlinkage void simd_coprocessor_error(void);
90asmlinkage void alignment_check(void);
91asmlinkage void spurious_interrupt_bug(void);
92asmlinkage void machine_check(void);
93
94static int kstack_depth_to_print = 24;
95struct notifier_block *i386die_chain;
96static DEFINE_SPINLOCK(die_notifier_lock);
97
98int register_die_notifier(struct notifier_block *nb)
99{
100 int err = 0;
101 unsigned long flags;
101f12af
JB
102
103 vmalloc_sync_all();
1da177e4
LT
104 spin_lock_irqsave(&die_notifier_lock, flags);
105 err = notifier_chain_register(&i386die_chain, nb);
106 spin_unlock_irqrestore(&die_notifier_lock, flags);
107 return err;
108}
129f6946 109EXPORT_SYMBOL(register_die_notifier);
1da177e4
LT
110
111static inline int valid_stack_ptr(struct thread_info *tinfo, void *p)
112{
113 return p > (void *)tinfo &&
114 p < (void *)tinfo + THREAD_SIZE - 3;
115}
116
4d7d8c82
CE
117/*
118 * Print CONFIG_STACK_BACKTRACE_COLS address/symbol entries per line.
119 */
120static inline int print_addr_and_symbol(unsigned long addr, char *log_lvl,
121 int printed)
7aa89746 122{
4d7d8c82
CE
123 if (!printed)
124 printk(log_lvl);
125
126#if CONFIG_STACK_BACKTRACE_COLS == 1
7aa89746 127 printk(" [<%08lx>] ", addr);
4d7d8c82
CE
128#else
129 printk(" <%08lx> ", addr);
130#endif
7aa89746 131 print_symbol("%s", addr);
4d7d8c82
CE
132
133 printed = (printed + 1) % CONFIG_STACK_BACKTRACE_COLS;
134
135 if (printed)
136 printk(" ");
137 else
138 printk("\n");
139
140 return printed;
7aa89746
CE
141}
142
1da177e4 143static inline unsigned long print_context_stack(struct thread_info *tinfo,
7aa89746
CE
144 unsigned long *stack, unsigned long ebp,
145 char *log_lvl)
1da177e4
LT
146{
147 unsigned long addr;
4d7d8c82 148 int printed = 0; /* nr of entries already printed on current line */
1da177e4
LT
149
150#ifdef CONFIG_FRAME_POINTER
151 while (valid_stack_ptr(tinfo, (void *)ebp)) {
152 addr = *(unsigned long *)(ebp + 4);
4d7d8c82 153 printed = print_addr_and_symbol(addr, log_lvl, printed);
1da177e4
LT
154 ebp = *(unsigned long *)ebp;
155 }
156#else
157 while (valid_stack_ptr(tinfo, stack)) {
158 addr = *stack++;
7aa89746 159 if (__kernel_text_address(addr))
4d7d8c82 160 printed = print_addr_and_symbol(addr, log_lvl, printed);
1da177e4
LT
161 }
162#endif
4d7d8c82
CE
163 if (printed)
164 printk("\n");
165
1da177e4
LT
166 return ebp;
167}
168
7aa89746
CE
169static void show_trace_log_lvl(struct task_struct *task,
170 unsigned long *stack, char *log_lvl)
1da177e4
LT
171{
172 unsigned long ebp;
173
174 if (!task)
175 task = current;
176
177 if (task == current) {
178 /* Grab ebp right from our regs */
179 asm ("movl %%ebp, %0" : "=r" (ebp) : );
180 } else {
181 /* ebp is the last reg pushed by switch_to */
182 ebp = *(unsigned long *) task->thread.esp;
183 }
184
185 while (1) {
186 struct thread_info *context;
187 context = (struct thread_info *)
188 ((unsigned long)stack & (~(THREAD_SIZE - 1)));
7aa89746 189 ebp = print_context_stack(context, stack, ebp, log_lvl);
1da177e4
LT
190 stack = (unsigned long*)context->previous_esp;
191 if (!stack)
192 break;
cc04ee9c 193 printk("%s =======================\n", log_lvl);
1da177e4
LT
194 }
195}
196
7aa89746
CE
197void show_trace(struct task_struct *task, unsigned long * stack)
198{
199 show_trace_log_lvl(task, stack, "");
200}
201
202static void show_stack_log_lvl(struct task_struct *task, unsigned long *esp,
203 char *log_lvl)
1da177e4
LT
204{
205 unsigned long *stack;
206 int i;
207
208 if (esp == NULL) {
209 if (task)
210 esp = (unsigned long*)task->thread.esp;
211 else
212 esp = (unsigned long *)&esp;
213 }
214
215 stack = esp;
7aa89746 216 printk(log_lvl);
1da177e4
LT
217 for(i = 0; i < kstack_depth_to_print; i++) {
218 if (kstack_end(stack))
219 break;
75874d5c
CE
220 if (i && ((i % 8) == 0))
221 printk("\n%s ", log_lvl);
1da177e4
LT
222 printk("%08lx ", *stack++);
223 }
75874d5c 224 printk("\n%sCall Trace:\n", log_lvl);
7aa89746
CE
225 show_trace_log_lvl(task, esp, log_lvl);
226}
227
228void show_stack(struct task_struct *task, unsigned long *esp)
229{
75874d5c 230 printk(" ");
7aa89746 231 show_stack_log_lvl(task, esp, "");
1da177e4
LT
232}
233
234/*
235 * The architecture-independent dump_stack generator
236 */
237void dump_stack(void)
238{
239 unsigned long stack;
240
241 show_trace(current, &stack);
242}
243
244EXPORT_SYMBOL(dump_stack);
245
246void show_registers(struct pt_regs *regs)
247{
248 int i;
249 int in_kernel = 1;
250 unsigned long esp;
251 unsigned short ss;
252
253 esp = (unsigned long) (&regs->esp);
0998e422 254 savesegment(ss, ss);
db753bdf 255 if (user_mode_vm(regs)) {
1da177e4
LT
256 in_kernel = 0;
257 esp = regs->esp;
258 ss = regs->xss & 0xffff;
259 }
260 print_modules();
9c107805 261 printk(KERN_EMERG "CPU: %d\nEIP: %04x:[<%08lx>] %s VLI\n"
b53e8f68 262 "EFLAGS: %08lx (%s %.*s) \n",
1da177e4 263 smp_processor_id(), 0xffff & regs->xcs, regs->eip,
b53e8f68
CE
264 print_tainted(), regs->eflags, system_utsname.release,
265 (int)strcspn(system_utsname.version, " "),
266 system_utsname.version);
9c107805
DJ
267 print_symbol(KERN_EMERG "EIP is at %s\n", regs->eip);
268 printk(KERN_EMERG "eax: %08lx ebx: %08lx ecx: %08lx edx: %08lx\n",
1da177e4 269 regs->eax, regs->ebx, regs->ecx, regs->edx);
9c107805 270 printk(KERN_EMERG "esi: %08lx edi: %08lx ebp: %08lx esp: %08lx\n",
1da177e4 271 regs->esi, regs->edi, regs->ebp, esp);
9c107805 272 printk(KERN_EMERG "ds: %04x es: %04x ss: %04x\n",
1da177e4 273 regs->xds & 0xffff, regs->xes & 0xffff, ss);
9c107805 274 printk(KERN_EMERG "Process %s (pid: %d, threadinfo=%p task=%p)",
1da177e4
LT
275 current->comm, current->pid, current_thread_info(), current);
276 /*
277 * When in-kernel, we also print out the stack and code at the
278 * time of the fault..
279 */
280 if (in_kernel) {
3f3ae347 281 u8 __user *eip;
1da177e4 282
9c107805 283 printk("\n" KERN_EMERG "Stack: ");
7aa89746 284 show_stack_log_lvl(NULL, (unsigned long *)esp, KERN_EMERG);
1da177e4 285
9c107805 286 printk(KERN_EMERG "Code: ");
1da177e4 287
3f3ae347 288 eip = (u8 __user *)regs->eip - 43;
1da177e4
LT
289 for (i = 0; i < 64; i++, eip++) {
290 unsigned char c;
291
3f3ae347 292 if (eip < (u8 __user *)PAGE_OFFSET || __get_user(c, eip)) {
1da177e4
LT
293 printk(" Bad EIP value.");
294 break;
295 }
3f3ae347 296 if (eip == (u8 __user *)regs->eip)
1da177e4
LT
297 printk("<%02x> ", c);
298 else
299 printk("%02x ", c);
300 }
301 }
302 printk("\n");
303}
304
305static void handle_BUG(struct pt_regs *regs)
306{
307 unsigned short ud2;
308 unsigned short line;
309 char *file;
310 char c;
311 unsigned long eip;
312
1da177e4
LT
313 eip = regs->eip;
314
315 if (eip < PAGE_OFFSET)
316 goto no_bug;
3f3ae347 317 if (__get_user(ud2, (unsigned short __user *)eip))
1da177e4
LT
318 goto no_bug;
319 if (ud2 != 0x0b0f)
320 goto no_bug;
3f3ae347 321 if (__get_user(line, (unsigned short __user *)(eip + 2)))
1da177e4 322 goto bug;
3f3ae347 323 if (__get_user(file, (char * __user *)(eip + 4)) ||
1da177e4
LT
324 (unsigned long)file < PAGE_OFFSET || __get_user(c, file))
325 file = "<bad filename>";
326
9c107805
DJ
327 printk(KERN_EMERG "------------[ cut here ]------------\n");
328 printk(KERN_EMERG "kernel BUG at %s:%d!\n", file, line);
1da177e4
LT
329
330no_bug:
331 return;
332
333 /* Here we know it was a BUG but file-n-line is unavailable */
334bug:
9c107805 335 printk(KERN_EMERG "Kernel BUG\n");
1da177e4
LT
336}
337
6e274d14
AN
338/* This is gone through when something in the kernel
339 * has done something bad and is about to be terminated.
340*/
1da177e4
LT
341void die(const char * str, struct pt_regs * regs, long err)
342{
343 static struct {
344 spinlock_t lock;
345 u32 lock_owner;
346 int lock_owner_depth;
347 } die = {
348 .lock = SPIN_LOCK_UNLOCKED,
349 .lock_owner = -1,
350 .lock_owner_depth = 0
351 };
352 static int die_counter;
e43d674f 353 unsigned long flags;
1da177e4 354
dd287796
AM
355 oops_enter();
356
39c715b7 357 if (die.lock_owner != raw_smp_processor_id()) {
1da177e4 358 console_verbose();
e43d674f 359 spin_lock_irqsave(&die.lock, flags);
1da177e4
LT
360 die.lock_owner = smp_processor_id();
361 die.lock_owner_depth = 0;
362 bust_spinlocks(1);
363 }
e43d674f
JB
364 else
365 local_save_flags(flags);
1da177e4
LT
366
367 if (++die.lock_owner_depth < 3) {
368 int nl = 0;
369 handle_BUG(regs);
9c107805 370 printk(KERN_EMERG "%s: %04lx [#%d]\n", str, err & 0xffff, ++die_counter);
1da177e4 371#ifdef CONFIG_PREEMPT
9c107805 372 printk(KERN_EMERG "PREEMPT ");
1da177e4
LT
373 nl = 1;
374#endif
375#ifdef CONFIG_SMP
9c107805
DJ
376 if (!nl)
377 printk(KERN_EMERG);
1da177e4
LT
378 printk("SMP ");
379 nl = 1;
380#endif
381#ifdef CONFIG_DEBUG_PAGEALLOC
9c107805
DJ
382 if (!nl)
383 printk(KERN_EMERG);
1da177e4
LT
384 printk("DEBUG_PAGEALLOC");
385 nl = 1;
386#endif
387 if (nl)
388 printk("\n");
20c0d2d4
JB
389 if (notify_die(DIE_OOPS, str, regs, err,
390 current->thread.trap_no, SIGSEGV) !=
391 NOTIFY_STOP)
392 show_registers(regs);
393 else
394 regs = NULL;
1da177e4 395 } else
9c107805 396 printk(KERN_EMERG "Recursive die() failure, output suppressed\n");
1da177e4
LT
397
398 bust_spinlocks(0);
399 die.lock_owner = -1;
e43d674f 400 spin_unlock_irqrestore(&die.lock, flags);
6e274d14 401
20c0d2d4
JB
402 if (!regs)
403 return;
404
6e274d14
AN
405 if (kexec_should_crash(current))
406 crash_kexec(regs);
407
1da177e4
LT
408 if (in_interrupt())
409 panic("Fatal exception in interrupt");
410
411 if (panic_on_oops) {
412 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
413 ssleep(5);
414 panic("Fatal exception");
415 }
dd287796 416 oops_exit();
1da177e4
LT
417 do_exit(SIGSEGV);
418}
419
420static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
421{
717b594a 422 if (!user_mode_vm(regs))
1da177e4
LT
423 die(str, regs, err);
424}
425
3d97ae5b
PP
426static void __kprobes do_trap(int trapnr, int signr, char *str, int vm86,
427 struct pt_regs * regs, long error_code,
428 siginfo_t *info)
1da177e4 429{
4f339ecb
AN
430 struct task_struct *tsk = current;
431 tsk->thread.error_code = error_code;
432 tsk->thread.trap_no = trapnr;
433
1da177e4
LT
434 if (regs->eflags & VM_MASK) {
435 if (vm86)
436 goto vm86_trap;
437 goto trap_signal;
438 }
439
717b594a 440 if (!user_mode(regs))
1da177e4
LT
441 goto kernel_trap;
442
443 trap_signal: {
1da177e4
LT
444 if (info)
445 force_sig_info(signr, info, tsk);
446 else
447 force_sig(signr, tsk);
448 return;
449 }
450
451 kernel_trap: {
452 if (!fixup_exception(regs))
453 die(str, regs, error_code);
454 return;
455 }
456
457 vm86_trap: {
458 int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr);
459 if (ret) goto trap_signal;
460 return;
461 }
462}
463
464#define DO_ERROR(trapnr, signr, str, name) \
465fastcall void do_##name(struct pt_regs * regs, long error_code) \
466{ \
467 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
468 == NOTIFY_STOP) \
469 return; \
470 do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
471}
472
473#define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
474fastcall void do_##name(struct pt_regs * regs, long error_code) \
475{ \
476 siginfo_t info; \
477 info.si_signo = signr; \
478 info.si_errno = 0; \
479 info.si_code = sicode; \
480 info.si_addr = (void __user *)siaddr; \
481 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
482 == NOTIFY_STOP) \
483 return; \
484 do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
485}
486
487#define DO_VM86_ERROR(trapnr, signr, str, name) \
488fastcall void do_##name(struct pt_regs * regs, long error_code) \
489{ \
490 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
491 == NOTIFY_STOP) \
492 return; \
493 do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
494}
495
496#define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
497fastcall void do_##name(struct pt_regs * regs, long error_code) \
498{ \
499 siginfo_t info; \
500 info.si_signo = signr; \
501 info.si_errno = 0; \
502 info.si_code = sicode; \
503 info.si_addr = (void __user *)siaddr; \
504 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
505 == NOTIFY_STOP) \
506 return; \
507 do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
508}
509
510DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->eip)
511#ifndef CONFIG_KPROBES
512DO_VM86_ERROR( 3, SIGTRAP, "int3", int3)
513#endif
514DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow)
515DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds)
631b0347 516DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->eip)
1da177e4
LT
517DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
518DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
519DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
520DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
521DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
a879cbbb 522DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0)
1da177e4 523
3d97ae5b
PP
524fastcall void __kprobes do_general_protection(struct pt_regs * regs,
525 long error_code)
1da177e4
LT
526{
527 int cpu = get_cpu();
528 struct tss_struct *tss = &per_cpu(init_tss, cpu);
529 struct thread_struct *thread = &current->thread;
530
531 /*
532 * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
533 * invalid offset set (the LAZY one) and the faulting thread has
534 * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
535 * and we set the offset field correctly. Then we let the CPU to
536 * restart the faulting instruction.
537 */
538 if (tss->io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
539 thread->io_bitmap_ptr) {
540 memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
541 thread->io_bitmap_max);
542 /*
543 * If the previously set map was extending to higher ports
544 * than the current one, pad extra space with 0xff (no access).
545 */
546 if (thread->io_bitmap_max < tss->io_bitmap_max)
547 memset((char *) tss->io_bitmap +
548 thread->io_bitmap_max, 0xff,
549 tss->io_bitmap_max - thread->io_bitmap_max);
550 tss->io_bitmap_max = thread->io_bitmap_max;
551 tss->io_bitmap_base = IO_BITMAP_OFFSET;
d5cd4aad 552 tss->io_bitmap_owner = thread;
1da177e4
LT
553 put_cpu();
554 return;
555 }
556 put_cpu();
557
4f339ecb
AN
558 current->thread.error_code = error_code;
559 current->thread.trap_no = 13;
560
1da177e4
LT
561 if (regs->eflags & VM_MASK)
562 goto gp_in_vm86;
563
717b594a 564 if (!user_mode(regs))
1da177e4
LT
565 goto gp_in_kernel;
566
567 current->thread.error_code = error_code;
568 current->thread.trap_no = 13;
569 force_sig(SIGSEGV, current);
570 return;
571
572gp_in_vm86:
573 local_irq_enable();
574 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
575 return;
576
577gp_in_kernel:
578 if (!fixup_exception(regs)) {
579 if (notify_die(DIE_GPF, "general protection fault", regs,
580 error_code, 13, SIGSEGV) == NOTIFY_STOP)
581 return;
582 die("general protection fault", regs, error_code);
583 }
584}
585
586static void mem_parity_error(unsigned char reason, struct pt_regs * regs)
587{
9c107805
DJ
588 printk(KERN_EMERG "Uhhuh. NMI received. Dazed and confused, but trying "
589 "to continue\n");
590 printk(KERN_EMERG "You probably have a hardware problem with your RAM "
591 "chips\n");
1da177e4
LT
592
593 /* Clear and disable the memory parity error line. */
594 clear_mem_error(reason);
595}
596
597static void io_check_error(unsigned char reason, struct pt_regs * regs)
598{
599 unsigned long i;
600
9c107805 601 printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
1da177e4
LT
602 show_registers(regs);
603
604 /* Re-enable the IOCK line, wait for a few seconds */
605 reason = (reason & 0xf) | 8;
606 outb(reason, 0x61);
607 i = 2000;
608 while (--i) udelay(1000);
609 reason &= ~8;
610 outb(reason, 0x61);
611}
612
613static void unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
614{
615#ifdef CONFIG_MCA
616 /* Might actually be able to figure out what the guilty party
617 * is. */
618 if( MCA_bus ) {
619 mca_handle_nmi();
620 return;
621 }
622#endif
623 printk("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
624 reason, smp_processor_id());
625 printk("Dazed and confused, but trying to continue\n");
626 printk("Do you have a strange power saving mode enabled?\n");
627}
628
629static DEFINE_SPINLOCK(nmi_print_lock);
630
631void die_nmi (struct pt_regs *regs, const char *msg)
632{
20c0d2d4 633 if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 2, SIGINT) ==
748f2edb
GA
634 NOTIFY_STOP)
635 return;
636
1da177e4
LT
637 spin_lock(&nmi_print_lock);
638 /*
639 * We are in trouble anyway, lets at least try
640 * to get a message out.
641 */
642 bust_spinlocks(1);
9c107805 643 printk(KERN_EMERG "%s", msg);
1da177e4
LT
644 printk(" on CPU%d, eip %08lx, registers:\n",
645 smp_processor_id(), regs->eip);
646 show_registers(regs);
9c107805 647 printk(KERN_EMERG "console shuts up ...\n");
1da177e4
LT
648 console_silent();
649 spin_unlock(&nmi_print_lock);
650 bust_spinlocks(0);
6e274d14
AN
651
652 /* If we are in kernel we are probably nested up pretty bad
653 * and might aswell get out now while we still can.
654 */
db753bdf 655 if (!user_mode_vm(regs)) {
6e274d14
AN
656 current->thread.trap_no = 2;
657 crash_kexec(regs);
658 }
659
1da177e4
LT
660 do_exit(SIGSEGV);
661}
662
663static void default_do_nmi(struct pt_regs * regs)
664{
665 unsigned char reason = 0;
666
667 /* Only the BSP gets external NMIs from the system. */
668 if (!smp_processor_id())
669 reason = get_nmi_reason();
670
671 if (!(reason & 0xc0)) {
20c0d2d4 672 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
1da177e4
LT
673 == NOTIFY_STOP)
674 return;
675#ifdef CONFIG_X86_LOCAL_APIC
676 /*
677 * Ok, so this is none of the documented NMI sources,
678 * so it must be the NMI watchdog.
679 */
680 if (nmi_watchdog) {
681 nmi_watchdog_tick(regs);
682 return;
683 }
684#endif
685 unknown_nmi_error(reason, regs);
686 return;
687 }
20c0d2d4 688 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
1da177e4
LT
689 return;
690 if (reason & 0x80)
691 mem_parity_error(reason, regs);
692 if (reason & 0x40)
693 io_check_error(reason, regs);
694 /*
695 * Reassert NMI in case it became active meanwhile
696 * as it's edge-triggered.
697 */
698 reassert_nmi();
699}
700
701static int dummy_nmi_callback(struct pt_regs * regs, int cpu)
702{
703 return 0;
704}
705
706static nmi_callback_t nmi_callback = dummy_nmi_callback;
707
708fastcall void do_nmi(struct pt_regs * regs, long error_code)
709{
710 int cpu;
711
712 nmi_enter();
713
714 cpu = smp_processor_id();
f3705136 715
1da177e4
LT
716 ++nmi_count(cpu);
717
19306059 718 if (!rcu_dereference(nmi_callback)(regs, cpu))
1da177e4
LT
719 default_do_nmi(regs);
720
721 nmi_exit();
722}
723
724void set_nmi_callback(nmi_callback_t callback)
725{
101f12af 726 vmalloc_sync_all();
19306059 727 rcu_assign_pointer(nmi_callback, callback);
1da177e4 728}
129f6946 729EXPORT_SYMBOL_GPL(set_nmi_callback);
1da177e4
LT
730
731void unset_nmi_callback(void)
732{
733 nmi_callback = dummy_nmi_callback;
734}
129f6946 735EXPORT_SYMBOL_GPL(unset_nmi_callback);
1da177e4
LT
736
737#ifdef CONFIG_KPROBES
3d97ae5b 738fastcall void __kprobes do_int3(struct pt_regs *regs, long error_code)
1da177e4
LT
739{
740 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
741 == NOTIFY_STOP)
48c88211 742 return;
1da177e4
LT
743 /* This is an interrupt gate, because kprobes wants interrupts
744 disabled. Normal trap handlers don't. */
745 restore_interrupts(regs);
746 do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
1da177e4
LT
747}
748#endif
749
750/*
751 * Our handling of the processor debug registers is non-trivial.
752 * We do not clear them on entry and exit from the kernel. Therefore
753 * it is possible to get a watchpoint trap here from inside the kernel.
754 * However, the code in ./ptrace.c has ensured that the user can
755 * only set watchpoints on userspace addresses. Therefore the in-kernel
756 * watchpoint trap can only occur in code which is reading/writing
757 * from user space. Such code must not hold kernel locks (since it
758 * can equally take a page fault), therefore it is safe to call
759 * force_sig_info even though that claims and releases locks.
760 *
761 * Code in ./signal.c ensures that the debug control register
762 * is restored before we deliver any signal, and therefore that
763 * user code runs with the correct debug control register even though
764 * we clear it here.
765 *
766 * Being careful here means that we don't have to be as careful in a
767 * lot of more complicated places (task switching can be a bit lazy
768 * about restoring all the debug state, and ptrace doesn't have to
769 * find every occurrence of the TF bit that could be saved away even
770 * by user code)
771 */
3d97ae5b 772fastcall void __kprobes do_debug(struct pt_regs * regs, long error_code)
1da177e4
LT
773{
774 unsigned int condition;
775 struct task_struct *tsk = current;
776
1cc6f12e 777 get_debugreg(condition, 6);
1da177e4
LT
778
779 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
780 SIGTRAP) == NOTIFY_STOP)
781 return;
782 /* It's safe to allow irq's after DR6 has been saved */
783 if (regs->eflags & X86_EFLAGS_IF)
784 local_irq_enable();
785
786 /* Mask out spurious debug traps due to lazy DR7 setting */
787 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
788 if (!tsk->thread.debugreg[7])
789 goto clear_dr7;
790 }
791
792 if (regs->eflags & VM_MASK)
793 goto debug_vm86;
794
795 /* Save debug status register where ptrace can see it */
796 tsk->thread.debugreg[6] = condition;
797
798 /*
799 * Single-stepping through TF: make sure we ignore any events in
800 * kernel space (but re-enable TF when returning to user mode).
801 */
802 if (condition & DR_STEP) {
803 /*
804 * We already checked v86 mode above, so we can
805 * check for kernel mode by just checking the CPL
806 * of CS.
807 */
717b594a 808 if (!user_mode(regs))
1da177e4
LT
809 goto clear_TF_reenable;
810 }
811
812 /* Ok, finally something we can handle */
813 send_sigtrap(tsk, regs, error_code);
814
815 /* Disable additional traps. They'll be re-enabled when
816 * the signal is delivered.
817 */
818clear_dr7:
1cc6f12e 819 set_debugreg(0, 7);
1da177e4
LT
820 return;
821
822debug_vm86:
823 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
824 return;
825
826clear_TF_reenable:
827 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
828 regs->eflags &= ~TF_MASK;
829 return;
830}
831
832/*
833 * Note that we play around with the 'TS' bit in an attempt to get
834 * the correct behaviour even in the presence of the asynchronous
835 * IRQ13 behaviour
836 */
837void math_error(void __user *eip)
838{
839 struct task_struct * task;
840 siginfo_t info;
841 unsigned short cwd, swd;
842
843 /*
844 * Save the info for the exception handler and clear the error.
845 */
846 task = current;
847 save_init_fpu(task);
848 task->thread.trap_no = 16;
849 task->thread.error_code = 0;
850 info.si_signo = SIGFPE;
851 info.si_errno = 0;
852 info.si_code = __SI_FAULT;
853 info.si_addr = eip;
854 /*
855 * (~cwd & swd) will mask out exceptions that are not set to unmasked
856 * status. 0x3f is the exception bits in these regs, 0x200 is the
857 * C1 reg you need in case of a stack fault, 0x040 is the stack
858 * fault bit. We should only be taking one exception at a time,
859 * so if this combination doesn't produce any single exception,
860 * then we have a bad program that isn't syncronizing its FPU usage
861 * and it will suffer the consequences since we won't be able to
862 * fully reproduce the context of the exception
863 */
864 cwd = get_fpu_cwd(task);
865 swd = get_fpu_swd(task);
b1daec30 866 switch (swd & ~cwd & 0x3f) {
33333373
CE
867 case 0x000: /* No unmasked exception */
868 return;
869 default: /* Multiple exceptions */
1da177e4
LT
870 break;
871 case 0x001: /* Invalid Op */
b1daec30
CE
872 /*
873 * swd & 0x240 == 0x040: Stack Underflow
874 * swd & 0x240 == 0x240: Stack Overflow
875 * User must clear the SF bit (0x40) if set
876 */
1da177e4 877 info.si_code = FPE_FLTINV;
1da177e4
LT
878 break;
879 case 0x002: /* Denormalize */
880 case 0x010: /* Underflow */
881 info.si_code = FPE_FLTUND;
882 break;
883 case 0x004: /* Zero Divide */
884 info.si_code = FPE_FLTDIV;
885 break;
886 case 0x008: /* Overflow */
887 info.si_code = FPE_FLTOVF;
888 break;
889 case 0x020: /* Precision */
890 info.si_code = FPE_FLTRES;
891 break;
892 }
893 force_sig_info(SIGFPE, &info, task);
894}
895
896fastcall void do_coprocessor_error(struct pt_regs * regs, long error_code)
897{
898 ignore_fpu_irq = 1;
899 math_error((void __user *)regs->eip);
900}
901
902static void simd_math_error(void __user *eip)
903{
904 struct task_struct * task;
905 siginfo_t info;
906 unsigned short mxcsr;
907
908 /*
909 * Save the info for the exception handler and clear the error.
910 */
911 task = current;
912 save_init_fpu(task);
913 task->thread.trap_no = 19;
914 task->thread.error_code = 0;
915 info.si_signo = SIGFPE;
916 info.si_errno = 0;
917 info.si_code = __SI_FAULT;
918 info.si_addr = eip;
919 /*
920 * The SIMD FPU exceptions are handled a little differently, as there
921 * is only a single status/control register. Thus, to determine which
922 * unmasked exception was caught we must mask the exception mask bits
923 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
924 */
925 mxcsr = get_fpu_mxcsr(task);
926 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
927 case 0x000:
928 default:
929 break;
930 case 0x001: /* Invalid Op */
931 info.si_code = FPE_FLTINV;
932 break;
933 case 0x002: /* Denormalize */
934 case 0x010: /* Underflow */
935 info.si_code = FPE_FLTUND;
936 break;
937 case 0x004: /* Zero Divide */
938 info.si_code = FPE_FLTDIV;
939 break;
940 case 0x008: /* Overflow */
941 info.si_code = FPE_FLTOVF;
942 break;
943 case 0x020: /* Precision */
944 info.si_code = FPE_FLTRES;
945 break;
946 }
947 force_sig_info(SIGFPE, &info, task);
948}
949
950fastcall void do_simd_coprocessor_error(struct pt_regs * regs,
951 long error_code)
952{
953 if (cpu_has_xmm) {
954 /* Handle SIMD FPU exceptions on PIII+ processors. */
955 ignore_fpu_irq = 1;
956 simd_math_error((void __user *)regs->eip);
957 } else {
958 /*
959 * Handle strange cache flush from user space exception
960 * in all other cases. This is undocumented behaviour.
961 */
962 if (regs->eflags & VM_MASK) {
963 handle_vm86_fault((struct kernel_vm86_regs *)regs,
964 error_code);
965 return;
966 }
1da177e4
LT
967 current->thread.trap_no = 19;
968 current->thread.error_code = error_code;
4f339ecb 969 die_if_kernel("cache flush denied", regs, error_code);
1da177e4
LT
970 force_sig(SIGSEGV, current);
971 }
972}
973
974fastcall void do_spurious_interrupt_bug(struct pt_regs * regs,
975 long error_code)
976{
977#if 0
978 /* No need to warn about this any longer. */
979 printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
980#endif
981}
982
983fastcall void setup_x86_bogus_stack(unsigned char * stk)
984{
985 unsigned long *switch16_ptr, *switch32_ptr;
986 struct pt_regs *regs;
987 unsigned long stack_top, stack_bot;
988 unsigned short iret_frame16_off;
989 int cpu = smp_processor_id();
990 /* reserve the space on 32bit stack for the magic switch16 pointer */
991 memmove(stk, stk + 8, sizeof(struct pt_regs));
992 switch16_ptr = (unsigned long *)(stk + sizeof(struct pt_regs));
993 regs = (struct pt_regs *)stk;
994 /* now the switch32 on 16bit stack */
995 stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu);
996 stack_top = stack_bot + CPU_16BIT_STACK_SIZE;
997 switch32_ptr = (unsigned long *)(stack_top - 8);
998 iret_frame16_off = CPU_16BIT_STACK_SIZE - 8 - 20;
999 /* copy iret frame on 16bit stack */
1000 memcpy((void *)(stack_bot + iret_frame16_off), &regs->eip, 20);
1001 /* fill in the switch pointers */
1002 switch16_ptr[0] = (regs->esp & 0xffff0000) | iret_frame16_off;
1003 switch16_ptr[1] = __ESPFIX_SS;
1004 switch32_ptr[0] = (unsigned long)stk + sizeof(struct pt_regs) +
1005 8 - CPU_16BIT_STACK_SIZE;
1006 switch32_ptr[1] = __KERNEL_DS;
1007}
1008
1009fastcall unsigned char * fixup_x86_bogus_stack(unsigned short sp)
1010{
1011 unsigned long *switch32_ptr;
1012 unsigned char *stack16, *stack32;
1013 unsigned long stack_top, stack_bot;
1014 int len;
1015 int cpu = smp_processor_id();
1016 stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu);
1017 stack_top = stack_bot + CPU_16BIT_STACK_SIZE;
1018 switch32_ptr = (unsigned long *)(stack_top - 8);
1019 /* copy the data from 16bit stack to 32bit stack */
1020 len = CPU_16BIT_STACK_SIZE - 8 - sp;
1021 stack16 = (unsigned char *)(stack_bot + sp);
1022 stack32 = (unsigned char *)
1023 (switch32_ptr[0] + CPU_16BIT_STACK_SIZE - 8 - len);
1024 memcpy(stack32, stack16, len);
1025 return stack32;
1026}
1027
1028/*
1029 * 'math_state_restore()' saves the current math information in the
1030 * old math state array, and gets the new ones from the current task
1031 *
1032 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1033 * Don't touch unless you *really* know how it works.
1034 *
1035 * Must be called with kernel preemption disabled (in this case,
1036 * local interrupts are disabled at the call-site in entry.S).
1037 */
1038asmlinkage void math_state_restore(struct pt_regs regs)
1039{
1040 struct thread_info *thread = current_thread_info();
1041 struct task_struct *tsk = thread->task;
1042
1043 clts(); /* Allow maths ops (or we recurse) */
1044 if (!tsk_used_math(tsk))
1045 init_fpu(tsk);
1046 restore_fpu(tsk);
1047 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
1048}
1049
1050#ifndef CONFIG_MATH_EMULATION
1051
1052asmlinkage void math_emulate(long arg)
1053{
9c107805
DJ
1054 printk(KERN_EMERG "math-emulation not enabled and no coprocessor found.\n");
1055 printk(KERN_EMERG "killing %s.\n",current->comm);
1da177e4
LT
1056 force_sig(SIGFPE,current);
1057 schedule();
1058}
1059
1060#endif /* CONFIG_MATH_EMULATION */
1061
1062#ifdef CONFIG_X86_F00F_BUG
1063void __init trap_init_f00f_bug(void)
1064{
1065 __set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO);
1066
1067 /*
1068 * Update the IDT descriptor and reload the IDT so that
1069 * it uses the read-only mapped virtual address.
1070 */
1071 idt_descr.address = fix_to_virt(FIX_F00F_IDT);
4d37e7e3 1072 load_idt(&idt_descr);
1da177e4
LT
1073}
1074#endif
1075
1076#define _set_gate(gate_addr,type,dpl,addr,seg) \
1077do { \
1078 int __d0, __d1; \
1079 __asm__ __volatile__ ("movw %%dx,%%ax\n\t" \
1080 "movw %4,%%dx\n\t" \
1081 "movl %%eax,%0\n\t" \
1082 "movl %%edx,%1" \
1083 :"=m" (*((long *) (gate_addr))), \
1084 "=m" (*(1+(long *) (gate_addr))), "=&a" (__d0), "=&d" (__d1) \
1085 :"i" ((short) (0x8000+(dpl<<13)+(type<<8))), \
1086 "3" ((char *) (addr)),"2" ((seg) << 16)); \
1087} while (0)
1088
1089
1090/*
1091 * This needs to use 'idt_table' rather than 'idt', and
1092 * thus use the _nonmapped_ version of the IDT, as the
1093 * Pentium F0 0F bugfix can have resulted in the mapped
1094 * IDT being write-protected.
1095 */
1096void set_intr_gate(unsigned int n, void *addr)
1097{
1098 _set_gate(idt_table+n,14,0,addr,__KERNEL_CS);
1099}
1100
1101/*
1102 * This routine sets up an interrupt gate at directory privilege level 3.
1103 */
1104static inline void set_system_intr_gate(unsigned int n, void *addr)
1105{
1106 _set_gate(idt_table+n, 14, 3, addr, __KERNEL_CS);
1107}
1108
1109static void __init set_trap_gate(unsigned int n, void *addr)
1110{
1111 _set_gate(idt_table+n,15,0,addr,__KERNEL_CS);
1112}
1113
1114static void __init set_system_gate(unsigned int n, void *addr)
1115{
1116 _set_gate(idt_table+n,15,3,addr,__KERNEL_CS);
1117}
1118
1119static void __init set_task_gate(unsigned int n, unsigned int gdt_entry)
1120{
1121 _set_gate(idt_table+n,5,0,0,(gdt_entry<<3));
1122}
1123
1124
1125void __init trap_init(void)
1126{
1127#ifdef CONFIG_EISA
1128 void __iomem *p = ioremap(0x0FFFD9, 4);
1129 if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) {
1130 EISA_bus = 1;
1131 }
1132 iounmap(p);
1133#endif
1134
1135#ifdef CONFIG_X86_LOCAL_APIC
1136 init_apic_mappings();
1137#endif
1138
1139 set_trap_gate(0,&divide_error);
1140 set_intr_gate(1,&debug);
1141 set_intr_gate(2,&nmi);
eb05c324 1142 set_system_intr_gate(3, &int3); /* int3/4 can be called from all */
1da177e4 1143 set_system_gate(4,&overflow);
eb05c324 1144 set_trap_gate(5,&bounds);
1da177e4
LT
1145 set_trap_gate(6,&invalid_op);
1146 set_trap_gate(7,&device_not_available);
1147 set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS);
1148 set_trap_gate(9,&coprocessor_segment_overrun);
1149 set_trap_gate(10,&invalid_TSS);
1150 set_trap_gate(11,&segment_not_present);
1151 set_trap_gate(12,&stack_segment);
1152 set_trap_gate(13,&general_protection);
1153 set_intr_gate(14,&page_fault);
1154 set_trap_gate(15,&spurious_interrupt_bug);
1155 set_trap_gate(16,&coprocessor_error);
1156 set_trap_gate(17,&alignment_check);
1157#ifdef CONFIG_X86_MCE
1158 set_trap_gate(18,&machine_check);
1159#endif
1160 set_trap_gate(19,&simd_coprocessor_error);
1161
d43c6e80
JB
1162 if (cpu_has_fxsr) {
1163 /*
1164 * Verify that the FXSAVE/FXRSTOR data will be 16-byte aligned.
1165 * Generates a compile-time "error: zero width for bit-field" if
1166 * the alignment is wrong.
1167 */
1168 struct fxsrAlignAssert {
1169 int _:!(offsetof(struct task_struct,
1170 thread.i387.fxsave) & 15);
1171 };
1172
1173 printk(KERN_INFO "Enabling fast FPU save and restore... ");
1174 set_in_cr4(X86_CR4_OSFXSR);
1175 printk("done.\n");
1176 }
1177 if (cpu_has_xmm) {
1178 printk(KERN_INFO "Enabling unmasked SIMD FPU exception "
1179 "support... ");
1180 set_in_cr4(X86_CR4_OSXMMEXCPT);
1181 printk("done.\n");
1182 }
1183
1da177e4
LT
1184 set_system_gate(SYSCALL_VECTOR,&system_call);
1185
1186 /*
1187 * Should be a barrier for any external CPU state.
1188 */
1189 cpu_init();
1190
1191 trap_init_hook();
1192}
1193
1194static int __init kstack_setup(char *s)
1195{
1196 kstack_depth_to_print = simple_strtoul(s, NULL, 0);
1197 return 0;
1198}
1199__setup("kstack=", kstack_setup);