]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/ia64/kernel/mca.c
[IA64] kdump on INIT needs multi-nodes sync-up (v.2)
[mirror_ubuntu-bionic-kernel.git] / arch / ia64 / kernel / mca.c
CommitLineData
1da177e4
LT
1/*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
4 *
5 * Updated for latest kernel
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 *
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
11 *
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
14 *
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
17 *
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
20 *
21 * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
23 *
24 * 03/04/15 D. Mosberger Added INIT backtrace support.
25 * 02/03/25 M. Domsch GUID cleanups
26 *
27 * 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
28 * error flag, set SAL default return values, changed
29 * error record structure to linked list, added init call
30 * to sal_get_state_info_size().
31 *
32 * 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
33 * platform errors, completed code for logging of
34 * corrected & uncorrected machine check errors, and
35 * updated for conformance with Nov. 2000 revision of the
36 * SAL 3.0 spec.
37 * 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38 * added min save state dump, added INIT handler.
39 *
40 * 2003-12-08 Keith Owens <kaos@sgi.com>
41 * smp_call_function() must not be called from interrupt context (can
42 * deadlock on tasklist_lock). Use keventd to call smp_call_function().
43 *
44 * 2004-02-01 Keith Owens <kaos@sgi.com>
45 * Avoid deadlock when using printk() for MCA and INIT records.
46 * Delete all record printing code, moved to salinfo_decode in user space.
47 * Mark variables and functions static where possible.
48 * Delete dead variables and functions.
49 * Reorder to remove the need for forward declarations and to consolidate
50 * related code.
7f613c7d
KO
51 *
52 * 2005-08-12 Keith Owens <kaos@sgi.com>
53 * Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
9138d581
KO
54 *
55 * 2005-10-07 Keith Owens <kaos@sgi.com>
56 * Add notify_die() hooks.
43ed3baf
HS
57 *
58 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
59 * Add printing support for MCA/INIT.
1da177e4 60 */
1da177e4
LT
61#include <linux/types.h>
62#include <linux/init.h>
63#include <linux/sched.h>
64#include <linux/interrupt.h>
65#include <linux/irq.h>
1da177e4
LT
66#include <linux/bootmem.h>
67#include <linux/acpi.h>
68#include <linux/timer.h>
69#include <linux/module.h>
70#include <linux/kernel.h>
71#include <linux/smp.h>
72#include <linux/workqueue.h>
4668f0cd 73#include <linux/cpumask.h>
1eeb66a1 74#include <linux/kdebug.h>
1da177e4
LT
75
76#include <asm/delay.h>
77#include <asm/machvec.h>
78#include <asm/meminit.h>
79#include <asm/page.h>
80#include <asm/ptrace.h>
81#include <asm/system.h>
82#include <asm/sal.h>
83#include <asm/mca.h>
a7956113 84#include <asm/kexec.h>
1da177e4
LT
85
86#include <asm/irq.h>
87#include <asm/hw_irq.h>
88
d2a28ad9 89#include "mca_drv.h"
7f613c7d
KO
90#include "entry.h"
91
1da177e4
LT
92#if defined(IA64_MCA_DEBUG_INFO)
93# define IA64_MCA_DEBUG(fmt...) printk(fmt)
94#else
95# define IA64_MCA_DEBUG(fmt...)
96#endif
97
98/* Used by mca_asm.S */
7f613c7d 99u32 ia64_mca_serialize;
1da177e4
LT
100DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
101DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
102DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
103DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
104
105unsigned long __per_cpu_mca[NR_CPUS];
106
107/* In mca_asm.S */
7f613c7d
KO
108extern void ia64_os_init_dispatch_monarch (void);
109extern void ia64_os_init_dispatch_slave (void);
110
111static int monarch_cpu = -1;
1da177e4
LT
112
113static ia64_mc_info_t ia64_mc_info;
114
115#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
116#define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
117#define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
118#define CPE_HISTORY_LENGTH 5
119#define CMC_HISTORY_LENGTH 5
120
34eac2ab 121#ifdef CONFIG_ACPI
1da177e4 122static struct timer_list cpe_poll_timer;
34eac2ab 123#endif
1da177e4
LT
124static struct timer_list cmc_poll_timer;
125/*
126 * This variable tells whether we are currently in polling mode.
127 * Start with this in the wrong state so we won't play w/ timers
128 * before the system is ready.
129 */
130static int cmc_polling_enabled = 1;
131
132/*
133 * Clearing this variable prevents CPE polling from getting activated
134 * in mca_late_init. Use it if your system doesn't provide a CPEI,
135 * but encounters problems retrieving CPE logs. This should only be
136 * necessary for debugging.
137 */
138static int cpe_poll_enabled = 1;
139
140extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
141
0881fc8d 142static int mca_init __initdata;
1da177e4 143
43ed3baf
HS
144/*
145 * limited & delayed printing support for MCA/INIT handler
146 */
147
148#define mprintk(fmt...) ia64_mca_printk(fmt)
149
150#define MLOGBUF_SIZE (512+256*NR_CPUS)
151#define MLOGBUF_MSGMAX 256
152static char mlogbuf[MLOGBUF_SIZE];
153static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
154static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
155static unsigned long mlogbuf_start;
156static unsigned long mlogbuf_end;
157static unsigned int mlogbuf_finished = 0;
158static unsigned long mlogbuf_timestamp = 0;
159
160static int loglevel_save = -1;
161#define BREAK_LOGLEVEL(__console_loglevel) \
162 oops_in_progress = 1; \
163 if (loglevel_save < 0) \
164 loglevel_save = __console_loglevel; \
165 __console_loglevel = 15;
166
167#define RESTORE_LOGLEVEL(__console_loglevel) \
168 if (loglevel_save >= 0) { \
169 __console_loglevel = loglevel_save; \
170 loglevel_save = -1; \
171 } \
172 mlogbuf_finished = 0; \
173 oops_in_progress = 0;
174
175/*
176 * Push messages into buffer, print them later if not urgent.
177 */
178void ia64_mca_printk(const char *fmt, ...)
179{
180 va_list args;
181 int printed_len;
182 char temp_buf[MLOGBUF_MSGMAX];
183 char *p;
184
185 va_start(args, fmt);
186 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
187 va_end(args);
188
189 /* Copy the output into mlogbuf */
190 if (oops_in_progress) {
191 /* mlogbuf was abandoned, use printk directly instead. */
192 printk(temp_buf);
193 } else {
194 spin_lock(&mlogbuf_wlock);
195 for (p = temp_buf; *p; p++) {
196 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
197 if (next != mlogbuf_start) {
198 mlogbuf[mlogbuf_end] = *p;
199 mlogbuf_end = next;
200 } else {
201 /* buffer full */
202 break;
203 }
204 }
205 mlogbuf[mlogbuf_end] = '\0';
206 spin_unlock(&mlogbuf_wlock);
207 }
208}
209EXPORT_SYMBOL(ia64_mca_printk);
210
211/*
212 * Print buffered messages.
213 * NOTE: call this after returning normal context. (ex. from salinfod)
214 */
215void ia64_mlogbuf_dump(void)
216{
217 char temp_buf[MLOGBUF_MSGMAX];
218 char *p;
219 unsigned long index;
220 unsigned long flags;
221 unsigned int printed_len;
222
223 /* Get output from mlogbuf */
224 while (mlogbuf_start != mlogbuf_end) {
225 temp_buf[0] = '\0';
226 p = temp_buf;
227 printed_len = 0;
228
229 spin_lock_irqsave(&mlogbuf_rlock, flags);
230
231 index = mlogbuf_start;
232 while (index != mlogbuf_end) {
233 *p = mlogbuf[index];
234 index = (index + 1) % MLOGBUF_SIZE;
235 if (!*p)
236 break;
237 p++;
238 if (++printed_len >= MLOGBUF_MSGMAX - 1)
239 break;
240 }
241 *p = '\0';
242 if (temp_buf[0])
243 printk(temp_buf);
244 mlogbuf_start = index;
245
246 mlogbuf_timestamp = 0;
247 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
248 }
249}
250EXPORT_SYMBOL(ia64_mlogbuf_dump);
251
252/*
253 * Call this if system is going to down or if immediate flushing messages to
254 * console is required. (ex. recovery was failed, crash dump is going to be
255 * invoked, long-wait rendezvous etc.)
256 * NOTE: this should be called from monarch.
257 */
258static void ia64_mlogbuf_finish(int wait)
259{
260 BREAK_LOGLEVEL(console_loglevel);
261
262 spin_lock_init(&mlogbuf_rlock);
263 ia64_mlogbuf_dump();
264 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
265 "MCA/INIT might be dodgy or fail.\n");
266
267 if (!wait)
268 return;
269
270 /* wait for console */
271 printk("Delaying for 5 seconds...\n");
272 udelay(5*1000000);
273
274 mlogbuf_finished = 1;
275}
276EXPORT_SYMBOL(ia64_mlogbuf_finish);
277
278/*
279 * Print buffered messages from INIT context.
280 */
281static void ia64_mlogbuf_dump_from_init(void)
282{
283 if (mlogbuf_finished)
284 return;
285
286 if (mlogbuf_timestamp && (mlogbuf_timestamp + 30*HZ > jiffies)) {
287 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
288 " and the system seems to be messed up.\n");
289 ia64_mlogbuf_finish(0);
290 return;
291 }
292
293 if (!spin_trylock(&mlogbuf_rlock)) {
294 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
295 "Generated messages other than stack dump will be "
296 "buffered to mlogbuf and will be printed later.\n");
297 printk(KERN_ERR "INIT: If messages would not printed after "
298 "this INIT, wait 30sec and assert INIT again.\n");
299 if (!mlogbuf_timestamp)
300 mlogbuf_timestamp = jiffies;
301 return;
302 }
303 spin_unlock(&mlogbuf_rlock);
304 ia64_mlogbuf_dump();
305}
9138d581
KO
306
307static void inline
308ia64_mca_spin(const char *func)
309{
43ed3baf
HS
310 if (monarch_cpu == smp_processor_id())
311 ia64_mlogbuf_finish(0);
312 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
9138d581
KO
313 while (1)
314 cpu_relax();
315}
1da177e4
LT
316/*
317 * IA64_MCA log support
318 */
319#define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
320#define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
321
322typedef struct ia64_state_log_s
323{
324 spinlock_t isl_lock;
325 int isl_index;
326 unsigned long isl_count;
327 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
328} ia64_state_log_t;
329
330static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
331
332#define IA64_LOG_ALLOCATE(it, size) \
333 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
334 (ia64_err_rec_t *)alloc_bootmem(size); \
335 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
336 (ia64_err_rec_t *)alloc_bootmem(size);}
337#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
338#define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
339#define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
340#define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
341#define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
342#define IA64_LOG_INDEX_INC(it) \
343 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
344 ia64_state_log[it].isl_count++;}
345#define IA64_LOG_INDEX_DEC(it) \
346 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
347#define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
348#define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
349#define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
350
351/*
352 * ia64_log_init
353 * Reset the OS ia64 log buffer
354 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
355 * Outputs : None
356 */
0881fc8d 357static void __init
1da177e4
LT
358ia64_log_init(int sal_info_type)
359{
360 u64 max_size = 0;
361
362 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
363 IA64_LOG_LOCK_INIT(sal_info_type);
364
365 // SAL will tell us the maximum size of any error record of this type
366 max_size = ia64_sal_get_state_info_size(sal_info_type);
367 if (!max_size)
368 /* alloc_bootmem() doesn't like zero-sized allocations! */
369 return;
370
371 // set up OS data structures to hold error info
372 IA64_LOG_ALLOCATE(sal_info_type, max_size);
373 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
374 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
375}
376
377/*
378 * ia64_log_get
379 *
380 * Get the current MCA log from SAL and copy it into the OS log buffer.
381 *
382 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
383 * irq_safe whether you can use printk at this point
384 * Outputs : size (total record length)
385 * *buffer (ptr to error record)
386 *
387 */
388static u64
389ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
390{
391 sal_log_record_header_t *log_buffer;
392 u64 total_len = 0;
c53421b1 393 unsigned long s;
1da177e4
LT
394
395 IA64_LOG_LOCK(sal_info_type);
396
397 /* Get the process state information */
398 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
399
400 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
401
402 if (total_len) {
403 IA64_LOG_INDEX_INC(sal_info_type);
404 IA64_LOG_UNLOCK(sal_info_type);
405 if (irq_safe) {
406 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
407 "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
408 }
409 *buffer = (u8 *) log_buffer;
410 return total_len;
411 } else {
412 IA64_LOG_UNLOCK(sal_info_type);
413 return 0;
414 }
415}
416
417/*
418 * ia64_mca_log_sal_error_record
419 *
420 * This function retrieves a specified error record type from SAL
421 * and wakes up any processes waiting for error records.
422 *
7f613c7d
KO
423 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
424 * FIXME: remove MCA and irq_safe.
1da177e4
LT
425 */
426static void
427ia64_mca_log_sal_error_record(int sal_info_type)
428{
429 u8 *buffer;
430 sal_log_record_header_t *rh;
431 u64 size;
7f613c7d 432 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
1da177e4
LT
433#ifdef IA64_MCA_DEBUG_INFO
434 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
435#endif
436
437 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
438 if (!size)
439 return;
440
441 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
442
443 if (irq_safe)
444 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
445 smp_processor_id(),
446 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
447
448 /* Clear logs from corrected errors in case there's no user-level logger */
449 rh = (sal_log_record_header_t *)buffer;
450 if (rh->severity == sal_log_severity_corrected)
451 ia64_sal_clear_state_info(sal_info_type);
452}
453
d2a28ad9
RA
454/*
455 * search_mca_table
456 * See if the MCA surfaced in an instruction range
457 * that has been tagged as recoverable.
458 *
459 * Inputs
460 * first First address range to check
461 * last Last address range to check
462 * ip Instruction pointer, address we are looking for
463 *
464 * Return value:
465 * 1 on Success (in the table)/ 0 on Failure (not in the table)
466 */
467int
468search_mca_table (const struct mca_table_entry *first,
469 const struct mca_table_entry *last,
470 unsigned long ip)
471{
472 const struct mca_table_entry *curr;
473 u64 curr_start, curr_end;
474
475 curr = first;
476 while (curr <= last) {
477 curr_start = (u64) &curr->start_addr + curr->start_addr;
478 curr_end = (u64) &curr->end_addr + curr->end_addr;
479
480 if ((ip >= curr_start) && (ip <= curr_end)) {
481 return 1;
482 }
483 curr++;
484 }
485 return 0;
486}
487
488/* Given an address, look for it in the mca tables. */
489int mca_recover_range(unsigned long addr)
490{
491 extern struct mca_table_entry __start___mca_table[];
492 extern struct mca_table_entry __stop___mca_table[];
493
494 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
495}
496EXPORT_SYMBOL_GPL(mca_recover_range);
497
1da177e4
LT
498#ifdef CONFIG_ACPI
499
55e59c51 500int cpe_vector = -1;
ff741906 501int ia64_cpe_irq = -1;
1da177e4
LT
502
503static irqreturn_t
7d12e780 504ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
1da177e4
LT
505{
506 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
507 static int index;
508 static DEFINE_SPINLOCK(cpe_history_lock);
509
510 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
511 __FUNCTION__, cpe_irq, smp_processor_id());
512
513 /* SAL spec states this should run w/ interrupts enabled */
514 local_irq_enable();
515
1da177e4
LT
516 spin_lock(&cpe_history_lock);
517 if (!cpe_poll_enabled && cpe_vector >= 0) {
518
519 int i, count = 1; /* we know 1 happened now */
520 unsigned long now = jiffies;
521
522 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
523 if (now - cpe_history[i] <= HZ)
524 count++;
525 }
526
527 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
528 if (count >= CPE_HISTORY_LENGTH) {
529
530 cpe_poll_enabled = 1;
531 spin_unlock(&cpe_history_lock);
532 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
533
534 /*
535 * Corrected errors will still be corrected, but
536 * make sure there's a log somewhere that indicates
537 * something is generating more than we can handle.
538 */
539 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
540
541 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
542
543 /* lock already released, get out now */
ddb4f0df 544 goto out;
1da177e4
LT
545 } else {
546 cpe_history[index++] = now;
547 if (index == CPE_HISTORY_LENGTH)
548 index = 0;
549 }
550 }
551 spin_unlock(&cpe_history_lock);
ddb4f0df
HS
552out:
553 /* Get the CPE error record and log it */
554 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
555
1da177e4
LT
556 return IRQ_HANDLED;
557}
558
559#endif /* CONFIG_ACPI */
560
1da177e4
LT
561#ifdef CONFIG_ACPI
562/*
563 * ia64_mca_register_cpev
564 *
565 * Register the corrected platform error vector with SAL.
566 *
567 * Inputs
568 * cpev Corrected Platform Error Vector number
569 *
570 * Outputs
571 * None
572 */
0881fc8d 573static void __init
1da177e4
LT
574ia64_mca_register_cpev (int cpev)
575{
576 /* Register the CPE interrupt vector with SAL */
577 struct ia64_sal_retval isrv;
578
579 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
580 if (isrv.status) {
581 printk(KERN_ERR "Failed to register Corrected Platform "
582 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
583 return;
584 }
585
586 IA64_MCA_DEBUG("%s: corrected platform error "
587 "vector %#x registered\n", __FUNCTION__, cpev);
588}
589#endif /* CONFIG_ACPI */
590
1da177e4
LT
591/*
592 * ia64_mca_cmc_vector_setup
593 *
594 * Setup the corrected machine check vector register in the processor.
595 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
596 * This function is invoked on a per-processor basis.
597 *
598 * Inputs
599 * None
600 *
601 * Outputs
602 * None
603 */
0881fc8d 604void __cpuinit
1da177e4
LT
605ia64_mca_cmc_vector_setup (void)
606{
607 cmcv_reg_t cmcv;
608
609 cmcv.cmcv_regval = 0;
610 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
611 cmcv.cmcv_vector = IA64_CMC_VECTOR;
612 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
613
614 IA64_MCA_DEBUG("%s: CPU %d corrected "
615 "machine check vector %#x registered.\n",
616 __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
617
618 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
619 __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
620}
621
622/*
623 * ia64_mca_cmc_vector_disable
624 *
625 * Mask the corrected machine check vector register in the processor.
626 * This function is invoked on a per-processor basis.
627 *
628 * Inputs
629 * dummy(unused)
630 *
631 * Outputs
632 * None
633 */
634static void
635ia64_mca_cmc_vector_disable (void *dummy)
636{
637 cmcv_reg_t cmcv;
638
639 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
640
641 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
642 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
643
644 IA64_MCA_DEBUG("%s: CPU %d corrected "
645 "machine check vector %#x disabled.\n",
646 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
647}
648
649/*
650 * ia64_mca_cmc_vector_enable
651 *
652 * Unmask the corrected machine check vector register in the processor.
653 * This function is invoked on a per-processor basis.
654 *
655 * Inputs
656 * dummy(unused)
657 *
658 * Outputs
659 * None
660 */
661static void
662ia64_mca_cmc_vector_enable (void *dummy)
663{
664 cmcv_reg_t cmcv;
665
666 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
667
668 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
669 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
670
671 IA64_MCA_DEBUG("%s: CPU %d corrected "
672 "machine check vector %#x enabled.\n",
673 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
674}
675
676/*
677 * ia64_mca_cmc_vector_disable_keventd
678 *
679 * Called via keventd (smp_call_function() is not safe in interrupt context) to
680 * disable the cmc interrupt vector.
681 */
682static void
6d5aefb8 683ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
1da177e4
LT
684{
685 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
686}
687
688/*
689 * ia64_mca_cmc_vector_enable_keventd
690 *
691 * Called via keventd (smp_call_function() is not safe in interrupt context) to
692 * enable the cmc interrupt vector.
693 */
694static void
6d5aefb8 695ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
1da177e4
LT
696{
697 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
698}
699
1da177e4
LT
700/*
701 * ia64_mca_wakeup
702 *
703 * Send an inter-cpu interrupt to wake-up a particular cpu
704 * and mark that cpu to be out of rendez.
705 *
706 * Inputs : cpuid
707 * Outputs : None
708 */
709static void
710ia64_mca_wakeup(int cpu)
711{
712 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
713 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
714
715}
716
717/*
718 * ia64_mca_wakeup_all
719 *
720 * Wakeup all the cpus which have rendez'ed previously.
721 *
722 * Inputs : None
723 * Outputs : None
724 */
725static void
726ia64_mca_wakeup_all(void)
727{
728 int cpu;
729
730 /* Clear the Rendez checkin flag for all cpus */
ddf6d0a0 731 for_each_online_cpu(cpu) {
1da177e4
LT
732 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
733 ia64_mca_wakeup(cpu);
734 }
735
736}
737
738/*
739 * ia64_mca_rendez_interrupt_handler
740 *
741 * This is handler used to put slave processors into spinloop
742 * while the monarch processor does the mca handling and later
743 * wake each slave up once the monarch is done.
744 *
745 * Inputs : None
746 * Outputs : None
747 */
748static irqreturn_t
7d12e780 749ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
1da177e4
LT
750{
751 unsigned long flags;
752 int cpu = smp_processor_id();
958b166c
KO
753 struct ia64_mca_notify_die nd =
754 { .sos = NULL, .monarch_cpu = &monarch_cpu };
1da177e4
LT
755
756 /* Mask all interrupts */
757 local_irq_save(flags);
7d12e780
DH
758 if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", get_irq_regs(),
759 (long)&nd, 0, 0) == NOTIFY_STOP)
9138d581 760 ia64_mca_spin(__FUNCTION__);
1da177e4
LT
761
762 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
763 /* Register with the SAL monarch that the slave has
764 * reached SAL
765 */
766 ia64_sal_mc_rendez();
767
7d12e780
DH
768 if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", get_irq_regs(),
769 (long)&nd, 0, 0) == NOTIFY_STOP)
9138d581
KO
770 ia64_mca_spin(__FUNCTION__);
771
7f613c7d
KO
772 /* Wait for the monarch cpu to exit. */
773 while (monarch_cpu != -1)
774 cpu_relax(); /* spin until monarch leaves */
1da177e4 775
7d12e780
DH
776 if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", get_irq_regs(),
777 (long)&nd, 0, 0) == NOTIFY_STOP)
9138d581
KO
778 ia64_mca_spin(__FUNCTION__);
779
1da177e4
LT
780 /* Enable all interrupts */
781 local_irq_restore(flags);
782 return IRQ_HANDLED;
783}
784
785/*
786 * ia64_mca_wakeup_int_handler
787 *
788 * The interrupt handler for processing the inter-cpu interrupt to the
789 * slave cpu which was spinning in the rendez loop.
790 * Since this spinning is done by turning off the interrupts and
791 * polling on the wakeup-interrupt bit in the IRR, there is
792 * nothing useful to be done in the handler.
793 *
794 * Inputs : wakeup_irq (Wakeup-interrupt bit)
795 * arg (Interrupt handler specific argument)
1da177e4
LT
796 * Outputs : None
797 *
798 */
799static irqreturn_t
7d12e780 800ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
1da177e4
LT
801{
802 return IRQ_HANDLED;
803}
804
1da177e4
LT
805/* Function pointer for extra MCA recovery */
806int (*ia64_mca_ucmc_extension)
7f613c7d 807 (void*,struct ia64_sal_os_state*)
1da177e4
LT
808 = NULL;
809
810int
7f613c7d 811ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
1da177e4
LT
812{
813 if (ia64_mca_ucmc_extension)
814 return 1;
815
816 ia64_mca_ucmc_extension = fn;
817 return 0;
818}
819
820void
821ia64_unreg_MCA_extension(void)
822{
823 if (ia64_mca_ucmc_extension)
824 ia64_mca_ucmc_extension = NULL;
825}
826
827EXPORT_SYMBOL(ia64_reg_MCA_extension);
828EXPORT_SYMBOL(ia64_unreg_MCA_extension);
829
7f613c7d
KO
830
831static inline void
832copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
833{
834 u64 fslot, tslot, nat;
835 *tr = *fr;
836 fslot = ((unsigned long)fr >> 3) & 63;
837 tslot = ((unsigned long)tr >> 3) & 63;
838 *tnat &= ~(1UL << tslot);
839 nat = (fnat >> fslot) & 1;
840 *tnat |= (nat << tslot);
841}
842
e9ac054d
KO
843/* Change the comm field on the MCA/INT task to include the pid that
844 * was interrupted, it makes for easier debugging. If that pid was 0
845 * (swapper or nested MCA/INIT) then use the start of the previous comm
846 * field suffixed with its cpu.
847 */
848
849static void
36c8b586 850ia64_mca_modify_comm(const struct task_struct *previous_current)
e9ac054d
KO
851{
852 char *p, comm[sizeof(current->comm)];
853 if (previous_current->pid)
854 snprintf(comm, sizeof(comm), "%s %d",
855 current->comm, previous_current->pid);
856 else {
857 int l;
858 if ((p = strchr(previous_current->comm, ' ')))
859 l = p - previous_current->comm;
860 else
861 l = strlen(previous_current->comm);
862 snprintf(comm, sizeof(comm), "%s %*s %d",
863 current->comm, l, previous_current->comm,
864 task_thread_info(previous_current)->cpu);
865 }
866 memcpy(current->comm, comm, sizeof(current->comm));
867}
868
7f613c7d
KO
869/* On entry to this routine, we are running on the per cpu stack, see
870 * mca_asm.h. The original stack has not been touched by this event. Some of
871 * the original stack's registers will be in the RBS on this stack. This stack
872 * also contains a partial pt_regs and switch_stack, the rest of the data is in
873 * PAL minstate.
874 *
875 * The first thing to do is modify the original stack to look like a blocked
876 * task so we can run backtrace on the original task. Also mark the per cpu
877 * stack as current to ensure that we use the correct task state, it also means
878 * that we can do backtrace on the MCA/INIT handler code itself.
879 */
880
36c8b586 881static struct task_struct *
7f613c7d
KO
882ia64_mca_modify_original_stack(struct pt_regs *regs,
883 const struct switch_stack *sw,
884 struct ia64_sal_os_state *sos,
885 const char *type)
886{
e9ac054d 887 char *p;
7f613c7d
KO
888 ia64_va va;
889 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
890 const pal_min_state_area_t *ms = sos->pal_min_state;
36c8b586 891 struct task_struct *previous_current;
7f613c7d
KO
892 struct pt_regs *old_regs;
893 struct switch_stack *old_sw;
894 unsigned size = sizeof(struct pt_regs) +
895 sizeof(struct switch_stack) + 16;
896 u64 *old_bspstore, *old_bsp;
897 u64 *new_bspstore, *new_bsp;
898 u64 old_unat, old_rnat, new_rnat, nat;
899 u64 slots, loadrs = regs->loadrs;
900 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
901 u64 ar_bspstore = regs->ar_bspstore;
902 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
903 const u64 *bank;
904 const char *msg;
905 int cpu = smp_processor_id();
906
907 previous_current = curr_task(cpu);
908 set_curr_task(cpu, current);
909 if ((p = strchr(current->comm, ' ')))
910 *p = '\0';
911
912 /* Best effort attempt to cope with MCA/INIT delivered while in
913 * physical mode.
914 */
915 regs->cr_ipsr = ms->pmsa_ipsr;
916 if (ia64_psr(regs)->dt == 0) {
917 va.l = r12;
918 if (va.f.reg == 0) {
919 va.f.reg = 7;
920 r12 = va.l;
921 }
922 va.l = r13;
923 if (va.f.reg == 0) {
924 va.f.reg = 7;
925 r13 = va.l;
926 }
927 }
928 if (ia64_psr(regs)->rt == 0) {
929 va.l = ar_bspstore;
930 if (va.f.reg == 0) {
931 va.f.reg = 7;
932 ar_bspstore = va.l;
933 }
934 va.l = ar_bsp;
935 if (va.f.reg == 0) {
936 va.f.reg = 7;
937 ar_bsp = va.l;
938 }
939 }
940
941 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
942 * have been copied to the old stack, the old stack may fail the
943 * validation tests below. So ia64_old_stack() must restore the dirty
944 * registers from the new stack. The old and new bspstore probably
945 * have different alignments, so loadrs calculated on the old bsp
946 * cannot be used to restore from the new bsp. Calculate a suitable
947 * loadrs for the new stack and save it in the new pt_regs, where
948 * ia64_old_stack() can get it.
949 */
950 old_bspstore = (u64 *)ar_bspstore;
951 old_bsp = (u64 *)ar_bsp;
952 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
953 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
954 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
955 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
956
957 /* Verify the previous stack state before we change it */
958 if (user_mode(regs)) {
959 msg = "occurred in user space";
e9ac054d
KO
960 /* previous_current is guaranteed to be valid when the task was
961 * in user space, so ...
962 */
963 ia64_mca_modify_comm(previous_current);
7f613c7d
KO
964 goto no_mod;
965 }
d2a28ad9
RA
966
967 if (!mca_recover_range(ms->pmsa_iip)) {
968 if (r13 != sos->prev_IA64_KR_CURRENT) {
969 msg = "inconsistent previous current and r13";
970 goto no_mod;
971 }
972 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
973 msg = "inconsistent r12 and r13";
974 goto no_mod;
975 }
976 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
977 msg = "inconsistent ar.bspstore and r13";
978 goto no_mod;
979 }
980 va.p = old_bspstore;
981 if (va.f.reg < 5) {
982 msg = "old_bspstore is in the wrong region";
983 goto no_mod;
984 }
985 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
986 msg = "inconsistent ar.bsp and r13";
987 goto no_mod;
988 }
989 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
990 if (ar_bspstore + size > r12) {
991 msg = "no room for blocked state";
992 goto no_mod;
993 }
7f613c7d
KO
994 }
995
e9ac054d 996 ia64_mca_modify_comm(previous_current);
7f613c7d
KO
997
998 /* Make the original task look blocked. First stack a struct pt_regs,
999 * describing the state at the time of interrupt. mca_asm.S built a
1000 * partial pt_regs, copy it and fill in the blanks using minstate.
1001 */
1002 p = (char *)r12 - sizeof(*regs);
1003 old_regs = (struct pt_regs *)p;
1004 memcpy(old_regs, regs, sizeof(*regs));
1005 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1006 * pmsa_{xip,xpsr,xfs}
1007 */
1008 if (ia64_psr(regs)->ic) {
1009 old_regs->cr_iip = ms->pmsa_iip;
1010 old_regs->cr_ipsr = ms->pmsa_ipsr;
1011 old_regs->cr_ifs = ms->pmsa_ifs;
1012 } else {
1013 old_regs->cr_iip = ms->pmsa_xip;
1014 old_regs->cr_ipsr = ms->pmsa_xpsr;
1015 old_regs->cr_ifs = ms->pmsa_xfs;
1016 }
1017 old_regs->pr = ms->pmsa_pr;
1018 old_regs->b0 = ms->pmsa_br0;
1019 old_regs->loadrs = loadrs;
1020 old_regs->ar_rsc = ms->pmsa_rsc;
1021 old_unat = old_regs->ar_unat;
1022 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1023 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1024 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1025 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1026 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1027 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1028 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1029 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1030 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1031 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1032 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1033 if (ia64_psr(old_regs)->bn)
1034 bank = ms->pmsa_bank1_gr;
1035 else
1036 bank = ms->pmsa_bank0_gr;
1037 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1038 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1039 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1040 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1041 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1042 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1043 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1044 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1045 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1046 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1047 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1048 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1049 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1050 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1051 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1052 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1053
1054 /* Next stack a struct switch_stack. mca_asm.S built a partial
1055 * switch_stack, copy it and fill in the blanks using pt_regs and
1056 * minstate.
1057 *
1058 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1059 * ar.pfs is set to 0.
1060 *
1061 * unwind.c::unw_unwind() does special processing for interrupt frames.
1062 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1063 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1064 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1065 * switch_stack on the original stack so it will unwind correctly when
1066 * unwind.c reads pt_regs.
1067 *
1068 * thread.ksp is updated to point to the synthesized switch_stack.
1069 */
1070 p -= sizeof(struct switch_stack);
1071 old_sw = (struct switch_stack *)p;
1072 memcpy(old_sw, sw, sizeof(*sw));
1073 old_sw->caller_unat = old_unat;
1074 old_sw->ar_fpsr = old_regs->ar_fpsr;
1075 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1076 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1077 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1078 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1079 old_sw->b0 = (u64)ia64_leave_kernel;
1080 old_sw->b1 = ms->pmsa_br1;
1081 old_sw->ar_pfs = 0;
1082 old_sw->ar_unat = old_unat;
1083 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1084 previous_current->thread.ksp = (u64)p - 16;
1085
1086 /* Finally copy the original stack's registers back to its RBS.
1087 * Registers from ar.bspstore through ar.bsp at the time of the event
1088 * are in the current RBS, copy them back to the original stack. The
1089 * copy must be done register by register because the original bspstore
1090 * and the current one have different alignments, so the saved RNAT
1091 * data occurs at different places.
1092 *
1093 * mca_asm does cover, so the old_bsp already includes all registers at
1094 * the time of MCA/INIT. It also does flushrs, so all registers before
1095 * this function have been written to backing store on the MCA/INIT
1096 * stack.
1097 */
1098 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1099 old_rnat = regs->ar_rnat;
1100 while (slots--) {
1101 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1102 new_rnat = ia64_get_rnat(new_bspstore++);
1103 }
1104 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1105 *old_bspstore++ = old_rnat;
1106 old_rnat = 0;
1107 }
1108 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1109 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1110 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1111 *old_bspstore++ = *new_bspstore++;
1112 }
1113 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1114 old_sw->ar_rnat = old_rnat;
1115
1116 sos->prev_task = previous_current;
1117 return previous_current;
1118
1119no_mod:
1120 printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1121 smp_processor_id(), type, msg);
1122 return previous_current;
1123}
1124
1125/* The monarch/slave interaction is based on monarch_cpu and requires that all
1126 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1127 * not entered rendezvous yet then wait a bit. The assumption is that any
1128 * slave that has not rendezvoused after a reasonable time is never going to do
1129 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1130 * interrupt, as well as cpus that receive the INIT slave event.
1131 */
1132
1133static void
356a5c1c 1134ia64_wait_for_slaves(int monarch, const char *type)
7f613c7d 1135{
9336b083 1136 int c, wait = 0, missing = 0;
7f613c7d
KO
1137 for_each_online_cpu(c) {
1138 if (c == monarch)
1139 continue;
1140 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1141 udelay(1000); /* short wait first */
1142 wait = 1;
1143 break;
1144 }
1145 }
1146 if (!wait)
9336b083 1147 goto all_in;
7f613c7d
KO
1148 for_each_online_cpu(c) {
1149 if (c == monarch)
1150 continue;
1151 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1152 udelay(5*1000000); /* wait 5 seconds for slaves (arbitrary) */
9336b083
KO
1153 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1154 missing = 1;
7f613c7d
KO
1155 break;
1156 }
1157 }
9336b083
KO
1158 if (!missing)
1159 goto all_in;
43ed3baf
HS
1160 /*
1161 * Maybe slave(s) dead. Print buffered messages immediately.
1162 */
1163 ia64_mlogbuf_finish(0);
1164 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
9336b083
KO
1165 for_each_online_cpu(c) {
1166 if (c == monarch)
1167 continue;
1168 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
43ed3baf 1169 mprintk(" %d", c);
9336b083 1170 }
43ed3baf 1171 mprintk("\n");
9336b083
KO
1172 return;
1173
1174all_in:
43ed3baf 1175 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
9336b083 1176 return;
7f613c7d
KO
1177}
1178
1da177e4 1179/*
7f613c7d 1180 * ia64_mca_handler
1da177e4
LT
1181 *
1182 * This is uncorrectable machine check handler called from OS_MCA
1183 * dispatch code which is in turn called from SAL_CHECK().
1184 * This is the place where the core of OS MCA handling is done.
1185 * Right now the logs are extracted and displayed in a well-defined
1186 * format. This handler code is supposed to be run only on the
1187 * monarch processor. Once the monarch is done with MCA handling
1188 * further MCA logging is enabled by clearing logs.
1189 * Monarch also has the duty of sending wakeup-IPIs to pull the
1190 * slave processors out of rendezvous spinloop.
1da177e4
LT
1191 */
1192void
7f613c7d
KO
1193ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1194 struct ia64_sal_os_state *sos)
1da177e4 1195{
7f613c7d 1196 int recover, cpu = smp_processor_id();
36c8b586 1197 struct task_struct *previous_current;
958b166c
KO
1198 struct ia64_mca_notify_die nd =
1199 { .sos = sos, .monarch_cpu = &monarch_cpu };
7f613c7d 1200
43ed3baf
HS
1201 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1202 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
9336b083 1203
7f613c7d
KO
1204 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1205 monarch_cpu = cpu;
958b166c 1206 if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0)
9138d581
KO
1207 == NOTIFY_STOP)
1208 ia64_mca_spin(__FUNCTION__);
356a5c1c 1209 ia64_wait_for_slaves(cpu, "MCA");
7f613c7d
KO
1210
1211 /* Wakeup all the processors which are spinning in the rendezvous loop.
1212 * They will leave SAL, then spin in the OS with interrupts disabled
1213 * until this monarch cpu leaves the MCA handler. That gets control
1214 * back to the OS so we can backtrace the other cpus, backtrace when
1215 * spinning in SAL does not work.
1216 */
1217 ia64_mca_wakeup_all();
958b166c 1218 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0)
9138d581
KO
1219 == NOTIFY_STOP)
1220 ia64_mca_spin(__FUNCTION__);
1da177e4
LT
1221
1222 /* Get the MCA error record and log it */
1223 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1224
618b206f
RA
1225 /* MCA error recovery */
1226 recover = (ia64_mca_ucmc_extension
1da177e4
LT
1227 && ia64_mca_ucmc_extension(
1228 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
7f613c7d 1229 sos));
1da177e4
LT
1230
1231 if (recover) {
1232 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1233 rh->severity = sal_log_severity_corrected;
1234 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
7f613c7d 1235 sos->os_status = IA64_MCA_CORRECTED;
43ed3baf
HS
1236 } else {
1237 /* Dump buffered message to console */
1238 ia64_mlogbuf_finish(1);
45a98fc6 1239#ifdef CONFIG_KEXEC
a7956113
ZN
1240 atomic_set(&kdump_in_progress, 1);
1241 monarch_cpu = -1;
1242#endif
1da177e4 1243 }
958b166c 1244 if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover)
9138d581
KO
1245 == NOTIFY_STOP)
1246 ia64_mca_spin(__FUNCTION__);
1da177e4 1247
7f613c7d
KO
1248 set_curr_task(cpu, previous_current);
1249 monarch_cpu = -1;
1da177e4
LT
1250}
1251
6d5aefb8
DH
1252static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1253static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1da177e4
LT
1254
1255/*
1256 * ia64_mca_cmc_int_handler
1257 *
1258 * This is corrected machine check interrupt handler.
1259 * Right now the logs are extracted and displayed in a well-defined
1260 * format.
1261 *
1262 * Inputs
1263 * interrupt number
1264 * client data arg ptr
1da177e4
LT
1265 *
1266 * Outputs
1267 * None
1268 */
1269static irqreturn_t
7d12e780 1270ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1da177e4
LT
1271{
1272 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1273 static int index;
1274 static DEFINE_SPINLOCK(cmc_history_lock);
1275
1276 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1277 __FUNCTION__, cmc_irq, smp_processor_id());
1278
1279 /* SAL spec states this should run w/ interrupts enabled */
1280 local_irq_enable();
1281
1da177e4
LT
1282 spin_lock(&cmc_history_lock);
1283 if (!cmc_polling_enabled) {
1284 int i, count = 1; /* we know 1 happened now */
1285 unsigned long now = jiffies;
1286
1287 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1288 if (now - cmc_history[i] <= HZ)
1289 count++;
1290 }
1291
1292 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1293 if (count >= CMC_HISTORY_LENGTH) {
1294
1295 cmc_polling_enabled = 1;
1296 spin_unlock(&cmc_history_lock);
76e677e2
BS
1297 /* If we're being hit with CMC interrupts, we won't
1298 * ever execute the schedule_work() below. Need to
1299 * disable CMC interrupts on this processor now.
1300 */
1301 ia64_mca_cmc_vector_disable(NULL);
1da177e4
LT
1302 schedule_work(&cmc_disable_work);
1303
1304 /*
1305 * Corrected errors will still be corrected, but
1306 * make sure there's a log somewhere that indicates
1307 * something is generating more than we can handle.
1308 */
1309 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1310
1311 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1312
1313 /* lock already released, get out now */
ddb4f0df 1314 goto out;
1da177e4
LT
1315 } else {
1316 cmc_history[index++] = now;
1317 if (index == CMC_HISTORY_LENGTH)
1318 index = 0;
1319 }
1320 }
1321 spin_unlock(&cmc_history_lock);
ddb4f0df
HS
1322out:
1323 /* Get the CMC error record and log it */
1324 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1325
1da177e4
LT
1326 return IRQ_HANDLED;
1327}
1328
1329/*
1330 * ia64_mca_cmc_int_caller
1331 *
1332 * Triggered by sw interrupt from CMC polling routine. Calls
1333 * real interrupt handler and either triggers a sw interrupt
1334 * on the next cpu or does cleanup at the end.
1335 *
1336 * Inputs
1337 * interrupt number
1338 * client data arg ptr
1da177e4
LT
1339 * Outputs
1340 * handled
1341 */
1342static irqreturn_t
7d12e780 1343ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1da177e4
LT
1344{
1345 static int start_count = -1;
1346 unsigned int cpuid;
1347
1348 cpuid = smp_processor_id();
1349
1350 /* If first cpu, update count */
1351 if (start_count == -1)
1352 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1353
7d12e780 1354 ia64_mca_cmc_int_handler(cmc_irq, arg);
1da177e4
LT
1355
1356 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1357
1358 if (cpuid < NR_CPUS) {
1359 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1360 } else {
1361 /* If no log record, switch out of polling mode */
1362 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1363
1364 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1365 schedule_work(&cmc_enable_work);
1366 cmc_polling_enabled = 0;
1367
1368 } else {
1369
1370 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1371 }
1372
1373 start_count = -1;
1374 }
1375
1376 return IRQ_HANDLED;
1377}
1378
1379/*
1380 * ia64_mca_cmc_poll
1381 *
1382 * Poll for Corrected Machine Checks (CMCs)
1383 *
1384 * Inputs : dummy(unused)
1385 * Outputs : None
1386 *
1387 */
1388static void
1389ia64_mca_cmc_poll (unsigned long dummy)
1390{
1391 /* Trigger a CMC interrupt cascade */
1392 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1393}
1394
1395/*
1396 * ia64_mca_cpe_int_caller
1397 *
1398 * Triggered by sw interrupt from CPE polling routine. Calls
1399 * real interrupt handler and either triggers a sw interrupt
1400 * on the next cpu or does cleanup at the end.
1401 *
1402 * Inputs
1403 * interrupt number
1404 * client data arg ptr
1da177e4
LT
1405 * Outputs
1406 * handled
1407 */
1408#ifdef CONFIG_ACPI
1409
1410static irqreturn_t
7d12e780 1411ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1da177e4
LT
1412{
1413 static int start_count = -1;
1414 static int poll_time = MIN_CPE_POLL_INTERVAL;
1415 unsigned int cpuid;
1416
1417 cpuid = smp_processor_id();
1418
1419 /* If first cpu, update count */
1420 if (start_count == -1)
1421 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1422
7d12e780 1423 ia64_mca_cpe_int_handler(cpe_irq, arg);
1da177e4
LT
1424
1425 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1426
1427 if (cpuid < NR_CPUS) {
1428 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1429 } else {
1430 /*
1431 * If a log was recorded, increase our polling frequency,
1432 * otherwise, backoff or return to interrupt mode.
1433 */
1434 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1435 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1436 } else if (cpe_vector < 0) {
1437 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1438 } else {
1439 poll_time = MIN_CPE_POLL_INTERVAL;
1440
1441 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1442 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1443 cpe_poll_enabled = 0;
1444 }
1445
1446 if (cpe_poll_enabled)
1447 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1448 start_count = -1;
1449 }
1450
1451 return IRQ_HANDLED;
1452}
1453
1da177e4
LT
1454/*
1455 * ia64_mca_cpe_poll
1456 *
1457 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1458 * on first cpu, from there it will trickle through all the cpus.
1459 *
1460 * Inputs : dummy(unused)
1461 * Outputs : None
1462 *
1463 */
1464static void
1465ia64_mca_cpe_poll (unsigned long dummy)
1466{
1467 /* Trigger a CPE interrupt cascade */
1468 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1469}
1470
b655913b
PC
1471#endif /* CONFIG_ACPI */
1472
9138d581
KO
1473static int
1474default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1475{
1476 int c;
1477 struct task_struct *g, *t;
1478 if (val != DIE_INIT_MONARCH_PROCESS)
1479 return NOTIFY_DONE;
311f594d
JL
1480#ifdef CONFIG_KEXEC
1481 if (atomic_read(&kdump_in_progress))
1482 return NOTIFY_DONE;
1483#endif
43ed3baf
HS
1484
1485 /*
1486 * FIXME: mlogbuf will brim over with INIT stack dumps.
1487 * To enable show_stack from INIT, we use oops_in_progress which should
1488 * be used in real oops. This would cause something wrong after INIT.
1489 */
1490 BREAK_LOGLEVEL(console_loglevel);
1491 ia64_mlogbuf_dump_from_init();
1492
9138d581
KO
1493 printk(KERN_ERR "Processes interrupted by INIT -");
1494 for_each_online_cpu(c) {
1495 struct ia64_sal_os_state *s;
1496 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1497 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1498 g = s->prev_task;
1499 if (g) {
1500 if (g->pid)
1501 printk(" %d", g->pid);
1502 else
1503 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1504 }
1505 }
1506 printk("\n\n");
1507 if (read_trylock(&tasklist_lock)) {
1508 do_each_thread (g, t) {
1509 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1510 show_stack(t, NULL);
1511 } while_each_thread (g, t);
1512 read_unlock(&tasklist_lock);
1513 }
43ed3baf
HS
1514 /* FIXME: This will not restore zapped printk locks. */
1515 RESTORE_LOGLEVEL(console_loglevel);
9138d581
KO
1516 return NOTIFY_DONE;
1517}
1518
1da177e4
LT
1519/*
1520 * C portion of the OS INIT handler
1521 *
7f613c7d 1522 * Called from ia64_os_init_dispatch
1da177e4 1523 *
7f613c7d
KO
1524 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1525 * this event. This code is used for both monarch and slave INIT events, see
1526 * sos->monarch.
1da177e4 1527 *
7f613c7d
KO
1528 * All INIT events switch to the INIT stack and change the previous process to
1529 * blocked status. If one of the INIT events is the monarch then we are
1530 * probably processing the nmi button/command. Use the monarch cpu to dump all
1531 * the processes. The slave INIT events all spin until the monarch cpu
1532 * returns. We can also get INIT slave events for MCA, in which case the MCA
1533 * process is the monarch.
1da177e4 1534 */
7f613c7d 1535
1da177e4 1536void
7f613c7d
KO
1537ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1538 struct ia64_sal_os_state *sos)
1da177e4 1539{
7f613c7d
KO
1540 static atomic_t slaves;
1541 static atomic_t monarchs;
36c8b586 1542 struct task_struct *previous_current;
9138d581 1543 int cpu = smp_processor_id();
958b166c
KO
1544 struct ia64_mca_notify_die nd =
1545 { .sos = sos, .monarch_cpu = &monarch_cpu };
1da177e4 1546
958b166c
KO
1547 (void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0);
1548
43ed3baf 1549 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
7f613c7d
KO
1550 sos->proc_state_param, cpu, sos->monarch);
1551 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1da177e4 1552
7f613c7d
KO
1553 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1554 sos->os_status = IA64_INIT_RESUME;
1555
1556 /* FIXME: Workaround for broken proms that drive all INIT events as
1557 * slaves. The last slave that enters is promoted to be a monarch.
1558 * Remove this code in September 2006, that gives platforms a year to
1559 * fix their proms and get their customers updated.
1da177e4 1560 */
7f613c7d 1561 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
43ed3baf 1562 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
7f613c7d
KO
1563 __FUNCTION__, cpu);
1564 atomic_dec(&slaves);
1565 sos->monarch = 1;
1566 }
1da177e4 1567
7f613c7d
KO
1568 /* FIXME: Workaround for broken proms that drive all INIT events as
1569 * monarchs. Second and subsequent monarchs are demoted to slaves.
1570 * Remove this code in September 2006, that gives platforms a year to
1571 * fix their proms and get their customers updated.
1572 */
1573 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
43ed3baf 1574 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
7f613c7d
KO
1575 __FUNCTION__, cpu);
1576 atomic_dec(&monarchs);
1577 sos->monarch = 0;
1578 }
1579
1580 if (!sos->monarch) {
1581 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1582 while (monarch_cpu == -1)
1583 cpu_relax(); /* spin until monarch enters */
958b166c 1584 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0)
9138d581
KO
1585 == NOTIFY_STOP)
1586 ia64_mca_spin(__FUNCTION__);
958b166c 1587 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0)
9138d581
KO
1588 == NOTIFY_STOP)
1589 ia64_mca_spin(__FUNCTION__);
7f613c7d
KO
1590 while (monarch_cpu != -1)
1591 cpu_relax(); /* spin until monarch leaves */
958b166c 1592 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0)
9138d581
KO
1593 == NOTIFY_STOP)
1594 ia64_mca_spin(__FUNCTION__);
43ed3baf 1595 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
7f613c7d
KO
1596 set_curr_task(cpu, previous_current);
1597 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1598 atomic_dec(&slaves);
1599 return;
1600 }
1601
1602 monarch_cpu = cpu;
958b166c 1603 if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0)
9138d581
KO
1604 == NOTIFY_STOP)
1605 ia64_mca_spin(__FUNCTION__);
7f613c7d
KO
1606
1607 /*
1608 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1609 * generated via the BMC's command-line interface, but since the console is on the
1610 * same serial line, the user will need some time to switch out of the BMC before
1611 * the dump begins.
1612 */
43ed3baf 1613 mprintk("Delaying for 5 seconds...\n");
7f613c7d 1614 udelay(5*1000000);
356a5c1c 1615 ia64_wait_for_slaves(cpu, "INIT");
9138d581
KO
1616 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1617 * to default_monarch_init_process() above and just print all the
1618 * tasks.
1619 */
958b166c 1620 if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0)
9138d581
KO
1621 == NOTIFY_STOP)
1622 ia64_mca_spin(__FUNCTION__);
958b166c 1623 if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0)
9138d581
KO
1624 == NOTIFY_STOP)
1625 ia64_mca_spin(__FUNCTION__);
43ed3baf 1626 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
7f613c7d
KO
1627 atomic_dec(&monarchs);
1628 set_curr_task(cpu, previous_current);
1629 monarch_cpu = -1;
1630 return;
1da177e4
LT
1631}
1632
1633static int __init
1634ia64_mca_disable_cpe_polling(char *str)
1635{
1636 cpe_poll_enabled = 0;
1637 return 1;
1638}
1639
1640__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1641
1642static struct irqaction cmci_irqaction = {
1643 .handler = ia64_mca_cmc_int_handler,
121a4226 1644 .flags = IRQF_DISABLED,
1da177e4
LT
1645 .name = "cmc_hndlr"
1646};
1647
1648static struct irqaction cmcp_irqaction = {
1649 .handler = ia64_mca_cmc_int_caller,
121a4226 1650 .flags = IRQF_DISABLED,
1da177e4
LT
1651 .name = "cmc_poll"
1652};
1653
1654static struct irqaction mca_rdzv_irqaction = {
1655 .handler = ia64_mca_rendez_int_handler,
121a4226 1656 .flags = IRQF_DISABLED,
1da177e4
LT
1657 .name = "mca_rdzv"
1658};
1659
1660static struct irqaction mca_wkup_irqaction = {
1661 .handler = ia64_mca_wakeup_int_handler,
121a4226 1662 .flags = IRQF_DISABLED,
1da177e4
LT
1663 .name = "mca_wkup"
1664};
1665
1666#ifdef CONFIG_ACPI
1667static struct irqaction mca_cpe_irqaction = {
1668 .handler = ia64_mca_cpe_int_handler,
121a4226 1669 .flags = IRQF_DISABLED,
1da177e4
LT
1670 .name = "cpe_hndlr"
1671};
1672
1673static struct irqaction mca_cpep_irqaction = {
1674 .handler = ia64_mca_cpe_int_caller,
121a4226 1675 .flags = IRQF_DISABLED,
1da177e4
LT
1676 .name = "cpe_poll"
1677};
1678#endif /* CONFIG_ACPI */
1679
7f613c7d
KO
1680/* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1681 * these stacks can never sleep, they cannot return from the kernel to user
1682 * space, they do not appear in a normal ps listing. So there is no need to
1683 * format most of the fields.
1684 */
1685
0881fc8d 1686static void __cpuinit
7f613c7d
KO
1687format_mca_init_stack(void *mca_data, unsigned long offset,
1688 const char *type, int cpu)
1689{
1690 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1691 struct thread_info *ti;
1692 memset(p, 0, KERNEL_STACK_SIZE);
ab03591d 1693 ti = task_thread_info(p);
7f613c7d
KO
1694 ti->flags = _TIF_MCA_INIT;
1695 ti->preempt_count = 1;
1696 ti->task = p;
1697 ti->cpu = cpu;
f7e4217b 1698 p->stack = ti;
7f613c7d 1699 p->state = TASK_UNINTERRUPTIBLE;
4668f0cd 1700 cpu_set(cpu, p->cpus_allowed);
7f613c7d
KO
1701 INIT_LIST_HEAD(&p->tasks);
1702 p->parent = p->real_parent = p->group_leader = p;
1703 INIT_LIST_HEAD(&p->children);
1704 INIT_LIST_HEAD(&p->sibling);
1705 strncpy(p->comm, type, sizeof(p->comm)-1);
1706}
1707
1da177e4
LT
1708/* Do per-CPU MCA-related initialization. */
1709
0881fc8d 1710void __cpuinit
1da177e4
LT
1711ia64_mca_cpu_init(void *cpu_data)
1712{
1713 void *pal_vaddr;
ff741906 1714 static int first_time = 1;
1da177e4 1715
ff741906 1716 if (first_time) {
1da177e4
LT
1717 void *mca_data;
1718 int cpu;
1719
ff741906 1720 first_time = 0;
1da177e4 1721 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
7f613c7d
KO
1722 * NR_CPUS + KERNEL_STACK_SIZE);
1723 mca_data = (void *)(((unsigned long)mca_data +
1724 KERNEL_STACK_SIZE - 1) &
1725 (-KERNEL_STACK_SIZE));
1da177e4 1726 for (cpu = 0; cpu < NR_CPUS; cpu++) {
7f613c7d
KO
1727 format_mca_init_stack(mca_data,
1728 offsetof(struct ia64_mca_cpu, mca_stack),
1729 "MCA", cpu);
1730 format_mca_init_stack(mca_data,
1731 offsetof(struct ia64_mca_cpu, init_stack),
1732 "INIT", cpu);
1da177e4
LT
1733 __per_cpu_mca[cpu] = __pa(mca_data);
1734 mca_data += sizeof(struct ia64_mca_cpu);
1735 }
1736 }
1737
7f613c7d
KO
1738 /*
1739 * The MCA info structure was allocated earlier and its
1740 * physical address saved in __per_cpu_mca[cpu]. Copy that
1741 * address * to ia64_mca_data so we can access it as a per-CPU
1742 * variable.
1743 */
1da177e4
LT
1744 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1745
1746 /*
1747 * Stash away a copy of the PTE needed to map the per-CPU page.
1748 * We may need it during MCA recovery.
1749 */
1750 __get_cpu_var(ia64_mca_per_cpu_pte) =
1751 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1752
7f613c7d
KO
1753 /*
1754 * Also, stash away a copy of the PAL address and the PTE
1755 * needed to map it.
1756 */
1757 pal_vaddr = efi_get_pal_addr();
1da177e4
LT
1758 if (!pal_vaddr)
1759 return;
1760 __get_cpu_var(ia64_mca_pal_base) =
1761 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1762 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1763 PAGE_KERNEL));
1764}
1765
1766/*
1767 * ia64_mca_init
1768 *
1769 * Do all the system level mca specific initialization.
1770 *
1771 * 1. Register spinloop and wakeup request interrupt vectors
1772 *
1773 * 2. Register OS_MCA handler entry point
1774 *
1775 * 3. Register OS_INIT handler entry point
1776 *
1777 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1778 *
1779 * Note that this initialization is done very early before some kernel
1780 * services are available.
1781 *
1782 * Inputs : None
1783 *
1784 * Outputs : None
1785 */
1786void __init
1787ia64_mca_init(void)
1788{
7f613c7d
KO
1789 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1790 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1da177e4
LT
1791 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1792 int i;
1793 s64 rc;
1794 struct ia64_sal_retval isrv;
1795 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
9138d581
KO
1796 static struct notifier_block default_init_monarch_nb = {
1797 .notifier_call = default_monarch_init_process,
1798 .priority = 0/* we need to notified last */
1799 };
1da177e4
LT
1800
1801 IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1802
1803 /* Clear the Rendez checkin flag for all cpus */
1804 for(i = 0 ; i < NR_CPUS; i++)
1805 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1806
1807 /*
1808 * Register the rendezvous spinloop and wakeup mechanism with SAL
1809 */
1810
1811 /* Register the rendezvous interrupt vector with SAL */
1812 while (1) {
1813 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1814 SAL_MC_PARAM_MECHANISM_INT,
1815 IA64_MCA_RENDEZ_VECTOR,
1816 timeout,
1817 SAL_MC_PARAM_RZ_ALWAYS);
1818 rc = isrv.status;
1819 if (rc == 0)
1820 break;
1821 if (rc == -2) {
1822 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1823 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1824 timeout = isrv.v0;
958b166c 1825 (void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0);
1da177e4
LT
1826 continue;
1827 }
1828 printk(KERN_ERR "Failed to register rendezvous interrupt "
1829 "with SAL (status %ld)\n", rc);
1830 return;
1831 }
1832
1833 /* Register the wakeup interrupt vector with SAL */
1834 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1835 SAL_MC_PARAM_MECHANISM_INT,
1836 IA64_MCA_WAKEUP_VECTOR,
1837 0, 0);
1838 rc = isrv.status;
1839 if (rc) {
1840 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1841 "(status %ld)\n", rc);
1842 return;
1843 }
1844
1845 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1846
1847 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1848 /*
1849 * XXX - disable SAL checksum by setting size to 0; should be
1850 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1851 */
1852 ia64_mc_info.imi_mca_handler_size = 0;
1853
1854 /* Register the os mca handler with SAL */
1855 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1856 ia64_mc_info.imi_mca_handler,
1857 ia64_tpa(mca_hldlr_ptr->gp),
1858 ia64_mc_info.imi_mca_handler_size,
1859 0, 0, 0)))
1860 {
1861 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1862 "(status %ld)\n", rc);
1863 return;
1864 }
1865
1866 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1867 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1868
1869 /*
1870 * XXX - disable SAL checksum by setting size to 0, should be
1871 * size of the actual init handler in mca_asm.S.
1872 */
7f613c7d 1873 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1da177e4 1874 ia64_mc_info.imi_monarch_init_handler_size = 0;
7f613c7d 1875 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1da177e4
LT
1876 ia64_mc_info.imi_slave_init_handler_size = 0;
1877
1878 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1879 ia64_mc_info.imi_monarch_init_handler);
1880
1881 /* Register the os init handler with SAL */
1882 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1883 ia64_mc_info.imi_monarch_init_handler,
1884 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1885 ia64_mc_info.imi_monarch_init_handler_size,
1886 ia64_mc_info.imi_slave_init_handler,
1887 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1888 ia64_mc_info.imi_slave_init_handler_size)))
1889 {
1890 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1891 "(status %ld)\n", rc);
1892 return;
1893 }
9138d581
KO
1894 if (register_die_notifier(&default_init_monarch_nb)) {
1895 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1896 return;
1897 }
1da177e4
LT
1898
1899 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1900
1901 /*
1902 * Configure the CMCI/P vector and handler. Interrupts for CMC are
1903 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1904 */
1905 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1906 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1907 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
1908
1909 /* Setup the MCA rendezvous interrupt vector */
1910 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1911
1912 /* Setup the MCA wakeup interrupt vector */
1913 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1914
1915#ifdef CONFIG_ACPI
bb68c12b 1916 /* Setup the CPEI/P handler */
1da177e4
LT
1917 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1918#endif
1919
1920 /* Initialize the areas set aside by the OS to buffer the
1921 * platform/processor error states for MCA/INIT/CMC
1922 * handling.
1923 */
1924 ia64_log_init(SAL_INFO_TYPE_MCA);
1925 ia64_log_init(SAL_INFO_TYPE_INIT);
1926 ia64_log_init(SAL_INFO_TYPE_CMC);
1927 ia64_log_init(SAL_INFO_TYPE_CPE);
1928
1929 mca_init = 1;
1930 printk(KERN_INFO "MCA related initialization done\n");
1931}
1932
1933/*
1934 * ia64_mca_late_init
1935 *
1936 * Opportunity to setup things that require initialization later
1937 * than ia64_mca_init. Setup a timer to poll for CPEs if the
1938 * platform doesn't support an interrupt driven mechanism.
1939 *
1940 * Inputs : None
1941 * Outputs : Status
1942 */
1943static int __init
1944ia64_mca_late_init(void)
1945{
1946 if (!mca_init)
1947 return 0;
1948
1949 /* Setup the CMCI/P vector and handler */
1950 init_timer(&cmc_poll_timer);
1951 cmc_poll_timer.function = ia64_mca_cmc_poll;
1952
1953 /* Unmask/enable the vector */
1954 cmc_polling_enabled = 0;
1955 schedule_work(&cmc_enable_work);
1956
1957 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1958
1959#ifdef CONFIG_ACPI
1960 /* Setup the CPEI/P vector and handler */
bb68c12b 1961 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1da177e4
LT
1962 init_timer(&cpe_poll_timer);
1963 cpe_poll_timer.function = ia64_mca_cpe_poll;
1964
1965 {
1966 irq_desc_t *desc;
1967 unsigned int irq;
1968
1969 if (cpe_vector >= 0) {
1970 /* If platform supports CPEI, enable the irq. */
1971 cpe_poll_enabled = 0;
1972 for (irq = 0; irq < NR_IRQS; ++irq)
1973 if (irq_to_vector(irq) == cpe_vector) {
a8553acd 1974 desc = irq_desc + irq;
1da177e4
LT
1975 desc->status |= IRQ_PER_CPU;
1976 setup_irq(irq, &mca_cpe_irqaction);
ff741906 1977 ia64_cpe_irq = irq;
1da177e4
LT
1978 }
1979 ia64_mca_register_cpev(cpe_vector);
1980 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1981 } else {
1982 /* If platform doesn't support CPEI, get the timer going. */
1983 if (cpe_poll_enabled) {
1984 ia64_mca_cpe_poll(0UL);
1985 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1986 }
1987 }
1988 }
1989#endif
1990
1991 return 0;
1992}
1993
1994device_initcall(ia64_mca_late_init);