]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - arch/ia64/kernel/efi.c
docs: ia64: convert to ReST
[mirror_ubuntu-eoan-kernel.git] / arch / ia64 / kernel / efi.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * Extensible Firmware Interface
4 *
7d9aed26
AG
5 * Based on Extensible Firmware Interface Specification version 0.9
6 * April 30, 1999
1da177e4
LT
7 *
8 * Copyright (C) 1999 VA Linux Systems
9 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
10 * Copyright (C) 1999-2003 Hewlett-Packard Co.
11 * David Mosberger-Tang <davidm@hpl.hp.com>
12 * Stephane Eranian <eranian@hpl.hp.com>
32e62c63
BH
13 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
14 * Bjorn Helgaas <bjorn.helgaas@hp.com>
1da177e4
LT
15 *
16 * All EFI Runtime Services are not implemented yet as EFI only
17 * supports physical mode addressing on SoftSDV. This is to be fixed
18 * in a future version. --drummond 1999-07-20
19 *
20 * Implemented EFI runtime services and virtual mode calls. --davidm
21 *
22 * Goutham Rao: <goutham.rao@intel.com>
23 * Skip non-WB memory and ignore empty memory ranges.
24 */
1da177e4 25#include <linux/module.h>
57c8a661 26#include <linux/memblock.h>
93a72052 27#include <linux/crash_dump.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/init.h>
30#include <linux/types.h>
5a0e3ad6 31#include <linux/slab.h>
1da177e4
LT
32#include <linux/time.h>
33#include <linux/efi.h>
a7956113 34#include <linux/kexec.h>
ed7ed365 35#include <linux/mm.h>
1da177e4
LT
36
37#include <asm/io.h>
38#include <asm/kregs.h>
39#include <asm/meminit.h>
40#include <asm/pgtable.h>
41#include <asm/processor.h>
42#include <asm/mca.h>
c140d879 43#include <asm/setup.h>
2046b94e 44#include <asm/tlbflush.h>
1da177e4
LT
45
46#define EFI_DEBUG 0
47
272686bf
LL
48static __initdata unsigned long palo_phys;
49
50static __initdata efi_config_table_type_t arch_tables[] = {
51 {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys},
52 {NULL_GUID, NULL, 0},
53};
54
1da177e4
LT
55extern efi_status_t efi_call_phys (void *, ...);
56
1da177e4 57static efi_runtime_services_t *runtime;
e088a4ad 58static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
1da177e4
LT
59
60#define efi_call_virt(f, args...) (*(f))(args)
61
7d9aed26
AG
62#define STUB_GET_TIME(prefix, adjust_arg) \
63static efi_status_t \
64prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
65{ \
66 struct ia64_fpreg fr[6]; \
67 efi_time_cap_t *atc = NULL; \
68 efi_status_t ret; \
69 \
70 if (tc) \
71 atc = adjust_arg(tc); \
72 ia64_save_scratch_fpregs(fr); \
73 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \
74 adjust_arg(tm), atc); \
75 ia64_load_scratch_fpregs(fr); \
76 return ret; \
1da177e4
LT
77}
78
7d9aed26
AG
79#define STUB_SET_TIME(prefix, adjust_arg) \
80static efi_status_t \
81prefix##_set_time (efi_time_t *tm) \
82{ \
83 struct ia64_fpreg fr[6]; \
84 efi_status_t ret; \
85 \
86 ia64_save_scratch_fpregs(fr); \
87 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \
88 adjust_arg(tm)); \
89 ia64_load_scratch_fpregs(fr); \
90 return ret; \
1da177e4
LT
91}
92
7d9aed26
AG
93#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
94static efi_status_t \
95prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \
96 efi_time_t *tm) \
97{ \
98 struct ia64_fpreg fr[6]; \
99 efi_status_t ret; \
100 \
101 ia64_save_scratch_fpregs(fr); \
102 ret = efi_call_##prefix( \
103 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
104 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
105 ia64_load_scratch_fpregs(fr); \
106 return ret; \
1da177e4
LT
107}
108
7d9aed26
AG
109#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
110static efi_status_t \
111prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
112{ \
113 struct ia64_fpreg fr[6]; \
114 efi_time_t *atm = NULL; \
115 efi_status_t ret; \
116 \
117 if (tm) \
118 atm = adjust_arg(tm); \
119 ia64_save_scratch_fpregs(fr); \
120 ret = efi_call_##prefix( \
121 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
122 enabled, atm); \
123 ia64_load_scratch_fpregs(fr); \
124 return ret; \
1da177e4
LT
125}
126
7d9aed26
AG
127#define STUB_GET_VARIABLE(prefix, adjust_arg) \
128static efi_status_t \
129prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
130 unsigned long *data_size, void *data) \
131{ \
132 struct ia64_fpreg fr[6]; \
133 u32 *aattr = NULL; \
134 efi_status_t ret; \
135 \
136 if (attr) \
137 aattr = adjust_arg(attr); \
138 ia64_save_scratch_fpregs(fr); \
139 ret = efi_call_##prefix( \
140 (efi_get_variable_t *) __va(runtime->get_variable), \
141 adjust_arg(name), adjust_arg(vendor), aattr, \
142 adjust_arg(data_size), adjust_arg(data)); \
143 ia64_load_scratch_fpregs(fr); \
144 return ret; \
1da177e4
LT
145}
146
7d9aed26
AG
147#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
148static efi_status_t \
149prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \
150 efi_guid_t *vendor) \
151{ \
152 struct ia64_fpreg fr[6]; \
153 efi_status_t ret; \
154 \
155 ia64_save_scratch_fpregs(fr); \
156 ret = efi_call_##prefix( \
157 (efi_get_next_variable_t *) __va(runtime->get_next_variable), \
158 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
159 ia64_load_scratch_fpregs(fr); \
160 return ret; \
1da177e4
LT
161}
162
7d9aed26
AG
163#define STUB_SET_VARIABLE(prefix, adjust_arg) \
164static efi_status_t \
165prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \
1eb9a4b8 166 u32 attr, unsigned long data_size, \
7d9aed26
AG
167 void *data) \
168{ \
169 struct ia64_fpreg fr[6]; \
170 efi_status_t ret; \
171 \
172 ia64_save_scratch_fpregs(fr); \
173 ret = efi_call_##prefix( \
174 (efi_set_variable_t *) __va(runtime->set_variable), \
175 adjust_arg(name), adjust_arg(vendor), attr, data_size, \
176 adjust_arg(data)); \
177 ia64_load_scratch_fpregs(fr); \
178 return ret; \
1da177e4
LT
179}
180
7d9aed26
AG
181#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
182static efi_status_t \
183prefix##_get_next_high_mono_count (u32 *count) \
184{ \
185 struct ia64_fpreg fr[6]; \
186 efi_status_t ret; \
187 \
188 ia64_save_scratch_fpregs(fr); \
189 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
190 __va(runtime->get_next_high_mono_count), \
191 adjust_arg(count)); \
192 ia64_load_scratch_fpregs(fr); \
193 return ret; \
1da177e4
LT
194}
195
7d9aed26
AG
196#define STUB_RESET_SYSTEM(prefix, adjust_arg) \
197static void \
198prefix##_reset_system (int reset_type, efi_status_t status, \
199 unsigned long data_size, efi_char16_t *data) \
200{ \
201 struct ia64_fpreg fr[6]; \
202 efi_char16_t *adata = NULL; \
203 \
204 if (data) \
205 adata = adjust_arg(data); \
206 \
207 ia64_save_scratch_fpregs(fr); \
208 efi_call_##prefix( \
209 (efi_reset_system_t *) __va(runtime->reset_system), \
210 reset_type, status, data_size, adata); \
211 /* should not return, but just in case... */ \
212 ia64_load_scratch_fpregs(fr); \
1da177e4
LT
213}
214
215#define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
216
217STUB_GET_TIME(phys, phys_ptr)
218STUB_SET_TIME(phys, phys_ptr)
219STUB_GET_WAKEUP_TIME(phys, phys_ptr)
220STUB_SET_WAKEUP_TIME(phys, phys_ptr)
221STUB_GET_VARIABLE(phys, phys_ptr)
222STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
223STUB_SET_VARIABLE(phys, phys_ptr)
224STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
225STUB_RESET_SYSTEM(phys, phys_ptr)
226
227#define id(arg) arg
228
229STUB_GET_TIME(virt, id)
230STUB_SET_TIME(virt, id)
231STUB_GET_WAKEUP_TIME(virt, id)
232STUB_SET_WAKEUP_TIME(virt, id)
233STUB_GET_VARIABLE(virt, id)
234STUB_GET_NEXT_VARIABLE(virt, id)
235STUB_SET_VARIABLE(virt, id)
236STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
237STUB_RESET_SYSTEM(virt, id)
238
239void
70f4f935 240efi_gettimeofday (struct timespec64 *ts)
1da177e4
LT
241{
242 efi_time_t tm;
243
4b07ae9b
LZ
244 if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
245 memset(ts, 0, sizeof(*ts));
1da177e4 246 return;
4b07ae9b 247 }
1da177e4 248
70f4f935 249 ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
7d9aed26 250 tm.hour, tm.minute, tm.second);
1da177e4
LT
251 ts->tv_nsec = tm.nanosecond;
252}
253
254static int
66888a6e 255is_memory_available (efi_memory_desc_t *md)
1da177e4
LT
256{
257 if (!(md->attribute & EFI_MEMORY_WB))
258 return 0;
259
260 switch (md->type) {
261 case EFI_LOADER_CODE:
262 case EFI_LOADER_DATA:
263 case EFI_BOOT_SERVICES_CODE:
264 case EFI_BOOT_SERVICES_DATA:
265 case EFI_CONVENTIONAL_MEMORY:
266 return 1;
267 }
268 return 0;
269}
270
d8c97d5f
TL
271typedef struct kern_memdesc {
272 u64 attribute;
273 u64 start;
274 u64 num_pages;
275} kern_memdesc_t;
1da177e4 276
d8c97d5f 277static kern_memdesc_t *kern_memmap;
1da177e4 278
80851ef2
BH
279#define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
280
281static inline u64
282kmd_end(kern_memdesc_t *kmd)
283{
284 return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
285}
286
287static inline u64
288efi_md_end(efi_memory_desc_t *md)
289{
290 return (md->phys_addr + efi_md_size(md));
291}
292
293static inline int
294efi_wb(efi_memory_desc_t *md)
295{
296 return (md->attribute & EFI_MEMORY_WB);
297}
298
299static inline int
300efi_uc(efi_memory_desc_t *md)
301{
302 return (md->attribute & EFI_MEMORY_UC);
303}
304
1da177e4 305static void
d8c97d5f 306walk (efi_freemem_callback_t callback, void *arg, u64 attr)
1da177e4 307{
d8c97d5f
TL
308 kern_memdesc_t *k;
309 u64 start, end, voff;
1da177e4 310
d8c97d5f
TL
311 voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
312 for (k = kern_memmap; k->start != ~0UL; k++) {
313 if (k->attribute != attr)
314 continue;
315 start = PAGE_ALIGN(k->start);
316 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
317 if (start < end)
318 if ((*callback)(start + voff, end + voff, arg) < 0)
319 return;
320 }
1da177e4
LT
321}
322
323/*
965e7c8a 324 * Walk the EFI memory map and call CALLBACK once for each EFI memory
7d9aed26 325 * descriptor that has memory that is available for OS use.
1da177e4
LT
326 */
327void
328efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
329{
d8c97d5f 330 walk(callback, arg, EFI_MEMORY_WB);
1da177e4
LT
331}
332
f14f75b8 333/*
965e7c8a 334 * Walk the EFI memory map and call CALLBACK once for each EFI memory
7d9aed26 335 * descriptor that has memory that is available for uncached allocator.
f14f75b8 336 */
d8c97d5f
TL
337void
338efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
f14f75b8 339{
d8c97d5f 340 walk(callback, arg, EFI_MEMORY_UC);
f14f75b8
JS
341}
342
1da177e4 343/*
965e7c8a 344 * Look for the PAL_CODE region reported by EFI and map it using an
1da177e4
LT
345 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
346 * Abstraction Layer chapter 11 in ADAG
347 */
1da177e4
LT
348void *
349efi_get_pal_addr (void)
350{
351 void *efi_map_start, *efi_map_end, *p;
352 efi_memory_desc_t *md;
353 u64 efi_desc_size;
354 int pal_code_count = 0;
355 u64 vaddr, mask;
356
357 efi_map_start = __va(ia64_boot_param->efi_memmap);
358 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
359 efi_desc_size = ia64_boot_param->efi_memdesc_size;
360
361 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
362 md = p;
363 if (md->type != EFI_PAL_CODE)
364 continue;
365
366 if (++pal_code_count > 1) {
7d9aed26 367 printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
e088a4ad 368 "dropped @ %llx\n", md->phys_addr);
1da177e4
LT
369 continue;
370 }
371 /*
7d9aed26
AG
372 * The only ITLB entry in region 7 that is used is the one
373 * installed by __start(). That entry covers a 64MB range.
1da177e4
LT
374 */
375 mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
376 vaddr = PAGE_OFFSET + md->phys_addr;
377
378 /*
7d9aed26
AG
379 * We must check that the PAL mapping won't overlap with the
380 * kernel mapping.
1da177e4 381 *
7d9aed26
AG
382 * PAL code is guaranteed to be aligned on a power of 2 between
383 * 4k and 256KB and that only one ITR is needed to map it. This
384 * implies that the PAL code is always aligned on its size,
385 * i.e., the closest matching page size supported by the TLB.
386 * Therefore PAL code is guaranteed never to cross a 64MB unless
387 * it is bigger than 64MB (very unlikely!). So for now the
388 * following test is enough to determine whether or not we need
389 * a dedicated ITR for the PAL code.
1da177e4
LT
390 */
391 if ((vaddr & mask) == (KERNEL_START & mask)) {
d4ed8084
HH
392 printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
393 __func__);
1da177e4
LT
394 continue;
395 }
396
685c7f5d 397 if (efi_md_size(md) > IA64_GRANULE_SIZE)
965e7c8a 398 panic("Whoa! PAL code size bigger than a granule!");
1da177e4
LT
399
400#if EFI_DEBUG
401 mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
402
7d9aed26
AG
403 printk(KERN_INFO "CPU %d: mapping PAL code "
404 "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
405 smp_processor_id(), md->phys_addr,
406 md->phys_addr + efi_md_size(md),
407 vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
1da177e4
LT
408#endif
409 return __va(md->phys_addr);
410 }
9473252f 411 printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
d4ed8084 412 __func__);
1da177e4
LT
413 return NULL;
414}
415
2046b94e
FY
416
417static u8 __init palo_checksum(u8 *buffer, u32 length)
418{
419 u8 sum = 0;
420 u8 *end = buffer + length;
421
422 while (buffer < end)
423 sum = (u8) (sum + *(buffer++));
424
425 return sum;
426}
427
428/*
429 * Parse and handle PALO table which is published at:
430 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
431 */
272686bf 432static void __init handle_palo(unsigned long phys_addr)
2046b94e 433{
272686bf 434 struct palo_table *palo = __va(phys_addr);
2046b94e
FY
435 u8 checksum;
436
437 if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
438 printk(KERN_INFO "PALO signature incorrect.\n");
439 return;
440 }
441
442 checksum = palo_checksum((u8 *)palo, palo->length);
443 if (checksum) {
444 printk(KERN_INFO "PALO checksum incorrect.\n");
445 return;
446 }
447
a6c75b86 448 setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
2046b94e
FY
449}
450
1da177e4
LT
451void
452efi_map_pal_code (void)
453{
454 void *pal_vaddr = efi_get_pal_addr ();
455 u64 psr;
456
457 if (!pal_vaddr)
458 return;
459
460 /*
461 * Cannot write to CRx with PSR.ic=1
462 */
463 psr = ia64_clear_ic();
7d9aed26
AG
464 ia64_itr(0x1, IA64_TR_PALCODE,
465 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
1da177e4
LT
466 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
467 IA64_GRANULE_SHIFT);
468 ia64_set_psr(psr); /* restore psr */
1da177e4
LT
469}
470
471void __init
472efi_init (void)
473{
474 void *efi_map_start, *efi_map_end;
1da177e4
LT
475 efi_char16_t *c16;
476 u64 efi_desc_size;
9d78f43d 477 char *cp, vendor[100] = "unknown";
1da177e4
LT
478 int i;
479
09206380
MF
480 set_bit(EFI_BOOT, &efi.flags);
481 set_bit(EFI_64BIT, &efi.flags);
482
7d9aed26 483 /*
965e7c8a 484 * It's too early to be able to use the standard kernel command line
7d9aed26
AG
485 * support...
486 */
a8d91b84 487 for (cp = boot_command_line; *cp; ) {
1da177e4 488 if (memcmp(cp, "mem=", 4) == 0) {
9d78f43d 489 mem_limit = memparse(cp + 4, &cp);
1da177e4 490 } else if (memcmp(cp, "max_addr=", 9) == 0) {
9d78f43d 491 max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
a7956113
ZN
492 } else if (memcmp(cp, "min_addr=", 9) == 0) {
493 min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
1da177e4
LT
494 } else {
495 while (*cp != ' ' && *cp)
496 ++cp;
497 while (*cp == ' ')
498 ++cp;
499 }
500 }
a7956113 501 if (min_addr != 0UL)
e088a4ad 502 printk(KERN_INFO "Ignoring memory below %lluMB\n",
7d9aed26 503 min_addr >> 20);
1da177e4 504 if (max_addr != ~0UL)
e088a4ad 505 printk(KERN_INFO "Ignoring memory above %lluMB\n",
7d9aed26 506 max_addr >> 20);
1da177e4
LT
507
508 efi.systab = __va(ia64_boot_param->efi_systab);
509
510 /*
511 * Verify the EFI Table
512 */
513 if (efi.systab == NULL)
965e7c8a 514 panic("Whoa! Can't find EFI system table.\n");
1da177e4 515 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
965e7c8a 516 panic("Whoa! EFI system table signature incorrect\n");
873ec746
BH
517 if ((efi.systab->hdr.revision >> 16) == 0)
518 printk(KERN_WARNING "Warning: EFI system table version "
519 "%d.%02d, expected 1.00 or greater\n",
520 efi.systab->hdr.revision >> 16,
521 efi.systab->hdr.revision & 0xffff);
1da177e4 522
1da177e4
LT
523 /* Show what we know for posterity */
524 c16 = __va(efi.systab->fw_vendor);
525 if (c16) {
ecdd5dab 526 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
1da177e4
LT
527 vendor[i] = *c16++;
528 vendor[i] = '\0';
529 }
530
531 printk(KERN_INFO "EFI v%u.%.02u by %s:",
7d9aed26
AG
532 efi.systab->hdr.revision >> 16,
533 efi.systab->hdr.revision & 0xffff, vendor);
1da177e4 534
2046b94e
FY
535 palo_phys = EFI_INVALID_TABLE_ADDR;
536
272686bf
LL
537 if (efi_config_init(arch_tables) != 0)
538 return;
1da177e4 539
2046b94e
FY
540 if (palo_phys != EFI_INVALID_TABLE_ADDR)
541 handle_palo(palo_phys);
542
1da177e4
LT
543 runtime = __va(efi.systab->runtime);
544 efi.get_time = phys_get_time;
545 efi.set_time = phys_set_time;
546 efi.get_wakeup_time = phys_get_wakeup_time;
547 efi.set_wakeup_time = phys_set_wakeup_time;
548 efi.get_variable = phys_get_variable;
549 efi.get_next_variable = phys_get_next_variable;
550 efi.set_variable = phys_set_variable;
551 efi.get_next_high_mono_count = phys_get_next_high_mono_count;
552 efi.reset_system = phys_reset_system;
553
554 efi_map_start = __va(ia64_boot_param->efi_memmap);
555 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
556 efi_desc_size = ia64_boot_param->efi_memdesc_size;
557
558#if EFI_DEBUG
559 /* print EFI memory map: */
560 {
561 efi_memory_desc_t *md;
562 void *p;
563
7d9aed26
AG
564 for (i = 0, p = efi_map_start; p < efi_map_end;
565 ++i, p += efi_desc_size)
566 {
818c7e86
SH
567 const char *unit;
568 unsigned long size;
77b12bcf 569 char buf[64];
818c7e86 570
1da177e4 571 md = p;
818c7e86
SH
572 size = md->num_pages << EFI_PAGE_SHIFT;
573
574 if ((size >> 40) > 0) {
575 size >>= 40;
576 unit = "TB";
577 } else if ((size >> 30) > 0) {
578 size >>= 30;
579 unit = "GB";
580 } else if ((size >> 20) > 0) {
581 size >>= 20;
582 unit = "MB";
583 } else {
584 size >>= 10;
585 unit = "KB";
586 }
587
77b12bcf 588 printk("mem%02d: %s "
818c7e86 589 "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
77b12bcf
LE
590 i, efi_md_typeattr_format(buf, sizeof(buf), md),
591 md->phys_addr,
818c7e86 592 md->phys_addr + efi_md_size(md), size, unit);
1da177e4
LT
593 }
594 }
595#endif
596
597 efi_map_pal_code();
598 efi_enter_virtual_mode();
599}
600
601void
602efi_enter_virtual_mode (void)
603{
604 void *efi_map_start, *efi_map_end, *p;
605 efi_memory_desc_t *md;
606 efi_status_t status;
607 u64 efi_desc_size;
608
609 efi_map_start = __va(ia64_boot_param->efi_memmap);
610 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
611 efi_desc_size = ia64_boot_param->efi_memdesc_size;
612
613 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
614 md = p;
615 if (md->attribute & EFI_MEMORY_RUNTIME) {
616 /*
7d9aed26
AG
617 * Some descriptors have multiple bits set, so the
618 * order of the tests is relevant.
1da177e4
LT
619 */
620 if (md->attribute & EFI_MEMORY_WB) {
621 md->virt_addr = (u64) __va(md->phys_addr);
622 } else if (md->attribute & EFI_MEMORY_UC) {
623 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
624 } else if (md->attribute & EFI_MEMORY_WC) {
625#if 0
7d9aed26
AG
626 md->virt_addr = ia64_remap(md->phys_addr,
627 (_PAGE_A |
628 _PAGE_P |
629 _PAGE_D |
630 _PAGE_MA_WC |
631 _PAGE_PL_0 |
632 _PAGE_AR_RW));
1da177e4
LT
633#else
634 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
635 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
636#endif
637 } else if (md->attribute & EFI_MEMORY_WT) {
638#if 0
7d9aed26
AG
639 md->virt_addr = ia64_remap(md->phys_addr,
640 (_PAGE_A |
641 _PAGE_P |
642 _PAGE_D |
643 _PAGE_MA_WT |
644 _PAGE_PL_0 |
645 _PAGE_AR_RW));
1da177e4
LT
646#else
647 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
648 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
649#endif
650 }
651 }
652 }
653
654 status = efi_call_phys(__va(runtime->set_virtual_address_map),
655 ia64_boot_param->efi_memmap_size,
7d9aed26
AG
656 efi_desc_size,
657 ia64_boot_param->efi_memdesc_version,
1da177e4
LT
658 ia64_boot_param->efi_memmap);
659 if (status != EFI_SUCCESS) {
7d9aed26
AG
660 printk(KERN_WARNING "warning: unable to switch EFI into "
661 "virtual mode (status=%lu)\n", status);
1da177e4
LT
662 return;
663 }
664
09206380
MF
665 set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
666
1da177e4 667 /*
7d9aed26
AG
668 * Now that EFI is in virtual mode, we call the EFI functions more
669 * efficiently:
1da177e4
LT
670 */
671 efi.get_time = virt_get_time;
672 efi.set_time = virt_set_time;
673 efi.get_wakeup_time = virt_get_wakeup_time;
674 efi.set_wakeup_time = virt_set_wakeup_time;
675 efi.get_variable = virt_get_variable;
676 efi.get_next_variable = virt_get_next_variable;
677 efi.set_variable = virt_set_variable;
678 efi.get_next_high_mono_count = virt_get_next_high_mono_count;
679 efi.reset_system = virt_reset_system;
680}
681
682/*
7d9aed26
AG
683 * Walk the EFI memory map looking for the I/O port range. There can only be
684 * one entry of this type, other I/O port ranges should be described via ACPI.
1da177e4
LT
685 */
686u64
687efi_get_iobase (void)
688{
689 void *efi_map_start, *efi_map_end, *p;
690 efi_memory_desc_t *md;
691 u64 efi_desc_size;
692
693 efi_map_start = __va(ia64_boot_param->efi_memmap);
694 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
695 efi_desc_size = ia64_boot_param->efi_memdesc_size;
696
697 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
698 md = p;
699 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
700 if (md->attribute & EFI_MEMORY_UC)
701 return md->phys_addr;
702 }
703 }
704 return 0;
705}
706
32e62c63
BH
707static struct kern_memdesc *
708kern_memory_descriptor (unsigned long phys_addr)
1da177e4 709{
32e62c63 710 struct kern_memdesc *md;
1da177e4 711
32e62c63
BH
712 for (md = kern_memmap; md->start != ~0UL; md++) {
713 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
80851ef2 714 return md;
1da177e4 715 }
e037cda5 716 return NULL;
1da177e4
LT
717}
718
32e62c63
BH
719static efi_memory_desc_t *
720efi_memory_descriptor (unsigned long phys_addr)
1da177e4
LT
721{
722 void *efi_map_start, *efi_map_end, *p;
723 efi_memory_desc_t *md;
724 u64 efi_desc_size;
725
726 efi_map_start = __va(ia64_boot_param->efi_memmap);
727 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
728 efi_desc_size = ia64_boot_param->efi_memdesc_size;
729
730 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
731 md = p;
732
685c7f5d 733 if (phys_addr - md->phys_addr < efi_md_size(md))
32e62c63 734 return md;
1da177e4 735 }
e037cda5 736 return NULL;
1da177e4 737}
80851ef2 738
6d40fc51
BH
739static int
740efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
741{
742 void *efi_map_start, *efi_map_end, *p;
743 efi_memory_desc_t *md;
744 u64 efi_desc_size;
745 unsigned long end;
746
747 efi_map_start = __va(ia64_boot_param->efi_memmap);
748 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
749 efi_desc_size = ia64_boot_param->efi_memdesc_size;
750
751 end = phys_addr + size;
752
753 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
754 md = p;
6d40fc51
BH
755 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
756 return 1;
757 }
758 return 0;
759}
760
f99afd08 761int
80851ef2
BH
762efi_mem_type (unsigned long phys_addr)
763{
764 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
765
766 if (md)
767 return md->type;
f99afd08 768 return -EINVAL;
80851ef2
BH
769}
770
771u64
772efi_mem_attributes (unsigned long phys_addr)
773{
774 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
775
776 if (md)
777 return md->attribute;
778 return 0;
779}
1da177e4
LT
780EXPORT_SYMBOL(efi_mem_attributes);
781
32e62c63
BH
782u64
783efi_mem_attribute (unsigned long phys_addr, unsigned long size)
80851ef2 784{
136939a2 785 unsigned long end = phys_addr + size;
80851ef2 786 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
32e62c63
BH
787 u64 attr;
788
789 if (!md)
790 return 0;
791
792 /*
793 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
794 * the kernel that firmware needs this region mapped.
795 */
796 attr = md->attribute & ~EFI_MEMORY_RUNTIME;
797 do {
798 unsigned long md_end = efi_md_end(md);
799
800 if (end <= md_end)
801 return attr;
802
803 md = efi_memory_descriptor(md_end);
804 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
805 return 0;
806 } while (md);
410ab512 807 return 0; /* never reached */
32e62c63
BH
808}
809
810u64
811kern_mem_attribute (unsigned long phys_addr, unsigned long size)
812{
813 unsigned long end = phys_addr + size;
814 struct kern_memdesc *md;
815 u64 attr;
80851ef2 816
136939a2 817 /*
32e62c63
BH
818 * This is a hack for ioremap calls before we set up kern_memmap.
819 * Maybe we should do efi_memmap_init() earlier instead.
136939a2 820 */
32e62c63
BH
821 if (!kern_memmap) {
822 attr = efi_mem_attribute(phys_addr, size);
823 if (attr & EFI_MEMORY_WB)
824 return EFI_MEMORY_WB;
80851ef2 825 return 0;
136939a2 826 }
80851ef2 827
32e62c63
BH
828 md = kern_memory_descriptor(phys_addr);
829 if (!md)
830 return 0;
831
832 attr = md->attribute;
80851ef2 833 do {
32e62c63 834 unsigned long md_end = kmd_end(md);
136939a2
BH
835
836 if (end <= md_end)
32e62c63 837 return attr;
80851ef2 838
32e62c63
BH
839 md = kern_memory_descriptor(md_end);
840 if (!md || md->attribute != attr)
136939a2 841 return 0;
80851ef2 842 } while (md);
410ab512 843 return 0; /* never reached */
80851ef2
BH
844}
845
1da177e4 846int
7e6735c3 847valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
1da177e4 848{
32e62c63
BH
849 u64 attr;
850
851 /*
852 * /dev/mem reads and writes use copy_to_user(), which implicitly
853 * uses a granule-sized kernel identity mapping. It's really
854 * only safe to do this for regions in kern_memmap. For more
db9a0975 855 * details, see Documentation/ia64/aliasing.rst.
32e62c63
BH
856 */
857 attr = kern_mem_attribute(phys_addr, size);
858 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
859 return 1;
860 return 0;
80851ef2 861}
1da177e4 862
80851ef2 863int
06c67bef 864valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
80851ef2 865{
6d40fc51
BH
866 unsigned long phys_addr = pfn << PAGE_SHIFT;
867 u64 attr;
868
869 attr = efi_mem_attribute(phys_addr, size);
870
32e62c63 871 /*
6d40fc51
BH
872 * /dev/mem mmap uses normal user pages, so we don't need the entire
873 * granule, but the entire region we're mapping must support the same
874 * attribute.
32e62c63 875 */
6d40fc51
BH
876 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
877 return 1;
878
879 /*
880 * Intel firmware doesn't tell us about all the MMIO regions, so
881 * in general we have to allow mmap requests. But if EFI *does*
882 * tell us about anything inside this region, we should deny it.
883 * The user can always map a smaller region to avoid the overlap.
884 */
885 if (efi_memmap_intersects(phys_addr, size))
886 return 0;
887
32e62c63
BH
888 return 1;
889}
1da177e4 890
32e62c63
BH
891pgprot_t
892phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
893 pgprot_t vma_prot)
894{
895 unsigned long phys_addr = pfn << PAGE_SHIFT;
896 u64 attr;
1da177e4 897
32e62c63
BH
898 /*
899 * For /dev/mem mmap, we use user mappings, but if the region is
900 * in kern_memmap (and hence may be covered by a kernel mapping),
901 * we must use the same attribute as the kernel mapping.
902 */
903 attr = kern_mem_attribute(phys_addr, size);
904 if (attr & EFI_MEMORY_WB)
905 return pgprot_cacheable(vma_prot);
906 else if (attr & EFI_MEMORY_UC)
907 return pgprot_noncached(vma_prot);
908
909 /*
910 * Some chipsets don't support UC access to memory. If
911 * WB is supported, we prefer that.
912 */
913 if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
914 return pgprot_cacheable(vma_prot);
915
916 return pgprot_noncached(vma_prot);
1da177e4
LT
917}
918
919int __init
920efi_uart_console_only(void)
921{
922 efi_status_t status;
923 char *s, name[] = "ConOut";
924 efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
925 efi_char16_t *utf16, name_utf16[32];
926 unsigned char data[1024];
927 unsigned long size = sizeof(data);
928 struct efi_generic_dev_path *hdr, *end_addr;
929 int uart = 0;
930
931 /* Convert to UTF-16 */
932 utf16 = name_utf16;
933 s = name;
934 while (*s)
935 *utf16++ = *s++ & 0x7f;
936 *utf16 = 0;
937
938 status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
939 if (status != EFI_SUCCESS) {
940 printk(KERN_ERR "No EFI %s variable?\n", name);
941 return 0;
942 }
943
944 hdr = (struct efi_generic_dev_path *) data;
945 end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
946 while (hdr < end_addr) {
947 if (hdr->type == EFI_DEV_MSG &&
948 hdr->sub_type == EFI_DEV_MSG_UART)
949 uart = 1;
950 else if (hdr->type == EFI_DEV_END_PATH ||
951 hdr->type == EFI_DEV_END_PATH2) {
952 if (!uart)
953 return 0;
954 if (hdr->sub_type == EFI_DEV_END_ENTIRE)
955 return 1;
956 uart = 0;
957 }
7d9aed26 958 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
1da177e4
LT
959 }
960 printk(KERN_ERR "Malformed %s value\n", name);
961 return 0;
962}
d8c97d5f 963
d8c97d5f
TL
964/*
965 * Look for the first granule aligned memory descriptor memory
966 * that is big enough to hold EFI memory map. Make sure this
45b79a29 967 * descriptor is at least granule sized so it does not get trimmed
d8c97d5f
TL
968 */
969struct kern_memdesc *
970find_memmap_space (void)
971{
972 u64 contig_low=0, contig_high=0;
973 u64 as = 0, ae;
974 void *efi_map_start, *efi_map_end, *p, *q;
975 efi_memory_desc_t *md, *pmd = NULL, *check_md;
976 u64 space_needed, efi_desc_size;
977 unsigned long total_mem = 0;
978
979 efi_map_start = __va(ia64_boot_param->efi_memmap);
980 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
981 efi_desc_size = ia64_boot_param->efi_memdesc_size;
982
983 /*
984 * Worst case: we need 3 kernel descriptors for each efi descriptor
985 * (if every entry has a WB part in the middle, and UC head and tail),
986 * plus one for the end marker.
987 */
988 space_needed = sizeof(kern_memdesc_t) *
989 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
990
991 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
992 md = p;
993 if (!efi_wb(md)) {
994 continue;
995 }
7d9aed26
AG
996 if (pmd == NULL || !efi_wb(pmd) ||
997 efi_md_end(pmd) != md->phys_addr) {
d8c97d5f
TL
998 contig_low = GRANULEROUNDUP(md->phys_addr);
999 contig_high = efi_md_end(md);
7d9aed26
AG
1000 for (q = p + efi_desc_size; q < efi_map_end;
1001 q += efi_desc_size) {
d8c97d5f
TL
1002 check_md = q;
1003 if (!efi_wb(check_md))
1004 break;
1005 if (contig_high != check_md->phys_addr)
1006 break;
1007 contig_high = efi_md_end(check_md);
1008 }
1009 contig_high = GRANULEROUNDDOWN(contig_high);
1010 }
66888a6e 1011 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
d8c97d5f
TL
1012 continue;
1013
1014 /* Round ends inward to granule boundaries */
1015 as = max(contig_low, md->phys_addr);
1016 ae = min(contig_high, efi_md_end(md));
1017
a7956113
ZN
1018 /* keep within max_addr= and min_addr= command line arg */
1019 as = max(as, min_addr);
d8c97d5f
TL
1020 ae = min(ae, max_addr);
1021 if (ae <= as)
1022 continue;
1023
1024 /* avoid going over mem= command line arg */
1025 if (total_mem + (ae - as) > mem_limit)
1026 ae -= total_mem + (ae - as) - mem_limit;
1027
1028 if (ae <= as)
1029 continue;
1030
1031 if (ae - as > space_needed)
1032 break;
1033 }
1034 if (p >= efi_map_end)
1035 panic("Can't allocate space for kernel memory descriptors");
1036
1037 return __va(as);
1038}
1039
1040/*
1041 * Walk the EFI memory map and gather all memory available for kernel
1042 * to use. We can allocate partial granules only if the unavailable
1043 * parts exist, and are WB.
1044 */
cb380853 1045unsigned long
e088a4ad 1046efi_memmap_init(u64 *s, u64 *e)
d8c97d5f 1047{
e037cda5 1048 struct kern_memdesc *k, *prev = NULL;
d8c97d5f
TL
1049 u64 contig_low=0, contig_high=0;
1050 u64 as, ae, lim;
1051 void *efi_map_start, *efi_map_end, *p, *q;
1052 efi_memory_desc_t *md, *pmd = NULL, *check_md;
1053 u64 efi_desc_size;
1054 unsigned long total_mem = 0;
1055
1056 k = kern_memmap = find_memmap_space();
1057
1058 efi_map_start = __va(ia64_boot_param->efi_memmap);
1059 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1060 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1061
1062 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1063 md = p;
1064 if (!efi_wb(md)) {
7d9aed26
AG
1065 if (efi_uc(md) &&
1066 (md->type == EFI_CONVENTIONAL_MEMORY ||
1067 md->type == EFI_BOOT_SERVICES_DATA)) {
d8c97d5f
TL
1068 k->attribute = EFI_MEMORY_UC;
1069 k->start = md->phys_addr;
1070 k->num_pages = md->num_pages;
1071 k++;
1072 }
1073 continue;
1074 }
7d9aed26
AG
1075 if (pmd == NULL || !efi_wb(pmd) ||
1076 efi_md_end(pmd) != md->phys_addr) {
d8c97d5f
TL
1077 contig_low = GRANULEROUNDUP(md->phys_addr);
1078 contig_high = efi_md_end(md);
7d9aed26
AG
1079 for (q = p + efi_desc_size; q < efi_map_end;
1080 q += efi_desc_size) {
d8c97d5f
TL
1081 check_md = q;
1082 if (!efi_wb(check_md))
1083 break;
1084 if (contig_high != check_md->phys_addr)
1085 break;
1086 contig_high = efi_md_end(check_md);
1087 }
1088 contig_high = GRANULEROUNDDOWN(contig_high);
1089 }
66888a6e 1090 if (!is_memory_available(md))
d8c97d5f
TL
1091 continue;
1092
1093 /*
1094 * Round ends inward to granule boundaries
1095 * Give trimmings to uncached allocator
1096 */
1097 if (md->phys_addr < contig_low) {
1098 lim = min(efi_md_end(md), contig_low);
1099 if (efi_uc(md)) {
7d9aed26
AG
1100 if (k > kern_memmap &&
1101 (k-1)->attribute == EFI_MEMORY_UC &&
d8c97d5f 1102 kmd_end(k-1) == md->phys_addr) {
7d9aed26
AG
1103 (k-1)->num_pages +=
1104 (lim - md->phys_addr)
1105 >> EFI_PAGE_SHIFT;
d8c97d5f
TL
1106 } else {
1107 k->attribute = EFI_MEMORY_UC;
1108 k->start = md->phys_addr;
7d9aed26
AG
1109 k->num_pages = (lim - md->phys_addr)
1110 >> EFI_PAGE_SHIFT;
d8c97d5f
TL
1111 k++;
1112 }
1113 }
1114 as = contig_low;
1115 } else
1116 as = md->phys_addr;
1117
1118 if (efi_md_end(md) > contig_high) {
1119 lim = max(md->phys_addr, contig_high);
1120 if (efi_uc(md)) {
1121 if (lim == md->phys_addr && k > kern_memmap &&
1122 (k-1)->attribute == EFI_MEMORY_UC &&
1123 kmd_end(k-1) == md->phys_addr) {
1124 (k-1)->num_pages += md->num_pages;
1125 } else {
1126 k->attribute = EFI_MEMORY_UC;
1127 k->start = lim;
7d9aed26
AG
1128 k->num_pages = (efi_md_end(md) - lim)
1129 >> EFI_PAGE_SHIFT;
d8c97d5f
TL
1130 k++;
1131 }
1132 }
1133 ae = contig_high;
1134 } else
1135 ae = efi_md_end(md);
1136
a7956113
ZN
1137 /* keep within max_addr= and min_addr= command line arg */
1138 as = max(as, min_addr);
d8c97d5f
TL
1139 ae = min(ae, max_addr);
1140 if (ae <= as)
1141 continue;
1142
1143 /* avoid going over mem= command line arg */
1144 if (total_mem + (ae - as) > mem_limit)
1145 ae -= total_mem + (ae - as) - mem_limit;
1146
1147 if (ae <= as)
1148 continue;
1149 if (prev && kmd_end(prev) == md->phys_addr) {
1150 prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1151 total_mem += ae - as;
1152 continue;
1153 }
1154 k->attribute = EFI_MEMORY_WB;
1155 k->start = as;
1156 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1157 total_mem += ae - as;
1158 prev = k++;
1159 }
1160 k->start = ~0L; /* end-marker */
1161
1162 /* reserve the memory we are using for kern_memmap */
1163 *s = (u64)kern_memmap;
1164 *e = (u64)++k;
cb380853
BW
1165
1166 return total_mem;
d8c97d5f 1167}
be379124
KA
1168
1169void
1170efi_initialize_iomem_resources(struct resource *code_resource,
00bf4098
BW
1171 struct resource *data_resource,
1172 struct resource *bss_resource)
be379124
KA
1173{
1174 struct resource *res;
1175 void *efi_map_start, *efi_map_end, *p;
1176 efi_memory_desc_t *md;
1177 u64 efi_desc_size;
1178 char *name;
03cb525e 1179 unsigned long flags, desc;
be379124
KA
1180
1181 efi_map_start = __va(ia64_boot_param->efi_memmap);
1182 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1183 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1184
1185 res = NULL;
1186
1187 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1188 md = p;
1189
1190 if (md->num_pages == 0) /* should not happen */
1191 continue;
1192
887c3cb1 1193 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
03cb525e
TK
1194 desc = IORES_DESC_NONE;
1195
be379124
KA
1196 switch (md->type) {
1197
1198 case EFI_MEMORY_MAPPED_IO:
1199 case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1200 continue;
1201
1202 case EFI_LOADER_CODE:
1203 case EFI_LOADER_DATA:
1204 case EFI_BOOT_SERVICES_DATA:
1205 case EFI_BOOT_SERVICES_CODE:
1206 case EFI_CONVENTIONAL_MEMORY:
1207 if (md->attribute & EFI_MEMORY_WP) {
1208 name = "System ROM";
1209 flags |= IORESOURCE_READONLY;
03cb525e 1210 } else if (md->attribute == EFI_MEMORY_UC) {
d3758f87 1211 name = "Uncached RAM";
03cb525e 1212 } else {
be379124 1213 name = "System RAM";
03cb525e
TK
1214 flags |= IORESOURCE_SYSRAM;
1215 }
be379124
KA
1216 break;
1217
1218 case EFI_ACPI_MEMORY_NVS:
1219 name = "ACPI Non-volatile Storage";
03cb525e 1220 desc = IORES_DESC_ACPI_NV_STORAGE;
be379124
KA
1221 break;
1222
1223 case EFI_UNUSABLE_MEMORY:
1224 name = "reserved";
887c3cb1 1225 flags |= IORESOURCE_DISABLED;
be379124
KA
1226 break;
1227
ad5fb870
DW
1228 case EFI_PERSISTENT_MEMORY:
1229 name = "Persistent Memory";
03cb525e 1230 desc = IORES_DESC_PERSISTENT_MEMORY;
ad5fb870
DW
1231 break;
1232
be379124
KA
1233 case EFI_RESERVED_TYPE:
1234 case EFI_RUNTIME_SERVICES_CODE:
1235 case EFI_RUNTIME_SERVICES_DATA:
1236 case EFI_ACPI_RECLAIM_MEMORY:
1237 default:
1238 name = "reserved";
be379124
KA
1239 break;
1240 }
1241
7d9aed26
AG
1242 if ((res = kzalloc(sizeof(struct resource),
1243 GFP_KERNEL)) == NULL) {
1244 printk(KERN_ERR
965e7c8a 1245 "failed to allocate resource for iomem\n");
be379124
KA
1246 return;
1247 }
1248
1249 res->name = name;
1250 res->start = md->phys_addr;
685c7f5d 1251 res->end = md->phys_addr + efi_md_size(md) - 1;
be379124 1252 res->flags = flags;
03cb525e 1253 res->desc = desc;
be379124
KA
1254
1255 if (insert_resource(&iomem_resource, res) < 0)
1256 kfree(res);
1257 else {
1258 /*
1259 * We don't know which region contains
1260 * kernel data so we try it repeatedly and
1261 * let the resource manager test it.
1262 */
1263 insert_resource(res, code_resource);
1264 insert_resource(res, data_resource);
00bf4098 1265 insert_resource(res, bss_resource);
a7956113
ZN
1266#ifdef CONFIG_KEXEC
1267 insert_resource(res, &efi_memmap_res);
1268 insert_resource(res, &boot_param_res);
1269 if (crashk_res.end > crashk_res.start)
1270 insert_resource(res, &crashk_res);
1271#endif
be379124
KA
1272 }
1273 }
1274}
a7956113
ZN
1275
1276#ifdef CONFIG_KEXEC
1277/* find a block of memory aligned to 64M exclude reserved regions
1278 rsvd_regions are sorted
1279 */
2a3a2827 1280unsigned long __init
7d9aed26 1281kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
a7956113 1282{
7d9aed26
AG
1283 int i;
1284 u64 start, end;
1285 u64 alignment = 1UL << _PAGE_SIZE_64M;
1286 void *efi_map_start, *efi_map_end, *p;
1287 efi_memory_desc_t *md;
1288 u64 efi_desc_size;
1289
1290 efi_map_start = __va(ia64_boot_param->efi_memmap);
1291 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1292 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1293
1294 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1295 md = p;
1296 if (!efi_wb(md))
1297 continue;
1298 start = ALIGN(md->phys_addr, alignment);
1299 end = efi_md_end(md);
1300 for (i = 0; i < n; i++) {
1301 if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1302 if (__pa(r[i].start) > start + size)
1303 return start;
1304 start = ALIGN(__pa(r[i].end), alignment);
1305 if (i < n-1 &&
1306 __pa(r[i+1].start) < start + size)
1307 continue;
1308 else
1309 break;
1310 }
a7956113 1311 }
7d9aed26
AG
1312 if (end > start + size)
1313 return start;
1314 }
1315
1316 printk(KERN_WARNING
1317 "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1318 return ~0UL;
a7956113
ZN
1319}
1320#endif
cee87af2 1321
d9a9855d 1322#ifdef CONFIG_CRASH_DUMP
cee87af2 1323/* locate the size find a the descriptor at a certain address */
1775fe85 1324unsigned long __init
cee87af2
MD
1325vmcore_find_descriptor_size (unsigned long address)
1326{
1327 void *efi_map_start, *efi_map_end, *p;
1328 efi_memory_desc_t *md;
1329 u64 efi_desc_size;
1330 unsigned long ret = 0;
1331
1332 efi_map_start = __va(ia64_boot_param->efi_memmap);
1333 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1334 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1335
1336 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1337 md = p;
1338 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1339 && md->phys_addr == address) {
1340 ret = efi_md_size(md);
1341 break;
1342 }
1343 }
1344
1345 if (ret == 0)
1346 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1347
1348 return ret;
1349}
1350#endif