]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/i386/mm/fault.c
[PATCH] Kprobes: prevent possible race conditions generic
[mirror_ubuntu-zesty-kernel.git] / arch / i386 / mm / fault.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/i386/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 */
6
7#include <linux/signal.h>
8#include <linux/sched.h>
9#include <linux/kernel.h>
10#include <linux/errno.h>
11#include <linux/string.h>
12#include <linux/types.h>
13#include <linux/ptrace.h>
14#include <linux/mman.h>
15#include <linux/mm.h>
16#include <linux/smp.h>
17#include <linux/smp_lock.h>
18#include <linux/interrupt.h>
19#include <linux/init.h>
20#include <linux/tty.h>
21#include <linux/vt_kern.h> /* For unblank_screen() */
22#include <linux/highmem.h>
23#include <linux/module.h>
24
25#include <asm/system.h>
26#include <asm/uaccess.h>
27#include <asm/desc.h>
28#include <asm/kdebug.h>
29
30extern void die(const char *,struct pt_regs *,long);
31
32/*
33 * Unlock any spinlocks which will prevent us from getting the
34 * message out
35 */
36void bust_spinlocks(int yes)
37{
38 int loglevel_save = console_loglevel;
39
40 if (yes) {
41 oops_in_progress = 1;
42 return;
43 }
44#ifdef CONFIG_VT
45 unblank_screen();
46#endif
47 oops_in_progress = 0;
48 /*
49 * OK, the message is on the console. Now we call printk()
50 * without oops_in_progress set so that printk will give klogd
51 * a poke. Hold onto your hats...
52 */
53 console_loglevel = 15; /* NMI oopser may have shut the console up */
54 printk(" ");
55 console_loglevel = loglevel_save;
56}
57
58/*
59 * Return EIP plus the CS segment base. The segment limit is also
60 * adjusted, clamped to the kernel/user address space (whichever is
61 * appropriate), and returned in *eip_limit.
62 *
63 * The segment is checked, because it might have been changed by another
64 * task between the original faulting instruction and here.
65 *
66 * If CS is no longer a valid code segment, or if EIP is beyond the
67 * limit, or if it is a kernel address when CS is not a kernel segment,
68 * then the returned value will be greater than *eip_limit.
69 *
70 * This is slow, but is very rarely executed.
71 */
72static inline unsigned long get_segment_eip(struct pt_regs *regs,
73 unsigned long *eip_limit)
74{
75 unsigned long eip = regs->eip;
76 unsigned seg = regs->xcs & 0xffff;
77 u32 seg_ar, seg_limit, base, *desc;
78
79 /* The standard kernel/user address space limit. */
80 *eip_limit = (seg & 3) ? USER_DS.seg : KERNEL_DS.seg;
81
82 /* Unlikely, but must come before segment checks. */
83 if (unlikely((regs->eflags & VM_MASK) != 0))
84 return eip + (seg << 4);
85
86 /* By far the most common cases. */
87 if (likely(seg == __USER_CS || seg == __KERNEL_CS))
88 return eip;
89
90 /* Check the segment exists, is within the current LDT/GDT size,
91 that kernel/user (ring 0..3) has the appropriate privilege,
92 that it's a code segment, and get the limit. */
93 __asm__ ("larl %3,%0; lsll %3,%1"
94 : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg));
95 if ((~seg_ar & 0x9800) || eip > seg_limit) {
96 *eip_limit = 0;
97 return 1; /* So that returned eip > *eip_limit. */
98 }
99
100 /* Get the GDT/LDT descriptor base.
101 When you look for races in this code remember that
102 LDT and other horrors are only used in user space. */
103 if (seg & (1<<2)) {
104 /* Must lock the LDT while reading it. */
105 down(&current->mm->context.sem);
106 desc = current->mm->context.ldt;
107 desc = (void *)desc + (seg & ~7);
108 } else {
109 /* Must disable preemption while reading the GDT. */
110 desc = (u32 *)&per_cpu(cpu_gdt_table, get_cpu());
111 desc = (void *)desc + (seg & ~7);
112 }
113
114 /* Decode the code segment base from the descriptor */
115 base = get_desc_base((unsigned long *)desc);
116
117 if (seg & (1<<2)) {
118 up(&current->mm->context.sem);
119 } else
120 put_cpu();
121
122 /* Adjust EIP and segment limit, and clamp at the kernel limit.
123 It's legitimate for segments to wrap at 0xffffffff. */
124 seg_limit += base;
125 if (seg_limit < *eip_limit && seg_limit >= base)
126 *eip_limit = seg_limit;
127 return eip + base;
128}
129
130/*
131 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
132 * Check that here and ignore it.
133 */
134static int __is_prefetch(struct pt_regs *regs, unsigned long addr)
135{
136 unsigned long limit;
137 unsigned long instr = get_segment_eip (regs, &limit);
138 int scan_more = 1;
139 int prefetch = 0;
140 int i;
141
142 for (i = 0; scan_more && i < 15; i++) {
143 unsigned char opcode;
144 unsigned char instr_hi;
145 unsigned char instr_lo;
146
147 if (instr > limit)
148 break;
c7c58445 149 if (__get_user(opcode, (unsigned char __user *) instr))
1da177e4
LT
150 break;
151
152 instr_hi = opcode & 0xf0;
153 instr_lo = opcode & 0x0f;
154 instr++;
155
156 switch (instr_hi) {
157 case 0x20:
158 case 0x30:
159 /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */
160 scan_more = ((instr_lo & 7) == 0x6);
161 break;
162
163 case 0x60:
164 /* 0x64 thru 0x67 are valid prefixes in all modes. */
165 scan_more = (instr_lo & 0xC) == 0x4;
166 break;
167 case 0xF0:
168 /* 0xF0, 0xF2, and 0xF3 are valid prefixes */
169 scan_more = !instr_lo || (instr_lo>>1) == 1;
170 break;
171 case 0x00:
172 /* Prefetch instruction is 0x0F0D or 0x0F18 */
173 scan_more = 0;
174 if (instr > limit)
175 break;
c7c58445 176 if (__get_user(opcode, (unsigned char __user *) instr))
1da177e4
LT
177 break;
178 prefetch = (instr_lo == 0xF) &&
179 (opcode == 0x0D || opcode == 0x18);
180 break;
181 default:
182 scan_more = 0;
183 break;
184 }
185 }
186 return prefetch;
187}
188
189static inline int is_prefetch(struct pt_regs *regs, unsigned long addr,
190 unsigned long error_code)
191{
192 if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
193 boot_cpu_data.x86 >= 6)) {
194 /* Catch an obscure case of prefetch inside an NX page. */
195 if (nx_enabled && (error_code & 16))
196 return 0;
197 return __is_prefetch(regs, addr);
198 }
199 return 0;
200}
201
869f96a0
IM
202static noinline void force_sig_info_fault(int si_signo, int si_code,
203 unsigned long address, struct task_struct *tsk)
204{
205 siginfo_t info;
206
207 info.si_signo = si_signo;
208 info.si_errno = 0;
209 info.si_code = si_code;
210 info.si_addr = (void __user *)address;
211 force_sig_info(si_signo, &info, tsk);
212}
213
1da177e4
LT
214fastcall void do_invalid_op(struct pt_regs *, unsigned long);
215
216/*
217 * This routine handles page faults. It determines the address,
218 * and the problem, and then passes it off to one of the appropriate
219 * routines.
220 *
221 * error_code:
222 * bit 0 == 0 means no page found, 1 means protection fault
223 * bit 1 == 0 means read, 1 means write
224 * bit 2 == 0 means kernel, 1 means user-mode
225 */
226fastcall void do_page_fault(struct pt_regs *regs, unsigned long error_code)
227{
228 struct task_struct *tsk;
229 struct mm_struct *mm;
230 struct vm_area_struct * vma;
231 unsigned long address;
232 unsigned long page;
869f96a0 233 int write, si_code;
1da177e4
LT
234
235 /* get the address */
4bb0d3ec 236 address = read_cr2();
1da177e4
LT
237
238 if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
239 SIGSEGV) == NOTIFY_STOP)
240 return;
241 /* It's safe to allow irq's after cr2 has been saved */
242 if (regs->eflags & (X86_EFLAGS_IF|VM_MASK))
243 local_irq_enable();
244
245 tsk = current;
246
869f96a0 247 si_code = SEGV_MAPERR;
1da177e4
LT
248
249 /*
250 * We fault-in kernel-space virtual memory on-demand. The
251 * 'reference' page table is init_mm.pgd.
252 *
253 * NOTE! We MUST NOT take any locks for this case. We may
254 * be in an interrupt or a critical region, and should
255 * only copy the information from the master page table,
256 * nothing more.
257 *
258 * This verifies that the fault happens in kernel space
259 * (error_code & 4) == 0, and that the fault was not a
260 * protection error (error_code & 1) == 0.
261 */
262 if (unlikely(address >= TASK_SIZE)) {
263 if (!(error_code & 5))
264 goto vmalloc_fault;
265 /*
266 * Don't take the mm semaphore here. If we fixup a prefetch
267 * fault we could otherwise deadlock.
268 */
269 goto bad_area_nosemaphore;
270 }
271
272 mm = tsk->mm;
273
274 /*
275 * If we're in an interrupt, have no user context or are running in an
276 * atomic region then we must not take the fault..
277 */
278 if (in_atomic() || !mm)
279 goto bad_area_nosemaphore;
280
281 /* When running in the kernel we expect faults to occur only to
282 * addresses in user space. All other faults represent errors in the
283 * kernel and should generate an OOPS. Unfortunatly, in the case of an
284 * erroneous fault occuring in a code path which already holds mmap_sem
285 * we will deadlock attempting to validate the fault against the
286 * address space. Luckily the kernel only validly references user
287 * space from well defined areas of code, which are listed in the
288 * exceptions table.
289 *
290 * As the vast majority of faults will be valid we will only perform
291 * the source reference check when there is a possibilty of a deadlock.
292 * Attempt to lock the address space, if we cannot we then validate the
293 * source. If this is invalid we can skip the address space check,
294 * thus avoiding the deadlock.
295 */
296 if (!down_read_trylock(&mm->mmap_sem)) {
297 if ((error_code & 4) == 0 &&
298 !search_exception_tables(regs->eip))
299 goto bad_area_nosemaphore;
300 down_read(&mm->mmap_sem);
301 }
302
303 vma = find_vma(mm, address);
304 if (!vma)
305 goto bad_area;
306 if (vma->vm_start <= address)
307 goto good_area;
308 if (!(vma->vm_flags & VM_GROWSDOWN))
309 goto bad_area;
310 if (error_code & 4) {
311 /*
312 * accessing the stack below %esp is always a bug.
313 * The "+ 32" is there due to some instructions (like
314 * pusha) doing post-decrement on the stack and that
315 * doesn't show up until later..
316 */
317 if (address + 32 < regs->esp)
318 goto bad_area;
319 }
320 if (expand_stack(vma, address))
321 goto bad_area;
322/*
323 * Ok, we have a good vm_area for this memory access, so
324 * we can handle it..
325 */
326good_area:
869f96a0 327 si_code = SEGV_ACCERR;
1da177e4
LT
328 write = 0;
329 switch (error_code & 3) {
330 default: /* 3: write, present */
331#ifdef TEST_VERIFY_AREA
332 if (regs->cs == KERNEL_CS)
333 printk("WP fault at %08lx\n", regs->eip);
334#endif
335 /* fall through */
336 case 2: /* write, not present */
337 if (!(vma->vm_flags & VM_WRITE))
338 goto bad_area;
339 write++;
340 break;
341 case 1: /* read, present */
342 goto bad_area;
343 case 0: /* read, not present */
344 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
345 goto bad_area;
346 }
347
348 survive:
349 /*
350 * If for any reason at all we couldn't handle the fault,
351 * make sure we exit gracefully rather than endlessly redo
352 * the fault.
353 */
354 switch (handle_mm_fault(mm, vma, address, write)) {
355 case VM_FAULT_MINOR:
356 tsk->min_flt++;
357 break;
358 case VM_FAULT_MAJOR:
359 tsk->maj_flt++;
360 break;
361 case VM_FAULT_SIGBUS:
362 goto do_sigbus;
363 case VM_FAULT_OOM:
364 goto out_of_memory;
365 default:
366 BUG();
367 }
368
369 /*
370 * Did it hit the DOS screen memory VA from vm86 mode?
371 */
372 if (regs->eflags & VM_MASK) {
373 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
374 if (bit < 32)
375 tsk->thread.screen_bitmap |= 1 << bit;
376 }
377 up_read(&mm->mmap_sem);
378 return;
379
380/*
381 * Something tried to access memory that isn't in our memory map..
382 * Fix it, but check if it's kernel or user first..
383 */
384bad_area:
385 up_read(&mm->mmap_sem);
386
387bad_area_nosemaphore:
388 /* User mode accesses just cause a SIGSEGV */
389 if (error_code & 4) {
390 /*
391 * Valid to do another page fault here because this one came
392 * from user space.
393 */
394 if (is_prefetch(regs, address, error_code))
395 return;
396
397 tsk->thread.cr2 = address;
398 /* Kernel addresses are always protection faults */
399 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
400 tsk->thread.trap_no = 14;
869f96a0 401 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
1da177e4
LT
402 return;
403 }
404
405#ifdef CONFIG_X86_F00F_BUG
406 /*
407 * Pentium F0 0F C7 C8 bug workaround.
408 */
409 if (boot_cpu_data.f00f_bug) {
410 unsigned long nr;
411
412 nr = (address - idt_descr.address) >> 3;
413
414 if (nr == 6) {
415 do_invalid_op(regs, 0);
416 return;
417 }
418 }
419#endif
420
421no_context:
422 /* Are we prepared to handle this kernel fault? */
423 if (fixup_exception(regs))
424 return;
425
426 /*
427 * Valid to do another page fault here, because if this fault
428 * had been triggered by is_prefetch fixup_exception would have
429 * handled it.
430 */
431 if (is_prefetch(regs, address, error_code))
432 return;
433
434/*
435 * Oops. The kernel tried to access some bad page. We'll have to
436 * terminate things with extreme prejudice.
437 */
438
439 bust_spinlocks(1);
440
441#ifdef CONFIG_X86_PAE
442 if (error_code & 16) {
443 pte_t *pte = lookup_address(address);
444
445 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
446 printk(KERN_CRIT "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n", current->uid);
447 }
448#endif
449 if (address < PAGE_SIZE)
450 printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
451 else
452 printk(KERN_ALERT "Unable to handle kernel paging request");
453 printk(" at virtual address %08lx\n",address);
454 printk(KERN_ALERT " printing eip:\n");
455 printk("%08lx\n", regs->eip);
4bb0d3ec 456 page = read_cr3();
1da177e4
LT
457 page = ((unsigned long *) __va(page))[address >> 22];
458 printk(KERN_ALERT "*pde = %08lx\n", page);
459 /*
460 * We must not directly access the pte in the highpte
461 * case, the page table might be allocated in highmem.
462 * And lets rather not kmap-atomic the pte, just in case
463 * it's allocated already.
464 */
465#ifndef CONFIG_HIGHPTE
466 if (page & 1) {
467 page &= PAGE_MASK;
468 address &= 0x003ff000;
469 page = ((unsigned long *) __va(page))[address >> PAGE_SHIFT];
470 printk(KERN_ALERT "*pte = %08lx\n", page);
471 }
472#endif
4f339ecb
AN
473 tsk->thread.cr2 = address;
474 tsk->thread.trap_no = 14;
475 tsk->thread.error_code = error_code;
1da177e4
LT
476 die("Oops", regs, error_code);
477 bust_spinlocks(0);
478 do_exit(SIGKILL);
479
480/*
481 * We ran out of memory, or some other thing happened to us that made
482 * us unable to handle the page fault gracefully.
483 */
484out_of_memory:
485 up_read(&mm->mmap_sem);
486 if (tsk->pid == 1) {
487 yield();
488 down_read(&mm->mmap_sem);
489 goto survive;
490 }
491 printk("VM: killing process %s\n", tsk->comm);
492 if (error_code & 4)
493 do_exit(SIGKILL);
494 goto no_context;
495
496do_sigbus:
497 up_read(&mm->mmap_sem);
498
499 /* Kernel mode? Handle exceptions or die */
500 if (!(error_code & 4))
501 goto no_context;
502
503 /* User space => ok to do another page fault */
504 if (is_prefetch(regs, address, error_code))
505 return;
506
507 tsk->thread.cr2 = address;
508 tsk->thread.error_code = error_code;
509 tsk->thread.trap_no = 14;
869f96a0 510 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
1da177e4
LT
511 return;
512
513vmalloc_fault:
514 {
515 /*
516 * Synchronize this task's top level page-table
517 * with the 'reference' page table.
518 *
519 * Do _not_ use "tsk" here. We might be inside
520 * an interrupt in the middle of a task switch..
521 */
522 int index = pgd_index(address);
523 unsigned long pgd_paddr;
524 pgd_t *pgd, *pgd_k;
525 pud_t *pud, *pud_k;
526 pmd_t *pmd, *pmd_k;
527 pte_t *pte_k;
528
4bb0d3ec 529 pgd_paddr = read_cr3();
1da177e4
LT
530 pgd = index + (pgd_t *)__va(pgd_paddr);
531 pgd_k = init_mm.pgd + index;
532
533 if (!pgd_present(*pgd_k))
534 goto no_context;
535
536 /*
537 * set_pgd(pgd, *pgd_k); here would be useless on PAE
538 * and redundant with the set_pmd() on non-PAE. As would
539 * set_pud.
540 */
541
542 pud = pud_offset(pgd, address);
543 pud_k = pud_offset(pgd_k, address);
544 if (!pud_present(*pud_k))
545 goto no_context;
546
547 pmd = pmd_offset(pud, address);
548 pmd_k = pmd_offset(pud_k, address);
549 if (!pmd_present(*pmd_k))
550 goto no_context;
551 set_pmd(pmd, *pmd_k);
552
553 pte_k = pte_offset_kernel(pmd_k, address);
554 if (!pte_present(*pte_k))
555 goto no_context;
556 return;
557 }
558}