]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/ia64/kernel/cpufreq/acpi-cpufreq.c
[IA64] tidy up return value of ip_fast_csum
[mirror_ubuntu-artful-kernel.git] / arch / ia64 / kernel / cpufreq / acpi-cpufreq.c
CommitLineData
4db8699b
VP
1/*
2 * arch/ia64/kernel/cpufreq/acpi-cpufreq.c
3 * This file provides the ACPI based P-state support. This
4 * module works with generic cpufreq infrastructure. Most of
5 * the code is based on i386 version
6 * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c)
7 *
8 * Copyright (C) 2005 Intel Corp
9 * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 */
11
4db8699b
VP
12#include <linux/kernel.h>
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/cpufreq.h>
16#include <linux/proc_fs.h>
17#include <linux/seq_file.h>
18#include <asm/io.h>
19#include <asm/uaccess.h>
20#include <asm/pal.h>
21
22#include <linux/acpi.h>
23#include <acpi/processor.h>
24
25#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
26
27MODULE_AUTHOR("Venkatesh Pallipadi");
28MODULE_DESCRIPTION("ACPI Processor P-States Driver");
29MODULE_LICENSE("GPL");
30
31
32struct cpufreq_acpi_io {
33 struct acpi_processor_performance acpi_data;
34 struct cpufreq_frequency_table *freq_table;
35 unsigned int resume;
36};
37
38static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS];
39
40static struct cpufreq_driver acpi_cpufreq_driver;
41
42
43static int
44processor_set_pstate (
45 u32 value)
46{
47 s64 retval;
48
49 dprintk("processor_set_pstate\n");
50
51 retval = ia64_pal_set_pstate((u64)value);
52
53 if (retval) {
54 dprintk("Failed to set freq to 0x%x, with error 0x%x\n",
55 value, retval);
56 return -ENODEV;
57 }
58 return (int)retval;
59}
60
61
62static int
63processor_get_pstate (
64 u32 *value)
65{
66 u64 pstate_index = 0;
67 s64 retval;
68
69 dprintk("processor_get_pstate\n");
70
71 retval = ia64_pal_get_pstate(&pstate_index);
72 *value = (u32) pstate_index;
73
74 if (retval)
75 dprintk("Failed to get current freq with "
76 "error 0x%x, idx 0x%x\n", retval, *value);
77
78 return (int)retval;
79}
80
81
82/* To be used only after data->acpi_data is initialized */
83static unsigned
84extract_clock (
85 struct cpufreq_acpi_io *data,
86 unsigned value,
87 unsigned int cpu)
88{
89 unsigned long i;
90
91 dprintk("extract_clock\n");
92
93 for (i = 0; i < data->acpi_data.state_count; i++) {
94 if (value >= data->acpi_data.states[i].control)
95 return data->acpi_data.states[i].core_frequency;
96 }
97 return data->acpi_data.states[i-1].core_frequency;
98}
99
100
101static unsigned int
102processor_get_freq (
103 struct cpufreq_acpi_io *data,
104 unsigned int cpu)
105{
106 int ret = 0;
107 u32 value = 0;
108 cpumask_t saved_mask;
109 unsigned long clock_freq;
110
111 dprintk("processor_get_freq\n");
112
113 saved_mask = current->cpus_allowed;
114 set_cpus_allowed(current, cpumask_of_cpu(cpu));
115 if (smp_processor_id() != cpu) {
116 ret = -EAGAIN;
117 goto migrate_end;
118 }
119
120 /*
121 * processor_get_pstate gets the average frequency since the
122 * last get. So, do two PAL_get_freq()...
123 */
124 ret = processor_get_pstate(&value);
125 ret = processor_get_pstate(&value);
126
127 if (ret) {
128 set_cpus_allowed(current, saved_mask);
129 printk(KERN_WARNING "get performance failed with error %d\n",
130 ret);
131 ret = -EAGAIN;
132 goto migrate_end;
133 }
134 clock_freq = extract_clock(data, value, cpu);
135 ret = (clock_freq*1000);
136
137migrate_end:
138 set_cpus_allowed(current, saved_mask);
139 return ret;
140}
141
142
143static int
144processor_set_freq (
145 struct cpufreq_acpi_io *data,
146 unsigned int cpu,
147 int state)
148{
149 int ret = 0;
150 u32 value = 0;
151 struct cpufreq_freqs cpufreq_freqs;
152 cpumask_t saved_mask;
153 int retval;
154
155 dprintk("processor_set_freq\n");
156
157 saved_mask = current->cpus_allowed;
158 set_cpus_allowed(current, cpumask_of_cpu(cpu));
159 if (smp_processor_id() != cpu) {
160 retval = -EAGAIN;
161 goto migrate_end;
162 }
163
164 if (state == data->acpi_data.state) {
165 if (unlikely(data->resume)) {
166 dprintk("Called after resume, resetting to P%d\n", state);
167 data->resume = 0;
168 } else {
169 dprintk("Already at target state (P%d)\n", state);
170 retval = 0;
171 goto migrate_end;
172 }
173 }
174
175 dprintk("Transitioning from P%d to P%d\n",
176 data->acpi_data.state, state);
177
178 /* cpufreq frequency struct */
179 cpufreq_freqs.cpu = cpu;
180 cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency;
181 cpufreq_freqs.new = data->freq_table[state].frequency;
182
183 /* notify cpufreq */
184 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
185
186 /*
187 * First we write the target state's 'control' value to the
188 * control_register.
189 */
190
191 value = (u32) data->acpi_data.states[state].control;
192
193 dprintk("Transitioning to state: 0x%08x\n", value);
194
195 ret = processor_set_pstate(value);
196 if (ret) {
197 unsigned int tmp = cpufreq_freqs.new;
198 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
199 cpufreq_freqs.new = cpufreq_freqs.old;
200 cpufreq_freqs.old = tmp;
201 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
202 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
203 printk(KERN_WARNING "Transition failed with error %d\n", ret);
204 retval = -ENODEV;
205 goto migrate_end;
206 }
207
208 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
209
210 data->acpi_data.state = state;
211
212 retval = 0;
213
214migrate_end:
215 set_cpus_allowed(current, saved_mask);
216 return (retval);
217}
218
219
220static unsigned int
221acpi_cpufreq_get (
222 unsigned int cpu)
223{
224 struct cpufreq_acpi_io *data = acpi_io_data[cpu];
225
226 dprintk("acpi_cpufreq_get\n");
227
228 return processor_get_freq(data, cpu);
229}
230
231
232static int
233acpi_cpufreq_target (
234 struct cpufreq_policy *policy,
235 unsigned int target_freq,
236 unsigned int relation)
237{
238 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
239 unsigned int next_state = 0;
240 unsigned int result = 0;
241
242 dprintk("acpi_cpufreq_setpolicy\n");
243
244 result = cpufreq_frequency_table_target(policy,
245 data->freq_table, target_freq, relation, &next_state);
246 if (result)
247 return (result);
248
249 result = processor_set_freq(data, policy->cpu, next_state);
250
251 return (result);
252}
253
254
255static int
256acpi_cpufreq_verify (
257 struct cpufreq_policy *policy)
258{
259 unsigned int result = 0;
260 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
261
262 dprintk("acpi_cpufreq_verify\n");
263
264 result = cpufreq_frequency_table_verify(policy,
265 data->freq_table);
266
267 return (result);
268}
269
270
4db8699b
VP
271static int
272acpi_cpufreq_cpu_init (
273 struct cpufreq_policy *policy)
274{
275 unsigned int i;
276 unsigned int cpu = policy->cpu;
277 struct cpufreq_acpi_io *data;
278 unsigned int result = 0;
279
4db8699b 280 dprintk("acpi_cpufreq_cpu_init\n");
4db8699b
VP
281
282 data = kmalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL);
283 if (!data)
284 return (-ENOMEM);
285
286 memset(data, 0, sizeof(struct cpufreq_acpi_io));
287
288 acpi_io_data[cpu] = data;
289
4db8699b 290 result = acpi_processor_register_performance(&data->acpi_data, cpu);
4db8699b
VP
291
292 if (result)
293 goto err_free;
294
295 /* capability check */
296 if (data->acpi_data.state_count <= 1) {
297 dprintk("No P-States\n");
298 result = -ENODEV;
299 goto err_unreg;
300 }
301
302 if ((data->acpi_data.control_register.space_id !=
303 ACPI_ADR_SPACE_FIXED_HARDWARE) ||
304 (data->acpi_data.status_register.space_id !=
305 ACPI_ADR_SPACE_FIXED_HARDWARE)) {
306 dprintk("Unsupported address space [%d, %d]\n",
307 (u32) (data->acpi_data.control_register.space_id),
308 (u32) (data->acpi_data.status_register.space_id));
309 result = -ENODEV;
310 goto err_unreg;
311 }
312
313 /* alloc freq_table */
314 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
315 (data->acpi_data.state_count + 1),
316 GFP_KERNEL);
317 if (!data->freq_table) {
318 result = -ENOMEM;
319 goto err_unreg;
320 }
321
322 /* detect transition latency */
323 policy->cpuinfo.transition_latency = 0;
324 for (i=0; i<data->acpi_data.state_count; i++) {
325 if ((data->acpi_data.states[i].transition_latency * 1000) >
326 policy->cpuinfo.transition_latency) {
327 policy->cpuinfo.transition_latency =
328 data->acpi_data.states[i].transition_latency * 1000;
329 }
330 }
331 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
332
333 policy->cur = processor_get_freq(data, policy->cpu);
334
335 /* table init */
336 for (i = 0; i <= data->acpi_data.state_count; i++)
337 {
338 data->freq_table[i].index = i;
339 if (i < data->acpi_data.state_count) {
340 data->freq_table[i].frequency =
341 data->acpi_data.states[i].core_frequency * 1000;
342 } else {
343 data->freq_table[i].frequency = CPUFREQ_TABLE_END;
344 }
345 }
346
347 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
348 if (result) {
349 goto err_freqfree;
350 }
351
352 /* notify BIOS that we exist */
353 acpi_processor_notify_smm(THIS_MODULE);
354
355 printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management "
356 "activated.\n", cpu);
357
358 for (i = 0; i < data->acpi_data.state_count; i++)
359 dprintk(" %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n",
360 (i == data->acpi_data.state?'*':' '), i,
361 (u32) data->acpi_data.states[i].core_frequency,
362 (u32) data->acpi_data.states[i].power,
363 (u32) data->acpi_data.states[i].transition_latency,
364 (u32) data->acpi_data.states[i].bus_master_latency,
365 (u32) data->acpi_data.states[i].status,
366 (u32) data->acpi_data.states[i].control);
367
368 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
369
370 /* the first call to ->target() should result in us actually
371 * writing something to the appropriate registers. */
372 data->resume = 1;
373
374 return (result);
375
376 err_freqfree:
377 kfree(data->freq_table);
378 err_unreg:
379 acpi_processor_unregister_performance(&data->acpi_data, cpu);
380 err_free:
381 kfree(data);
382 acpi_io_data[cpu] = NULL;
383
384 return (result);
385}
386
387
388static int
389acpi_cpufreq_cpu_exit (
390 struct cpufreq_policy *policy)
391{
392 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
393
394 dprintk("acpi_cpufreq_cpu_exit\n");
395
396 if (data) {
397 cpufreq_frequency_table_put_attr(policy->cpu);
398 acpi_io_data[policy->cpu] = NULL;
399 acpi_processor_unregister_performance(&data->acpi_data,
400 policy->cpu);
401 kfree(data);
402 }
403
404 return (0);
405}
406
407
408static struct freq_attr* acpi_cpufreq_attr[] = {
409 &cpufreq_freq_attr_scaling_available_freqs,
410 NULL,
411};
412
413
414static struct cpufreq_driver acpi_cpufreq_driver = {
415 .verify = acpi_cpufreq_verify,
416 .target = acpi_cpufreq_target,
417 .get = acpi_cpufreq_get,
418 .init = acpi_cpufreq_cpu_init,
419 .exit = acpi_cpufreq_cpu_exit,
420 .name = "acpi-cpufreq",
421 .owner = THIS_MODULE,
422 .attr = acpi_cpufreq_attr,
423};
424
425
426static int __init
427acpi_cpufreq_init (void)
428{
429 dprintk("acpi_cpufreq_init\n");
430
431 return cpufreq_register_driver(&acpi_cpufreq_driver);
432}
433
434
435static void __exit
436acpi_cpufreq_exit (void)
437{
438 dprintk("acpi_cpufreq_exit\n");
439
440 cpufreq_unregister_driver(&acpi_cpufreq_driver);
441 return;
442}
443
444
445late_initcall(acpi_cpufreq_init);
446module_exit(acpi_cpufreq_exit);
447