]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/ia64/kernel/efi.c
Revert "[IA64] swiotlb abstraction (e.g. for Xen)"
[mirror_ubuntu-artful-kernel.git] / arch / ia64 / kernel / efi.c
CommitLineData
1da177e4
LT
1/*
2 * Extensible Firmware Interface
3 *
4 * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
5 *
6 * Copyright (C) 1999 VA Linux Systems
7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8 * Copyright (C) 1999-2003 Hewlett-Packard Co.
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 * Stephane Eranian <eranian@hpl.hp.com>
32e62c63
BH
11 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
12 * Bjorn Helgaas <bjorn.helgaas@hp.com>
1da177e4
LT
13 *
14 * All EFI Runtime Services are not implemented yet as EFI only
15 * supports physical mode addressing on SoftSDV. This is to be fixed
16 * in a future version. --drummond 1999-07-20
17 *
18 * Implemented EFI runtime services and virtual mode calls. --davidm
19 *
20 * Goutham Rao: <goutham.rao@intel.com>
21 * Skip non-WB memory and ignore empty memory ranges.
22 */
1da177e4
LT
23#include <linux/module.h>
24#include <linux/kernel.h>
25#include <linux/init.h>
26#include <linux/types.h>
27#include <linux/time.h>
28#include <linux/efi.h>
a7956113 29#include <linux/kexec.h>
1da177e4
LT
30
31#include <asm/io.h>
32#include <asm/kregs.h>
33#include <asm/meminit.h>
34#include <asm/pgtable.h>
35#include <asm/processor.h>
36#include <asm/mca.h>
37
38#define EFI_DEBUG 0
39
40extern efi_status_t efi_call_phys (void *, ...);
41
42struct efi efi;
43EXPORT_SYMBOL(efi);
44static efi_runtime_services_t *runtime;
a7956113 45static unsigned long mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
1da177e4
LT
46
47#define efi_call_virt(f, args...) (*(f))(args)
48
49#define STUB_GET_TIME(prefix, adjust_arg) \
50static efi_status_t \
51prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
52{ \
53 struct ia64_fpreg fr[6]; \
54 efi_time_cap_t *atc = NULL; \
55 efi_status_t ret; \
56 \
57 if (tc) \
58 atc = adjust_arg(tc); \
59 ia64_save_scratch_fpregs(fr); \
60 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
61 ia64_load_scratch_fpregs(fr); \
62 return ret; \
63}
64
65#define STUB_SET_TIME(prefix, adjust_arg) \
66static efi_status_t \
67prefix##_set_time (efi_time_t *tm) \
68{ \
69 struct ia64_fpreg fr[6]; \
70 efi_status_t ret; \
71 \
72 ia64_save_scratch_fpregs(fr); \
73 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \
74 ia64_load_scratch_fpregs(fr); \
75 return ret; \
76}
77
78#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
79static efi_status_t \
80prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \
81{ \
82 struct ia64_fpreg fr[6]; \
83 efi_status_t ret; \
84 \
85 ia64_save_scratch_fpregs(fr); \
86 ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
87 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
88 ia64_load_scratch_fpregs(fr); \
89 return ret; \
90}
91
92#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
93static efi_status_t \
94prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
95{ \
96 struct ia64_fpreg fr[6]; \
97 efi_time_t *atm = NULL; \
98 efi_status_t ret; \
99 \
100 if (tm) \
101 atm = adjust_arg(tm); \
102 ia64_save_scratch_fpregs(fr); \
103 ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
104 enabled, atm); \
105 ia64_load_scratch_fpregs(fr); \
106 return ret; \
107}
108
109#define STUB_GET_VARIABLE(prefix, adjust_arg) \
110static efi_status_t \
111prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
112 unsigned long *data_size, void *data) \
113{ \
114 struct ia64_fpreg fr[6]; \
115 u32 *aattr = NULL; \
116 efi_status_t ret; \
117 \
118 if (attr) \
119 aattr = adjust_arg(attr); \
120 ia64_save_scratch_fpregs(fr); \
121 ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \
122 adjust_arg(name), adjust_arg(vendor), aattr, \
123 adjust_arg(data_size), adjust_arg(data)); \
124 ia64_load_scratch_fpregs(fr); \
125 return ret; \
126}
127
128#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
129static efi_status_t \
130prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \
131{ \
132 struct ia64_fpreg fr[6]; \
133 efi_status_t ret; \
134 \
135 ia64_save_scratch_fpregs(fr); \
136 ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \
137 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
138 ia64_load_scratch_fpregs(fr); \
139 return ret; \
140}
141
142#define STUB_SET_VARIABLE(prefix, adjust_arg) \
143static efi_status_t \
144prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \
145 unsigned long data_size, void *data) \
146{ \
147 struct ia64_fpreg fr[6]; \
148 efi_status_t ret; \
149 \
150 ia64_save_scratch_fpregs(fr); \
151 ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \
152 adjust_arg(name), adjust_arg(vendor), attr, data_size, \
153 adjust_arg(data)); \
154 ia64_load_scratch_fpregs(fr); \
155 return ret; \
156}
157
158#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
159static efi_status_t \
160prefix##_get_next_high_mono_count (u32 *count) \
161{ \
162 struct ia64_fpreg fr[6]; \
163 efi_status_t ret; \
164 \
165 ia64_save_scratch_fpregs(fr); \
166 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
167 __va(runtime->get_next_high_mono_count), adjust_arg(count)); \
168 ia64_load_scratch_fpregs(fr); \
169 return ret; \
170}
171
172#define STUB_RESET_SYSTEM(prefix, adjust_arg) \
173static void \
174prefix##_reset_system (int reset_type, efi_status_t status, \
175 unsigned long data_size, efi_char16_t *data) \
176{ \
177 struct ia64_fpreg fr[6]; \
178 efi_char16_t *adata = NULL; \
179 \
180 if (data) \
181 adata = adjust_arg(data); \
182 \
183 ia64_save_scratch_fpregs(fr); \
184 efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \
185 reset_type, status, data_size, adata); \
186 /* should not return, but just in case... */ \
187 ia64_load_scratch_fpregs(fr); \
188}
189
190#define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
191
192STUB_GET_TIME(phys, phys_ptr)
193STUB_SET_TIME(phys, phys_ptr)
194STUB_GET_WAKEUP_TIME(phys, phys_ptr)
195STUB_SET_WAKEUP_TIME(phys, phys_ptr)
196STUB_GET_VARIABLE(phys, phys_ptr)
197STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
198STUB_SET_VARIABLE(phys, phys_ptr)
199STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
200STUB_RESET_SYSTEM(phys, phys_ptr)
201
202#define id(arg) arg
203
204STUB_GET_TIME(virt, id)
205STUB_SET_TIME(virt, id)
206STUB_GET_WAKEUP_TIME(virt, id)
207STUB_SET_WAKEUP_TIME(virt, id)
208STUB_GET_VARIABLE(virt, id)
209STUB_GET_NEXT_VARIABLE(virt, id)
210STUB_SET_VARIABLE(virt, id)
211STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
212STUB_RESET_SYSTEM(virt, id)
213
214void
215efi_gettimeofday (struct timespec *ts)
216{
217 efi_time_t tm;
218
219 memset(ts, 0, sizeof(ts));
220 if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS)
221 return;
222
223 ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
224 ts->tv_nsec = tm.nanosecond;
225}
226
227static int
66888a6e 228is_memory_available (efi_memory_desc_t *md)
1da177e4
LT
229{
230 if (!(md->attribute & EFI_MEMORY_WB))
231 return 0;
232
233 switch (md->type) {
234 case EFI_LOADER_CODE:
235 case EFI_LOADER_DATA:
236 case EFI_BOOT_SERVICES_CODE:
237 case EFI_BOOT_SERVICES_DATA:
238 case EFI_CONVENTIONAL_MEMORY:
239 return 1;
240 }
241 return 0;
242}
243
d8c97d5f
TL
244typedef struct kern_memdesc {
245 u64 attribute;
246 u64 start;
247 u64 num_pages;
248} kern_memdesc_t;
1da177e4 249
d8c97d5f 250static kern_memdesc_t *kern_memmap;
1da177e4 251
80851ef2
BH
252#define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
253
254static inline u64
255kmd_end(kern_memdesc_t *kmd)
256{
257 return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
258}
259
260static inline u64
261efi_md_end(efi_memory_desc_t *md)
262{
263 return (md->phys_addr + efi_md_size(md));
264}
265
266static inline int
267efi_wb(efi_memory_desc_t *md)
268{
269 return (md->attribute & EFI_MEMORY_WB);
270}
271
272static inline int
273efi_uc(efi_memory_desc_t *md)
274{
275 return (md->attribute & EFI_MEMORY_UC);
276}
277
1da177e4 278static void
d8c97d5f 279walk (efi_freemem_callback_t callback, void *arg, u64 attr)
1da177e4 280{
d8c97d5f
TL
281 kern_memdesc_t *k;
282 u64 start, end, voff;
1da177e4 283
d8c97d5f
TL
284 voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
285 for (k = kern_memmap; k->start != ~0UL; k++) {
286 if (k->attribute != attr)
287 continue;
288 start = PAGE_ALIGN(k->start);
289 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
290 if (start < end)
291 if ((*callback)(start + voff, end + voff, arg) < 0)
292 return;
293 }
1da177e4
LT
294}
295
296/*
297 * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
298 * has memory that is available for OS use.
299 */
300void
301efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
302{
d8c97d5f 303 walk(callback, arg, EFI_MEMORY_WB);
1da177e4
LT
304}
305
f14f75b8 306/*
d8c97d5f
TL
307 * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
308 * has memory that is available for uncached allocator.
f14f75b8 309 */
d8c97d5f
TL
310void
311efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
f14f75b8 312{
d8c97d5f 313 walk(callback, arg, EFI_MEMORY_UC);
f14f75b8
JS
314}
315
1da177e4
LT
316/*
317 * Look for the PAL_CODE region reported by EFI and maps it using an
318 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
319 * Abstraction Layer chapter 11 in ADAG
320 */
321
322void *
323efi_get_pal_addr (void)
324{
325 void *efi_map_start, *efi_map_end, *p;
326 efi_memory_desc_t *md;
327 u64 efi_desc_size;
328 int pal_code_count = 0;
329 u64 vaddr, mask;
330
331 efi_map_start = __va(ia64_boot_param->efi_memmap);
332 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
333 efi_desc_size = ia64_boot_param->efi_memdesc_size;
334
335 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
336 md = p;
337 if (md->type != EFI_PAL_CODE)
338 continue;
339
340 if (++pal_code_count > 1) {
341 printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
342 md->phys_addr);
343 continue;
344 }
345 /*
346 * The only ITLB entry in region 7 that is used is the one installed by
347 * __start(). That entry covers a 64MB range.
348 */
349 mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
350 vaddr = PAGE_OFFSET + md->phys_addr;
351
352 /*
353 * We must check that the PAL mapping won't overlap with the kernel
354 * mapping.
355 *
356 * PAL code is guaranteed to be aligned on a power of 2 between 4k and
357 * 256KB and that only one ITR is needed to map it. This implies that the
358 * PAL code is always aligned on its size, i.e., the closest matching page
359 * size supported by the TLB. Therefore PAL code is guaranteed never to
360 * cross a 64MB unless it is bigger than 64MB (very unlikely!). So for
361 * now the following test is enough to determine whether or not we need a
362 * dedicated ITR for the PAL code.
363 */
364 if ((vaddr & mask) == (KERNEL_START & mask)) {
365 printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
366 __FUNCTION__);
367 continue;
368 }
369
370 if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE)
371 panic("Woah! PAL code size bigger than a granule!");
372
373#if EFI_DEBUG
374 mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
375
376 printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
377 smp_processor_id(), md->phys_addr,
378 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
379 vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
380#endif
381 return __va(md->phys_addr);
382 }
9473252f 383 printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
1da177e4
LT
384 __FUNCTION__);
385 return NULL;
386}
387
388void
389efi_map_pal_code (void)
390{
391 void *pal_vaddr = efi_get_pal_addr ();
392 u64 psr;
393
394 if (!pal_vaddr)
395 return;
396
397 /*
398 * Cannot write to CRx with PSR.ic=1
399 */
400 psr = ia64_clear_ic();
401 ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
402 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
403 IA64_GRANULE_SHIFT);
404 ia64_set_psr(psr); /* restore psr */
405 ia64_srlz_i();
406}
407
408void __init
409efi_init (void)
410{
411 void *efi_map_start, *efi_map_end;
412 efi_config_table_t *config_tables;
413 efi_char16_t *c16;
414 u64 efi_desc_size;
9d78f43d 415 char *cp, vendor[100] = "unknown";
1da177e4
LT
416 int i;
417
418 /* it's too early to be able to use the standard kernel command line support... */
a8d91b84 419 for (cp = boot_command_line; *cp; ) {
1da177e4 420 if (memcmp(cp, "mem=", 4) == 0) {
9d78f43d 421 mem_limit = memparse(cp + 4, &cp);
1da177e4 422 } else if (memcmp(cp, "max_addr=", 9) == 0) {
9d78f43d 423 max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
a7956113
ZN
424 } else if (memcmp(cp, "min_addr=", 9) == 0) {
425 min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
1da177e4
LT
426 } else {
427 while (*cp != ' ' && *cp)
428 ++cp;
429 while (*cp == ' ')
430 ++cp;
431 }
432 }
a7956113
ZN
433 if (min_addr != 0UL)
434 printk(KERN_INFO "Ignoring memory below %luMB\n", min_addr >> 20);
1da177e4
LT
435 if (max_addr != ~0UL)
436 printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
437
438 efi.systab = __va(ia64_boot_param->efi_systab);
439
440 /*
441 * Verify the EFI Table
442 */
443 if (efi.systab == NULL)
444 panic("Woah! Can't find EFI system table.\n");
445 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
446 panic("Woah! EFI system table signature incorrect\n");
447 if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
448 printk(KERN_WARNING "Warning: EFI system table major version mismatch: "
449 "got %d.%02d, expected %d.%02d\n",
450 efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff,
451 EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff);
452
453 config_tables = __va(efi.systab->tables);
454
455 /* Show what we know for posterity */
456 c16 = __va(efi.systab->fw_vendor);
457 if (c16) {
ecdd5dab 458 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
1da177e4
LT
459 vendor[i] = *c16++;
460 vendor[i] = '\0';
461 }
462
463 printk(KERN_INFO "EFI v%u.%.02u by %s:",
464 efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
465
b2c99e3c
BH
466 efi.mps = EFI_INVALID_TABLE_ADDR;
467 efi.acpi = EFI_INVALID_TABLE_ADDR;
468 efi.acpi20 = EFI_INVALID_TABLE_ADDR;
469 efi.smbios = EFI_INVALID_TABLE_ADDR;
470 efi.sal_systab = EFI_INVALID_TABLE_ADDR;
471 efi.boot_info = EFI_INVALID_TABLE_ADDR;
472 efi.hcdp = EFI_INVALID_TABLE_ADDR;
473 efi.uga = EFI_INVALID_TABLE_ADDR;
474
1da177e4
LT
475 for (i = 0; i < (int) efi.systab->nr_tables; i++) {
476 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
b2c99e3c 477 efi.mps = config_tables[i].table;
1da177e4
LT
478 printk(" MPS=0x%lx", config_tables[i].table);
479 } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
b2c99e3c 480 efi.acpi20 = config_tables[i].table;
1da177e4
LT
481 printk(" ACPI 2.0=0x%lx", config_tables[i].table);
482 } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
b2c99e3c 483 efi.acpi = config_tables[i].table;
1da177e4
LT
484 printk(" ACPI=0x%lx", config_tables[i].table);
485 } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
b2c99e3c 486 efi.smbios = config_tables[i].table;
1da177e4
LT
487 printk(" SMBIOS=0x%lx", config_tables[i].table);
488 } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
b2c99e3c 489 efi.sal_systab = config_tables[i].table;
1da177e4
LT
490 printk(" SALsystab=0x%lx", config_tables[i].table);
491 } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
b2c99e3c 492 efi.hcdp = config_tables[i].table;
1da177e4
LT
493 printk(" HCDP=0x%lx", config_tables[i].table);
494 }
495 }
496 printk("\n");
497
498 runtime = __va(efi.systab->runtime);
499 efi.get_time = phys_get_time;
500 efi.set_time = phys_set_time;
501 efi.get_wakeup_time = phys_get_wakeup_time;
502 efi.set_wakeup_time = phys_set_wakeup_time;
503 efi.get_variable = phys_get_variable;
504 efi.get_next_variable = phys_get_next_variable;
505 efi.set_variable = phys_set_variable;
506 efi.get_next_high_mono_count = phys_get_next_high_mono_count;
507 efi.reset_system = phys_reset_system;
508
509 efi_map_start = __va(ia64_boot_param->efi_memmap);
510 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
511 efi_desc_size = ia64_boot_param->efi_memdesc_size;
512
513#if EFI_DEBUG
514 /* print EFI memory map: */
515 {
516 efi_memory_desc_t *md;
517 void *p;
518
519 for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
520 md = p;
521 printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
522 i, md->type, md->attribute, md->phys_addr,
523 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
524 md->num_pages >> (20 - EFI_PAGE_SHIFT));
525 }
526 }
527#endif
528
529 efi_map_pal_code();
530 efi_enter_virtual_mode();
531}
532
533void
534efi_enter_virtual_mode (void)
535{
536 void *efi_map_start, *efi_map_end, *p;
537 efi_memory_desc_t *md;
538 efi_status_t status;
539 u64 efi_desc_size;
540
541 efi_map_start = __va(ia64_boot_param->efi_memmap);
542 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
543 efi_desc_size = ia64_boot_param->efi_memdesc_size;
544
545 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
546 md = p;
547 if (md->attribute & EFI_MEMORY_RUNTIME) {
548 /*
549 * Some descriptors have multiple bits set, so the order of
550 * the tests is relevant.
551 */
552 if (md->attribute & EFI_MEMORY_WB) {
553 md->virt_addr = (u64) __va(md->phys_addr);
554 } else if (md->attribute & EFI_MEMORY_UC) {
555 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
556 } else if (md->attribute & EFI_MEMORY_WC) {
557#if 0
558 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
559 | _PAGE_D
560 | _PAGE_MA_WC
561 | _PAGE_PL_0
562 | _PAGE_AR_RW));
563#else
564 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
565 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
566#endif
567 } else if (md->attribute & EFI_MEMORY_WT) {
568#if 0
569 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
570 | _PAGE_D | _PAGE_MA_WT
571 | _PAGE_PL_0
572 | _PAGE_AR_RW));
573#else
574 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
575 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
576#endif
577 }
578 }
579 }
580
581 status = efi_call_phys(__va(runtime->set_virtual_address_map),
582 ia64_boot_param->efi_memmap_size,
583 efi_desc_size, ia64_boot_param->efi_memdesc_version,
584 ia64_boot_param->efi_memmap);
585 if (status != EFI_SUCCESS) {
586 printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
587 "(status=%lu)\n", status);
588 return;
589 }
590
591 /*
592 * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
593 */
594 efi.get_time = virt_get_time;
595 efi.set_time = virt_set_time;
596 efi.get_wakeup_time = virt_get_wakeup_time;
597 efi.set_wakeup_time = virt_set_wakeup_time;
598 efi.get_variable = virt_get_variable;
599 efi.get_next_variable = virt_get_next_variable;
600 efi.set_variable = virt_set_variable;
601 efi.get_next_high_mono_count = virt_get_next_high_mono_count;
602 efi.reset_system = virt_reset_system;
603}
604
605/*
606 * Walk the EFI memory map looking for the I/O port range. There can only be one entry of
607 * this type, other I/O port ranges should be described via ACPI.
608 */
609u64
610efi_get_iobase (void)
611{
612 void *efi_map_start, *efi_map_end, *p;
613 efi_memory_desc_t *md;
614 u64 efi_desc_size;
615
616 efi_map_start = __va(ia64_boot_param->efi_memmap);
617 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
618 efi_desc_size = ia64_boot_param->efi_memdesc_size;
619
620 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
621 md = p;
622 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
623 if (md->attribute & EFI_MEMORY_UC)
624 return md->phys_addr;
625 }
626 }
627 return 0;
628}
629
32e62c63
BH
630static struct kern_memdesc *
631kern_memory_descriptor (unsigned long phys_addr)
1da177e4 632{
32e62c63 633 struct kern_memdesc *md;
1da177e4 634
32e62c63
BH
635 for (md = kern_memmap; md->start != ~0UL; md++) {
636 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
80851ef2 637 return md;
1da177e4 638 }
e037cda5 639 return NULL;
1da177e4
LT
640}
641
32e62c63
BH
642static efi_memory_desc_t *
643efi_memory_descriptor (unsigned long phys_addr)
1da177e4
LT
644{
645 void *efi_map_start, *efi_map_end, *p;
646 efi_memory_desc_t *md;
647 u64 efi_desc_size;
648
649 efi_map_start = __va(ia64_boot_param->efi_memmap);
650 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
651 efi_desc_size = ia64_boot_param->efi_memdesc_size;
652
653 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
654 md = p;
655
32e62c63
BH
656 if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
657 return md;
1da177e4 658 }
e037cda5 659 return NULL;
1da177e4 660}
80851ef2
BH
661
662u32
663efi_mem_type (unsigned long phys_addr)
664{
665 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
666
667 if (md)
668 return md->type;
669 return 0;
670}
671
672u64
673efi_mem_attributes (unsigned long phys_addr)
674{
675 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
676
677 if (md)
678 return md->attribute;
679 return 0;
680}
1da177e4
LT
681EXPORT_SYMBOL(efi_mem_attributes);
682
32e62c63
BH
683u64
684efi_mem_attribute (unsigned long phys_addr, unsigned long size)
80851ef2 685{
136939a2 686 unsigned long end = phys_addr + size;
80851ef2 687 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
32e62c63
BH
688 u64 attr;
689
690 if (!md)
691 return 0;
692
693 /*
694 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
695 * the kernel that firmware needs this region mapped.
696 */
697 attr = md->attribute & ~EFI_MEMORY_RUNTIME;
698 do {
699 unsigned long md_end = efi_md_end(md);
700
701 if (end <= md_end)
702 return attr;
703
704 md = efi_memory_descriptor(md_end);
705 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
706 return 0;
707 } while (md);
708 return 0;
709}
710
711u64
712kern_mem_attribute (unsigned long phys_addr, unsigned long size)
713{
714 unsigned long end = phys_addr + size;
715 struct kern_memdesc *md;
716 u64 attr;
80851ef2 717
136939a2 718 /*
32e62c63
BH
719 * This is a hack for ioremap calls before we set up kern_memmap.
720 * Maybe we should do efi_memmap_init() earlier instead.
136939a2 721 */
32e62c63
BH
722 if (!kern_memmap) {
723 attr = efi_mem_attribute(phys_addr, size);
724 if (attr & EFI_MEMORY_WB)
725 return EFI_MEMORY_WB;
80851ef2 726 return 0;
136939a2 727 }
80851ef2 728
32e62c63
BH
729 md = kern_memory_descriptor(phys_addr);
730 if (!md)
731 return 0;
732
733 attr = md->attribute;
80851ef2 734 do {
32e62c63 735 unsigned long md_end = kmd_end(md);
136939a2
BH
736
737 if (end <= md_end)
32e62c63 738 return attr;
80851ef2 739
32e62c63
BH
740 md = kern_memory_descriptor(md_end);
741 if (!md || md->attribute != attr)
136939a2 742 return 0;
80851ef2
BH
743 } while (md);
744 return 0;
745}
32e62c63 746EXPORT_SYMBOL(kern_mem_attribute);
80851ef2 747
1da177e4 748int
136939a2 749valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
1da177e4 750{
32e62c63
BH
751 u64 attr;
752
753 /*
754 * /dev/mem reads and writes use copy_to_user(), which implicitly
755 * uses a granule-sized kernel identity mapping. It's really
756 * only safe to do this for regions in kern_memmap. For more
757 * details, see Documentation/ia64/aliasing.txt.
758 */
759 attr = kern_mem_attribute(phys_addr, size);
760 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
761 return 1;
762 return 0;
80851ef2 763}
1da177e4 764
80851ef2 765int
06c67bef 766valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
80851ef2 767{
32e62c63
BH
768 /*
769 * MMIO regions are often missing from the EFI memory map.
770 * We must allow mmap of them for programs like X, so we
771 * currently can't do any useful validation.
772 */
773 return 1;
774}
1da177e4 775
32e62c63
BH
776pgprot_t
777phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
778 pgprot_t vma_prot)
779{
780 unsigned long phys_addr = pfn << PAGE_SHIFT;
781 u64 attr;
1da177e4 782
32e62c63
BH
783 /*
784 * For /dev/mem mmap, we use user mappings, but if the region is
785 * in kern_memmap (and hence may be covered by a kernel mapping),
786 * we must use the same attribute as the kernel mapping.
787 */
788 attr = kern_mem_attribute(phys_addr, size);
789 if (attr & EFI_MEMORY_WB)
790 return pgprot_cacheable(vma_prot);
791 else if (attr & EFI_MEMORY_UC)
792 return pgprot_noncached(vma_prot);
793
794 /*
795 * Some chipsets don't support UC access to memory. If
796 * WB is supported, we prefer that.
797 */
798 if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
799 return pgprot_cacheable(vma_prot);
800
801 return pgprot_noncached(vma_prot);
1da177e4
LT
802}
803
804int __init
805efi_uart_console_only(void)
806{
807 efi_status_t status;
808 char *s, name[] = "ConOut";
809 efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
810 efi_char16_t *utf16, name_utf16[32];
811 unsigned char data[1024];
812 unsigned long size = sizeof(data);
813 struct efi_generic_dev_path *hdr, *end_addr;
814 int uart = 0;
815
816 /* Convert to UTF-16 */
817 utf16 = name_utf16;
818 s = name;
819 while (*s)
820 *utf16++ = *s++ & 0x7f;
821 *utf16 = 0;
822
823 status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
824 if (status != EFI_SUCCESS) {
825 printk(KERN_ERR "No EFI %s variable?\n", name);
826 return 0;
827 }
828
829 hdr = (struct efi_generic_dev_path *) data;
830 end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
831 while (hdr < end_addr) {
832 if (hdr->type == EFI_DEV_MSG &&
833 hdr->sub_type == EFI_DEV_MSG_UART)
834 uart = 1;
835 else if (hdr->type == EFI_DEV_END_PATH ||
836 hdr->type == EFI_DEV_END_PATH2) {
837 if (!uart)
838 return 0;
839 if (hdr->sub_type == EFI_DEV_END_ENTIRE)
840 return 1;
841 uart = 0;
842 }
843 hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
844 }
845 printk(KERN_ERR "Malformed %s value\n", name);
846 return 0;
847}
d8c97d5f 848
d8c97d5f
TL
849/*
850 * Look for the first granule aligned memory descriptor memory
851 * that is big enough to hold EFI memory map. Make sure this
852 * descriptor is atleast granule sized so it does not get trimmed
853 */
854struct kern_memdesc *
855find_memmap_space (void)
856{
857 u64 contig_low=0, contig_high=0;
858 u64 as = 0, ae;
859 void *efi_map_start, *efi_map_end, *p, *q;
860 efi_memory_desc_t *md, *pmd = NULL, *check_md;
861 u64 space_needed, efi_desc_size;
862 unsigned long total_mem = 0;
863
864 efi_map_start = __va(ia64_boot_param->efi_memmap);
865 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
866 efi_desc_size = ia64_boot_param->efi_memdesc_size;
867
868 /*
869 * Worst case: we need 3 kernel descriptors for each efi descriptor
870 * (if every entry has a WB part in the middle, and UC head and tail),
871 * plus one for the end marker.
872 */
873 space_needed = sizeof(kern_memdesc_t) *
874 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
875
876 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
877 md = p;
878 if (!efi_wb(md)) {
879 continue;
880 }
881 if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
882 contig_low = GRANULEROUNDUP(md->phys_addr);
883 contig_high = efi_md_end(md);
884 for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
885 check_md = q;
886 if (!efi_wb(check_md))
887 break;
888 if (contig_high != check_md->phys_addr)
889 break;
890 contig_high = efi_md_end(check_md);
891 }
892 contig_high = GRANULEROUNDDOWN(contig_high);
893 }
66888a6e 894 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
d8c97d5f
TL
895 continue;
896
897 /* Round ends inward to granule boundaries */
898 as = max(contig_low, md->phys_addr);
899 ae = min(contig_high, efi_md_end(md));
900
a7956113
ZN
901 /* keep within max_addr= and min_addr= command line arg */
902 as = max(as, min_addr);
d8c97d5f
TL
903 ae = min(ae, max_addr);
904 if (ae <= as)
905 continue;
906
907 /* avoid going over mem= command line arg */
908 if (total_mem + (ae - as) > mem_limit)
909 ae -= total_mem + (ae - as) - mem_limit;
910
911 if (ae <= as)
912 continue;
913
914 if (ae - as > space_needed)
915 break;
916 }
917 if (p >= efi_map_end)
918 panic("Can't allocate space for kernel memory descriptors");
919
920 return __va(as);
921}
922
923/*
924 * Walk the EFI memory map and gather all memory available for kernel
925 * to use. We can allocate partial granules only if the unavailable
926 * parts exist, and are WB.
927 */
928void
929efi_memmap_init(unsigned long *s, unsigned long *e)
930{
e037cda5 931 struct kern_memdesc *k, *prev = NULL;
d8c97d5f
TL
932 u64 contig_low=0, contig_high=0;
933 u64 as, ae, lim;
934 void *efi_map_start, *efi_map_end, *p, *q;
935 efi_memory_desc_t *md, *pmd = NULL, *check_md;
936 u64 efi_desc_size;
937 unsigned long total_mem = 0;
938
939 k = kern_memmap = find_memmap_space();
940
941 efi_map_start = __va(ia64_boot_param->efi_memmap);
942 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
943 efi_desc_size = ia64_boot_param->efi_memdesc_size;
944
945 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
946 md = p;
947 if (!efi_wb(md)) {
948 if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY ||
949 md->type == EFI_BOOT_SERVICES_DATA)) {
950 k->attribute = EFI_MEMORY_UC;
951 k->start = md->phys_addr;
952 k->num_pages = md->num_pages;
953 k++;
954 }
955 continue;
956 }
957 if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
958 contig_low = GRANULEROUNDUP(md->phys_addr);
959 contig_high = efi_md_end(md);
960 for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
961 check_md = q;
962 if (!efi_wb(check_md))
963 break;
964 if (contig_high != check_md->phys_addr)
965 break;
966 contig_high = efi_md_end(check_md);
967 }
968 contig_high = GRANULEROUNDDOWN(contig_high);
969 }
66888a6e 970 if (!is_memory_available(md))
d8c97d5f
TL
971 continue;
972
973 /*
974 * Round ends inward to granule boundaries
975 * Give trimmings to uncached allocator
976 */
977 if (md->phys_addr < contig_low) {
978 lim = min(efi_md_end(md), contig_low);
979 if (efi_uc(md)) {
980 if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC &&
981 kmd_end(k-1) == md->phys_addr) {
982 (k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
983 } else {
984 k->attribute = EFI_MEMORY_UC;
985 k->start = md->phys_addr;
986 k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
987 k++;
988 }
989 }
990 as = contig_low;
991 } else
992 as = md->phys_addr;
993
994 if (efi_md_end(md) > contig_high) {
995 lim = max(md->phys_addr, contig_high);
996 if (efi_uc(md)) {
997 if (lim == md->phys_addr && k > kern_memmap &&
998 (k-1)->attribute == EFI_MEMORY_UC &&
999 kmd_end(k-1) == md->phys_addr) {
1000 (k-1)->num_pages += md->num_pages;
1001 } else {
1002 k->attribute = EFI_MEMORY_UC;
1003 k->start = lim;
1004 k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT;
1005 k++;
1006 }
1007 }
1008 ae = contig_high;
1009 } else
1010 ae = efi_md_end(md);
1011
a7956113
ZN
1012 /* keep within max_addr= and min_addr= command line arg */
1013 as = max(as, min_addr);
d8c97d5f
TL
1014 ae = min(ae, max_addr);
1015 if (ae <= as)
1016 continue;
1017
1018 /* avoid going over mem= command line arg */
1019 if (total_mem + (ae - as) > mem_limit)
1020 ae -= total_mem + (ae - as) - mem_limit;
1021
1022 if (ae <= as)
1023 continue;
1024 if (prev && kmd_end(prev) == md->phys_addr) {
1025 prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1026 total_mem += ae - as;
1027 continue;
1028 }
1029 k->attribute = EFI_MEMORY_WB;
1030 k->start = as;
1031 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1032 total_mem += ae - as;
1033 prev = k++;
1034 }
1035 k->start = ~0L; /* end-marker */
1036
1037 /* reserve the memory we are using for kern_memmap */
1038 *s = (u64)kern_memmap;
1039 *e = (u64)++k;
1040}
be379124
KA
1041
1042void
1043efi_initialize_iomem_resources(struct resource *code_resource,
1044 struct resource *data_resource)
1045{
1046 struct resource *res;
1047 void *efi_map_start, *efi_map_end, *p;
1048 efi_memory_desc_t *md;
1049 u64 efi_desc_size;
1050 char *name;
1051 unsigned long flags;
1052
1053 efi_map_start = __va(ia64_boot_param->efi_memmap);
1054 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1055 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1056
1057 res = NULL;
1058
1059 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1060 md = p;
1061
1062 if (md->num_pages == 0) /* should not happen */
1063 continue;
1064
1065 flags = IORESOURCE_MEM;
1066 switch (md->type) {
1067
1068 case EFI_MEMORY_MAPPED_IO:
1069 case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1070 continue;
1071
1072 case EFI_LOADER_CODE:
1073 case EFI_LOADER_DATA:
1074 case EFI_BOOT_SERVICES_DATA:
1075 case EFI_BOOT_SERVICES_CODE:
1076 case EFI_CONVENTIONAL_MEMORY:
1077 if (md->attribute & EFI_MEMORY_WP) {
1078 name = "System ROM";
1079 flags |= IORESOURCE_READONLY;
1080 } else {
1081 name = "System RAM";
1082 }
1083 break;
1084
1085 case EFI_ACPI_MEMORY_NVS:
1086 name = "ACPI Non-volatile Storage";
1087 flags |= IORESOURCE_BUSY;
1088 break;
1089
1090 case EFI_UNUSABLE_MEMORY:
1091 name = "reserved";
1092 flags |= IORESOURCE_BUSY | IORESOURCE_DISABLED;
1093 break;
1094
1095 case EFI_RESERVED_TYPE:
1096 case EFI_RUNTIME_SERVICES_CODE:
1097 case EFI_RUNTIME_SERVICES_DATA:
1098 case EFI_ACPI_RECLAIM_MEMORY:
1099 default:
1100 name = "reserved";
1101 flags |= IORESOURCE_BUSY;
1102 break;
1103 }
1104
baf47fb6 1105 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
be379124
KA
1106 printk(KERN_ERR "failed to alocate resource for iomem\n");
1107 return;
1108 }
1109
1110 res->name = name;
1111 res->start = md->phys_addr;
1112 res->end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
1113 res->flags = flags;
1114
1115 if (insert_resource(&iomem_resource, res) < 0)
1116 kfree(res);
1117 else {
1118 /*
1119 * We don't know which region contains
1120 * kernel data so we try it repeatedly and
1121 * let the resource manager test it.
1122 */
1123 insert_resource(res, code_resource);
1124 insert_resource(res, data_resource);
a7956113
ZN
1125#ifdef CONFIG_KEXEC
1126 insert_resource(res, &efi_memmap_res);
1127 insert_resource(res, &boot_param_res);
1128 if (crashk_res.end > crashk_res.start)
1129 insert_resource(res, &crashk_res);
1130#endif
be379124
KA
1131 }
1132 }
1133}
a7956113
ZN
1134
1135#ifdef CONFIG_KEXEC
1136/* find a block of memory aligned to 64M exclude reserved regions
1137 rsvd_regions are sorted
1138 */
1139unsigned long
1140kdump_find_rsvd_region (unsigned long size,
1141 struct rsvd_region *r, int n)
1142{
1143 int i;
1144 u64 start, end;
1145 u64 alignment = 1UL << _PAGE_SIZE_64M;
1146 void *efi_map_start, *efi_map_end, *p;
1147 efi_memory_desc_t *md;
1148 u64 efi_desc_size;
1149
1150 efi_map_start = __va(ia64_boot_param->efi_memmap);
1151 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1152 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1153
1154 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1155 md = p;
1156 if (!efi_wb(md))
1157 continue;
1158 start = ALIGN(md->phys_addr, alignment);
1159 end = efi_md_end(md);
1160 for (i = 0; i < n; i++) {
1161 if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1162 if (__pa(r[i].start) > start + size)
1163 return start;
1164 start = ALIGN(__pa(r[i].end), alignment);
1165 if (i < n-1 && __pa(r[i+1].start) < start + size)
1166 continue;
1167 else
1168 break;
1169 }
1170 }
1171 if (end > start + size)
1172 return start;
1173 }
1174
1175 printk(KERN_WARNING "Cannot reserve 0x%lx byte of memory for crashdump\n",
1176 size);
1177 return ~0UL;
1178}
1179#endif