]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/i386/mm/fault.c
[PATCH] x86-64: list x86_64 quilt tree
[mirror_ubuntu-zesty-kernel.git] / arch / i386 / mm / fault.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/i386/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 */
6
7#include <linux/signal.h>
8#include <linux/sched.h>
9#include <linux/kernel.h>
10#include <linux/errno.h>
11#include <linux/string.h>
12#include <linux/types.h>
13#include <linux/ptrace.h>
14#include <linux/mman.h>
15#include <linux/mm.h>
16#include <linux/smp.h>
17#include <linux/smp_lock.h>
18#include <linux/interrupt.h>
19#include <linux/init.h>
20#include <linux/tty.h>
21#include <linux/vt_kern.h> /* For unblank_screen() */
22#include <linux/highmem.h>
23#include <linux/module.h>
3d97ae5b 24#include <linux/kprobes.h>
11a4180c 25#include <linux/uaccess.h>
1da177e4
LT
26
27#include <asm/system.h>
1da177e4
LT
28#include <asm/desc.h>
29#include <asm/kdebug.h>
78be3706 30#include <asm/segment.h>
1da177e4
LT
31
32extern void die(const char *,struct pt_regs *,long);
33
474c2568
AK
34static ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain);
35
b71b5b65
AK
36int register_page_fault_notifier(struct notifier_block *nb)
37{
38 vmalloc_sync_all();
39 return atomic_notifier_chain_register(&notify_page_fault_chain, nb);
40}
474c2568 41EXPORT_SYMBOL_GPL(register_page_fault_notifier);
b71b5b65
AK
42
43int unregister_page_fault_notifier(struct notifier_block *nb)
44{
45 return atomic_notifier_chain_unregister(&notify_page_fault_chain, nb);
46}
474c2568 47EXPORT_SYMBOL_GPL(unregister_page_fault_notifier);
b71b5b65
AK
48
49static inline int notify_page_fault(enum die_val val, const char *str,
50 struct pt_regs *regs, long err, int trap, int sig)
51{
52 struct die_args args = {
53 .regs = regs,
54 .str = str,
55 .err = err,
56 .trapnr = trap,
57 .signr = sig
58 };
59 return atomic_notifier_call_chain(&notify_page_fault_chain, val, &args);
60}
b71b5b65 61
1da177e4
LT
62/*
63 * Return EIP plus the CS segment base. The segment limit is also
64 * adjusted, clamped to the kernel/user address space (whichever is
65 * appropriate), and returned in *eip_limit.
66 *
67 * The segment is checked, because it might have been changed by another
68 * task between the original faulting instruction and here.
69 *
70 * If CS is no longer a valid code segment, or if EIP is beyond the
71 * limit, or if it is a kernel address when CS is not a kernel segment,
72 * then the returned value will be greater than *eip_limit.
73 *
74 * This is slow, but is very rarely executed.
75 */
76static inline unsigned long get_segment_eip(struct pt_regs *regs,
77 unsigned long *eip_limit)
78{
79 unsigned long eip = regs->eip;
80 unsigned seg = regs->xcs & 0xffff;
81 u32 seg_ar, seg_limit, base, *desc;
82
19964fec
CE
83 /* Unlikely, but must come before segment checks. */
84 if (unlikely(regs->eflags & VM_MASK)) {
85 base = seg << 4;
86 *eip_limit = base + 0xffff;
87 return base + (eip & 0xffff);
88 }
89
1da177e4 90 /* The standard kernel/user address space limit. */
78be3706 91 *eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg;
1da177e4
LT
92
93 /* By far the most common cases. */
78be3706 94 if (likely(SEGMENT_IS_FLAT_CODE(seg)))
1da177e4
LT
95 return eip;
96
97 /* Check the segment exists, is within the current LDT/GDT size,
98 that kernel/user (ring 0..3) has the appropriate privilege,
99 that it's a code segment, and get the limit. */
100 __asm__ ("larl %3,%0; lsll %3,%1"
101 : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg));
102 if ((~seg_ar & 0x9800) || eip > seg_limit) {
103 *eip_limit = 0;
104 return 1; /* So that returned eip > *eip_limit. */
105 }
106
107 /* Get the GDT/LDT descriptor base.
108 When you look for races in this code remember that
109 LDT and other horrors are only used in user space. */
110 if (seg & (1<<2)) {
111 /* Must lock the LDT while reading it. */
112 down(&current->mm->context.sem);
113 desc = current->mm->context.ldt;
114 desc = (void *)desc + (seg & ~7);
115 } else {
116 /* Must disable preemption while reading the GDT. */
251e6912 117 desc = (u32 *)get_cpu_gdt_table(get_cpu());
1da177e4
LT
118 desc = (void *)desc + (seg & ~7);
119 }
120
121 /* Decode the code segment base from the descriptor */
122 base = get_desc_base((unsigned long *)desc);
123
124 if (seg & (1<<2)) {
125 up(&current->mm->context.sem);
126 } else
127 put_cpu();
128
129 /* Adjust EIP and segment limit, and clamp at the kernel limit.
130 It's legitimate for segments to wrap at 0xffffffff. */
131 seg_limit += base;
132 if (seg_limit < *eip_limit && seg_limit >= base)
133 *eip_limit = seg_limit;
134 return eip + base;
135}
136
137/*
138 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
139 * Check that here and ignore it.
140 */
141static int __is_prefetch(struct pt_regs *regs, unsigned long addr)
142{
143 unsigned long limit;
11a4180c 144 unsigned char *instr = (unsigned char *)get_segment_eip (regs, &limit);
1da177e4
LT
145 int scan_more = 1;
146 int prefetch = 0;
147 int i;
148
149 for (i = 0; scan_more && i < 15; i++) {
150 unsigned char opcode;
151 unsigned char instr_hi;
152 unsigned char instr_lo;
153
11a4180c 154 if (instr > (unsigned char *)limit)
1da177e4 155 break;
11a4180c 156 if (probe_kernel_address(instr, opcode))
1da177e4
LT
157 break;
158
159 instr_hi = opcode & 0xf0;
160 instr_lo = opcode & 0x0f;
161 instr++;
162
163 switch (instr_hi) {
164 case 0x20:
165 case 0x30:
166 /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */
167 scan_more = ((instr_lo & 7) == 0x6);
168 break;
169
170 case 0x60:
171 /* 0x64 thru 0x67 are valid prefixes in all modes. */
172 scan_more = (instr_lo & 0xC) == 0x4;
173 break;
174 case 0xF0:
175 /* 0xF0, 0xF2, and 0xF3 are valid prefixes */
176 scan_more = !instr_lo || (instr_lo>>1) == 1;
177 break;
178 case 0x00:
179 /* Prefetch instruction is 0x0F0D or 0x0F18 */
180 scan_more = 0;
11a4180c 181 if (instr > (unsigned char *)limit)
1da177e4 182 break;
11a4180c 183 if (probe_kernel_address(instr, opcode))
1da177e4
LT
184 break;
185 prefetch = (instr_lo == 0xF) &&
186 (opcode == 0x0D || opcode == 0x18);
187 break;
188 default:
189 scan_more = 0;
190 break;
191 }
192 }
193 return prefetch;
194}
195
196static inline int is_prefetch(struct pt_regs *regs, unsigned long addr,
197 unsigned long error_code)
198{
199 if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
200 boot_cpu_data.x86 >= 6)) {
201 /* Catch an obscure case of prefetch inside an NX page. */
202 if (nx_enabled && (error_code & 16))
203 return 0;
204 return __is_prefetch(regs, addr);
205 }
206 return 0;
207}
208
869f96a0
IM
209static noinline void force_sig_info_fault(int si_signo, int si_code,
210 unsigned long address, struct task_struct *tsk)
211{
212 siginfo_t info;
213
214 info.si_signo = si_signo;
215 info.si_errno = 0;
216 info.si_code = si_code;
217 info.si_addr = (void __user *)address;
218 force_sig_info(si_signo, &info, tsk);
219}
220
1da177e4
LT
221fastcall void do_invalid_op(struct pt_regs *, unsigned long);
222
101f12af
JB
223static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
224{
225 unsigned index = pgd_index(address);
226 pgd_t *pgd_k;
227 pud_t *pud, *pud_k;
228 pmd_t *pmd, *pmd_k;
229
230 pgd += index;
231 pgd_k = init_mm.pgd + index;
232
233 if (!pgd_present(*pgd_k))
234 return NULL;
235
236 /*
237 * set_pgd(pgd, *pgd_k); here would be useless on PAE
238 * and redundant with the set_pmd() on non-PAE. As would
239 * set_pud.
240 */
241
242 pud = pud_offset(pgd, address);
243 pud_k = pud_offset(pgd_k, address);
244 if (!pud_present(*pud_k))
245 return NULL;
246
247 pmd = pmd_offset(pud, address);
248 pmd_k = pmd_offset(pud_k, address);
249 if (!pmd_present(*pmd_k))
250 return NULL;
251 if (!pmd_present(*pmd))
252 set_pmd(pmd, *pmd_k);
253 else
254 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
255 return pmd_k;
256}
257
258/*
259 * Handle a fault on the vmalloc or module mapping area
260 *
261 * This assumes no large pages in there.
262 */
263static inline int vmalloc_fault(unsigned long address)
264{
265 unsigned long pgd_paddr;
266 pmd_t *pmd_k;
267 pte_t *pte_k;
268 /*
269 * Synchronize this task's top level page-table
270 * with the 'reference' page table.
271 *
272 * Do _not_ use "current" here. We might be inside
273 * an interrupt in the middle of a task switch..
274 */
275 pgd_paddr = read_cr3();
276 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
277 if (!pmd_k)
278 return -1;
279 pte_k = pte_offset_kernel(pmd_k, address);
280 if (!pte_present(*pte_k))
281 return -1;
282 return 0;
283}
284
1da177e4
LT
285/*
286 * This routine handles page faults. It determines the address,
287 * and the problem, and then passes it off to one of the appropriate
288 * routines.
289 *
290 * error_code:
291 * bit 0 == 0 means no page found, 1 means protection fault
292 * bit 1 == 0 means read, 1 means write
293 * bit 2 == 0 means kernel, 1 means user-mode
101f12af
JB
294 * bit 3 == 1 means use of reserved bit detected
295 * bit 4 == 1 means fault was an instruction fetch
1da177e4 296 */
3d97ae5b
PP
297fastcall void __kprobes do_page_fault(struct pt_regs *regs,
298 unsigned long error_code)
1da177e4
LT
299{
300 struct task_struct *tsk;
301 struct mm_struct *mm;
302 struct vm_area_struct * vma;
303 unsigned long address;
304 unsigned long page;
869f96a0 305 int write, si_code;
1da177e4
LT
306
307 /* get the address */
4bb0d3ec 308 address = read_cr2();
1da177e4 309
1da177e4
LT
310 tsk = current;
311
869f96a0 312 si_code = SEGV_MAPERR;
1da177e4
LT
313
314 /*
315 * We fault-in kernel-space virtual memory on-demand. The
316 * 'reference' page table is init_mm.pgd.
317 *
318 * NOTE! We MUST NOT take any locks for this case. We may
319 * be in an interrupt or a critical region, and should
320 * only copy the information from the master page table,
321 * nothing more.
322 *
323 * This verifies that the fault happens in kernel space
324 * (error_code & 4) == 0, and that the fault was not a
101f12af 325 * protection error (error_code & 9) == 0.
1da177e4 326 */
101f12af
JB
327 if (unlikely(address >= TASK_SIZE)) {
328 if (!(error_code & 0x0000000d) && vmalloc_fault(address) >= 0)
329 return;
b71b5b65 330 if (notify_page_fault(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
101f12af
JB
331 SIGSEGV) == NOTIFY_STOP)
332 return;
333 /*
1da177e4
LT
334 * Don't take the mm semaphore here. If we fixup a prefetch
335 * fault we could otherwise deadlock.
336 */
337 goto bad_area_nosemaphore;
101f12af
JB
338 }
339
b71b5b65 340 if (notify_page_fault(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
101f12af
JB
341 SIGSEGV) == NOTIFY_STOP)
342 return;
343
344 /* It's safe to allow irq's after cr2 has been saved and the vmalloc
345 fault has been handled. */
346 if (regs->eflags & (X86_EFLAGS_IF|VM_MASK))
347 local_irq_enable();
1da177e4
LT
348
349 mm = tsk->mm;
350
351 /*
352 * If we're in an interrupt, have no user context or are running in an
353 * atomic region then we must not take the fault..
354 */
355 if (in_atomic() || !mm)
356 goto bad_area_nosemaphore;
357
358 /* When running in the kernel we expect faults to occur only to
359 * addresses in user space. All other faults represent errors in the
360 * kernel and should generate an OOPS. Unfortunatly, in the case of an
80f7228b 361 * erroneous fault occurring in a code path which already holds mmap_sem
1da177e4
LT
362 * we will deadlock attempting to validate the fault against the
363 * address space. Luckily the kernel only validly references user
364 * space from well defined areas of code, which are listed in the
365 * exceptions table.
366 *
367 * As the vast majority of faults will be valid we will only perform
368 * the source reference check when there is a possibilty of a deadlock.
369 * Attempt to lock the address space, if we cannot we then validate the
370 * source. If this is invalid we can skip the address space check,
371 * thus avoiding the deadlock.
372 */
373 if (!down_read_trylock(&mm->mmap_sem)) {
374 if ((error_code & 4) == 0 &&
375 !search_exception_tables(regs->eip))
376 goto bad_area_nosemaphore;
377 down_read(&mm->mmap_sem);
378 }
379
380 vma = find_vma(mm, address);
381 if (!vma)
382 goto bad_area;
383 if (vma->vm_start <= address)
384 goto good_area;
385 if (!(vma->vm_flags & VM_GROWSDOWN))
386 goto bad_area;
387 if (error_code & 4) {
388 /*
21528454
CE
389 * Accessing the stack below %esp is always a bug.
390 * The large cushion allows instructions like enter
391 * and pusha to work. ("enter $65535,$31" pushes
392 * 32 pointers and then decrements %esp by 65535.)
1da177e4 393 */
21528454 394 if (address + 65536 + 32 * sizeof(unsigned long) < regs->esp)
1da177e4
LT
395 goto bad_area;
396 }
397 if (expand_stack(vma, address))
398 goto bad_area;
399/*
400 * Ok, we have a good vm_area for this memory access, so
401 * we can handle it..
402 */
403good_area:
869f96a0 404 si_code = SEGV_ACCERR;
1da177e4
LT
405 write = 0;
406 switch (error_code & 3) {
407 default: /* 3: write, present */
78be3706 408 /* fall through */
1da177e4
LT
409 case 2: /* write, not present */
410 if (!(vma->vm_flags & VM_WRITE))
411 goto bad_area;
412 write++;
413 break;
414 case 1: /* read, present */
415 goto bad_area;
416 case 0: /* read, not present */
df67b3da 417 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1da177e4
LT
418 goto bad_area;
419 }
420
421 survive:
422 /*
423 * If for any reason at all we couldn't handle the fault,
424 * make sure we exit gracefully rather than endlessly redo
425 * the fault.
426 */
427 switch (handle_mm_fault(mm, vma, address, write)) {
428 case VM_FAULT_MINOR:
429 tsk->min_flt++;
430 break;
431 case VM_FAULT_MAJOR:
432 tsk->maj_flt++;
433 break;
434 case VM_FAULT_SIGBUS:
435 goto do_sigbus;
436 case VM_FAULT_OOM:
437 goto out_of_memory;
438 default:
439 BUG();
440 }
441
442 /*
443 * Did it hit the DOS screen memory VA from vm86 mode?
444 */
445 if (regs->eflags & VM_MASK) {
446 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
447 if (bit < 32)
448 tsk->thread.screen_bitmap |= 1 << bit;
449 }
450 up_read(&mm->mmap_sem);
451 return;
452
453/*
454 * Something tried to access memory that isn't in our memory map..
455 * Fix it, but check if it's kernel or user first..
456 */
457bad_area:
458 up_read(&mm->mmap_sem);
459
460bad_area_nosemaphore:
461 /* User mode accesses just cause a SIGSEGV */
462 if (error_code & 4) {
463 /*
464 * Valid to do another page fault here because this one came
465 * from user space.
466 */
467 if (is_prefetch(regs, address, error_code))
468 return;
469
470 tsk->thread.cr2 = address;
471 /* Kernel addresses are always protection faults */
472 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
473 tsk->thread.trap_no = 14;
869f96a0 474 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
1da177e4
LT
475 return;
476 }
477
478#ifdef CONFIG_X86_F00F_BUG
479 /*
480 * Pentium F0 0F C7 C8 bug workaround.
481 */
482 if (boot_cpu_data.f00f_bug) {
483 unsigned long nr;
484
485 nr = (address - idt_descr.address) >> 3;
486
487 if (nr == 6) {
488 do_invalid_op(regs, 0);
489 return;
490 }
491 }
492#endif
493
494no_context:
495 /* Are we prepared to handle this kernel fault? */
496 if (fixup_exception(regs))
497 return;
498
499 /*
500 * Valid to do another page fault here, because if this fault
501 * had been triggered by is_prefetch fixup_exception would have
502 * handled it.
503 */
504 if (is_prefetch(regs, address, error_code))
505 return;
506
507/*
508 * Oops. The kernel tried to access some bad page. We'll have to
509 * terminate things with extreme prejudice.
510 */
511
512 bust_spinlocks(1);
513
dd287796
AM
514 if (oops_may_print()) {
515 #ifdef CONFIG_X86_PAE
516 if (error_code & 16) {
517 pte_t *pte = lookup_address(address);
518
519 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
520 printk(KERN_CRIT "kernel tried to execute "
521 "NX-protected page - exploit attempt? "
522 "(uid: %d)\n", current->uid);
523 }
524 #endif
525 if (address < PAGE_SIZE)
526 printk(KERN_ALERT "BUG: unable to handle kernel NULL "
527 "pointer dereference");
528 else
529 printk(KERN_ALERT "BUG: unable to handle kernel paging"
530 " request");
531 printk(" at virtual address %08lx\n",address);
532 printk(KERN_ALERT " printing eip:\n");
533 printk("%08lx\n", regs->eip);
1da177e4 534 }
4bb0d3ec 535 page = read_cr3();
1da177e4 536 page = ((unsigned long *) __va(page))[address >> 22];
dd287796
AM
537 if (oops_may_print())
538 printk(KERN_ALERT "*pde = %08lx\n", page);
1da177e4
LT
539 /*
540 * We must not directly access the pte in the highpte
541 * case, the page table might be allocated in highmem.
542 * And lets rather not kmap-atomic the pte, just in case
543 * it's allocated already.
544 */
545#ifndef CONFIG_HIGHPTE
dd287796 546 if ((page & 1) && oops_may_print()) {
1da177e4
LT
547 page &= PAGE_MASK;
548 address &= 0x003ff000;
549 page = ((unsigned long *) __va(page))[address >> PAGE_SHIFT];
550 printk(KERN_ALERT "*pte = %08lx\n", page);
551 }
552#endif
4f339ecb
AN
553 tsk->thread.cr2 = address;
554 tsk->thread.trap_no = 14;
555 tsk->thread.error_code = error_code;
1da177e4
LT
556 die("Oops", regs, error_code);
557 bust_spinlocks(0);
558 do_exit(SIGKILL);
559
560/*
561 * We ran out of memory, or some other thing happened to us that made
562 * us unable to handle the page fault gracefully.
563 */
564out_of_memory:
565 up_read(&mm->mmap_sem);
f400e198 566 if (is_init(tsk)) {
1da177e4
LT
567 yield();
568 down_read(&mm->mmap_sem);
569 goto survive;
570 }
571 printk("VM: killing process %s\n", tsk->comm);
572 if (error_code & 4)
573 do_exit(SIGKILL);
574 goto no_context;
575
576do_sigbus:
577 up_read(&mm->mmap_sem);
578
579 /* Kernel mode? Handle exceptions or die */
580 if (!(error_code & 4))
581 goto no_context;
582
583 /* User space => ok to do another page fault */
584 if (is_prefetch(regs, address, error_code))
585 return;
586
587 tsk->thread.cr2 = address;
588 tsk->thread.error_code = error_code;
589 tsk->thread.trap_no = 14;
869f96a0 590 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
101f12af 591}
1da177e4 592
101f12af
JB
593#ifndef CONFIG_X86_PAE
594void vmalloc_sync_all(void)
595{
596 /*
597 * Note that races in the updates of insync and start aren't
598 * problematic: insync can only get set bits added, and updates to
599 * start are only improving performance (without affecting correctness
600 * if undone).
601 */
602 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
603 static unsigned long start = TASK_SIZE;
604 unsigned long address;
1da177e4 605
101f12af
JB
606 BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
607 for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
608 if (!test_bit(pgd_index(address), insync)) {
609 unsigned long flags;
610 struct page *page;
611
612 spin_lock_irqsave(&pgd_lock, flags);
613 for (page = pgd_list; page; page =
614 (struct page *)page->index)
615 if (!vmalloc_sync_one(page_address(page),
616 address)) {
617 BUG_ON(page != pgd_list);
618 break;
619 }
620 spin_unlock_irqrestore(&pgd_lock, flags);
621 if (!page)
622 set_bit(pgd_index(address), insync);
623 }
624 if (address == start && test_bit(pgd_index(address), insync))
625 start = address + PGDIR_SIZE;
1da177e4
LT
626 }
627}
101f12af 628#endif