]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/ia64/kernel/mca.c
[PATCH] ecryptfs: nested locking annotation
[mirror_ubuntu-zesty-kernel.git] / arch / ia64 / kernel / mca.c
CommitLineData
1da177e4
LT
1/*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
4 *
5 * Updated for latest kernel
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 *
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
11 *
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
14 *
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
17 *
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
20 *
21 * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
23 *
24 * 03/04/15 D. Mosberger Added INIT backtrace support.
25 * 02/03/25 M. Domsch GUID cleanups
26 *
27 * 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
28 * error flag, set SAL default return values, changed
29 * error record structure to linked list, added init call
30 * to sal_get_state_info_size().
31 *
32 * 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
33 * platform errors, completed code for logging of
34 * corrected & uncorrected machine check errors, and
35 * updated for conformance with Nov. 2000 revision of the
36 * SAL 3.0 spec.
37 * 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38 * added min save state dump, added INIT handler.
39 *
40 * 2003-12-08 Keith Owens <kaos@sgi.com>
41 * smp_call_function() must not be called from interrupt context (can
42 * deadlock on tasklist_lock). Use keventd to call smp_call_function().
43 *
44 * 2004-02-01 Keith Owens <kaos@sgi.com>
45 * Avoid deadlock when using printk() for MCA and INIT records.
46 * Delete all record printing code, moved to salinfo_decode in user space.
47 * Mark variables and functions static where possible.
48 * Delete dead variables and functions.
49 * Reorder to remove the need for forward declarations and to consolidate
50 * related code.
7f613c7d
KO
51 *
52 * 2005-08-12 Keith Owens <kaos@sgi.com>
53 * Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
9138d581
KO
54 *
55 * 2005-10-07 Keith Owens <kaos@sgi.com>
56 * Add notify_die() hooks.
43ed3baf
HS
57 *
58 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
59 * Add printing support for MCA/INIT.
1da177e4 60 */
1da177e4
LT
61#include <linux/types.h>
62#include <linux/init.h>
63#include <linux/sched.h>
64#include <linux/interrupt.h>
65#include <linux/irq.h>
1da177e4
LT
66#include <linux/smp_lock.h>
67#include <linux/bootmem.h>
68#include <linux/acpi.h>
69#include <linux/timer.h>
70#include <linux/module.h>
71#include <linux/kernel.h>
72#include <linux/smp.h>
73#include <linux/workqueue.h>
4668f0cd 74#include <linux/cpumask.h>
1da177e4
LT
75
76#include <asm/delay.h>
9138d581 77#include <asm/kdebug.h>
1da177e4
LT
78#include <asm/machvec.h>
79#include <asm/meminit.h>
80#include <asm/page.h>
81#include <asm/ptrace.h>
82#include <asm/system.h>
83#include <asm/sal.h>
84#include <asm/mca.h>
a7956113 85#include <asm/kexec.h>
1da177e4
LT
86
87#include <asm/irq.h>
88#include <asm/hw_irq.h>
89
d2a28ad9 90#include "mca_drv.h"
7f613c7d
KO
91#include "entry.h"
92
1da177e4
LT
93#if defined(IA64_MCA_DEBUG_INFO)
94# define IA64_MCA_DEBUG(fmt...) printk(fmt)
95#else
96# define IA64_MCA_DEBUG(fmt...)
97#endif
98
99/* Used by mca_asm.S */
7f613c7d 100u32 ia64_mca_serialize;
1da177e4
LT
101DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
102DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
103DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
104DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
105
106unsigned long __per_cpu_mca[NR_CPUS];
107
108/* In mca_asm.S */
7f613c7d
KO
109extern void ia64_os_init_dispatch_monarch (void);
110extern void ia64_os_init_dispatch_slave (void);
111
112static int monarch_cpu = -1;
1da177e4
LT
113
114static ia64_mc_info_t ia64_mc_info;
115
116#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
117#define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
118#define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
119#define CPE_HISTORY_LENGTH 5
120#define CMC_HISTORY_LENGTH 5
121
122static struct timer_list cpe_poll_timer;
123static struct timer_list cmc_poll_timer;
124/*
125 * This variable tells whether we are currently in polling mode.
126 * Start with this in the wrong state so we won't play w/ timers
127 * before the system is ready.
128 */
129static int cmc_polling_enabled = 1;
130
131/*
132 * Clearing this variable prevents CPE polling from getting activated
133 * in mca_late_init. Use it if your system doesn't provide a CPEI,
134 * but encounters problems retrieving CPE logs. This should only be
135 * necessary for debugging.
136 */
137static int cpe_poll_enabled = 1;
138
139extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
140
0881fc8d 141static int mca_init __initdata;
1da177e4 142
43ed3baf
HS
143/*
144 * limited & delayed printing support for MCA/INIT handler
145 */
146
147#define mprintk(fmt...) ia64_mca_printk(fmt)
148
149#define MLOGBUF_SIZE (512+256*NR_CPUS)
150#define MLOGBUF_MSGMAX 256
151static char mlogbuf[MLOGBUF_SIZE];
152static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
153static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
154static unsigned long mlogbuf_start;
155static unsigned long mlogbuf_end;
156static unsigned int mlogbuf_finished = 0;
157static unsigned long mlogbuf_timestamp = 0;
158
159static int loglevel_save = -1;
160#define BREAK_LOGLEVEL(__console_loglevel) \
161 oops_in_progress = 1; \
162 if (loglevel_save < 0) \
163 loglevel_save = __console_loglevel; \
164 __console_loglevel = 15;
165
166#define RESTORE_LOGLEVEL(__console_loglevel) \
167 if (loglevel_save >= 0) { \
168 __console_loglevel = loglevel_save; \
169 loglevel_save = -1; \
170 } \
171 mlogbuf_finished = 0; \
172 oops_in_progress = 0;
173
174/*
175 * Push messages into buffer, print them later if not urgent.
176 */
177void ia64_mca_printk(const char *fmt, ...)
178{
179 va_list args;
180 int printed_len;
181 char temp_buf[MLOGBUF_MSGMAX];
182 char *p;
183
184 va_start(args, fmt);
185 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
186 va_end(args);
187
188 /* Copy the output into mlogbuf */
189 if (oops_in_progress) {
190 /* mlogbuf was abandoned, use printk directly instead. */
191 printk(temp_buf);
192 } else {
193 spin_lock(&mlogbuf_wlock);
194 for (p = temp_buf; *p; p++) {
195 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
196 if (next != mlogbuf_start) {
197 mlogbuf[mlogbuf_end] = *p;
198 mlogbuf_end = next;
199 } else {
200 /* buffer full */
201 break;
202 }
203 }
204 mlogbuf[mlogbuf_end] = '\0';
205 spin_unlock(&mlogbuf_wlock);
206 }
207}
208EXPORT_SYMBOL(ia64_mca_printk);
209
210/*
211 * Print buffered messages.
212 * NOTE: call this after returning normal context. (ex. from salinfod)
213 */
214void ia64_mlogbuf_dump(void)
215{
216 char temp_buf[MLOGBUF_MSGMAX];
217 char *p;
218 unsigned long index;
219 unsigned long flags;
220 unsigned int printed_len;
221
222 /* Get output from mlogbuf */
223 while (mlogbuf_start != mlogbuf_end) {
224 temp_buf[0] = '\0';
225 p = temp_buf;
226 printed_len = 0;
227
228 spin_lock_irqsave(&mlogbuf_rlock, flags);
229
230 index = mlogbuf_start;
231 while (index != mlogbuf_end) {
232 *p = mlogbuf[index];
233 index = (index + 1) % MLOGBUF_SIZE;
234 if (!*p)
235 break;
236 p++;
237 if (++printed_len >= MLOGBUF_MSGMAX - 1)
238 break;
239 }
240 *p = '\0';
241 if (temp_buf[0])
242 printk(temp_buf);
243 mlogbuf_start = index;
244
245 mlogbuf_timestamp = 0;
246 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
247 }
248}
249EXPORT_SYMBOL(ia64_mlogbuf_dump);
250
251/*
252 * Call this if system is going to down or if immediate flushing messages to
253 * console is required. (ex. recovery was failed, crash dump is going to be
254 * invoked, long-wait rendezvous etc.)
255 * NOTE: this should be called from monarch.
256 */
257static void ia64_mlogbuf_finish(int wait)
258{
259 BREAK_LOGLEVEL(console_loglevel);
260
261 spin_lock_init(&mlogbuf_rlock);
262 ia64_mlogbuf_dump();
263 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
264 "MCA/INIT might be dodgy or fail.\n");
265
266 if (!wait)
267 return;
268
269 /* wait for console */
270 printk("Delaying for 5 seconds...\n");
271 udelay(5*1000000);
272
273 mlogbuf_finished = 1;
274}
275EXPORT_SYMBOL(ia64_mlogbuf_finish);
276
277/*
278 * Print buffered messages from INIT context.
279 */
280static void ia64_mlogbuf_dump_from_init(void)
281{
282 if (mlogbuf_finished)
283 return;
284
285 if (mlogbuf_timestamp && (mlogbuf_timestamp + 30*HZ > jiffies)) {
286 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
287 " and the system seems to be messed up.\n");
288 ia64_mlogbuf_finish(0);
289 return;
290 }
291
292 if (!spin_trylock(&mlogbuf_rlock)) {
293 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
294 "Generated messages other than stack dump will be "
295 "buffered to mlogbuf and will be printed later.\n");
296 printk(KERN_ERR "INIT: If messages would not printed after "
297 "this INIT, wait 30sec and assert INIT again.\n");
298 if (!mlogbuf_timestamp)
299 mlogbuf_timestamp = jiffies;
300 return;
301 }
302 spin_unlock(&mlogbuf_rlock);
303 ia64_mlogbuf_dump();
304}
9138d581
KO
305
306static void inline
307ia64_mca_spin(const char *func)
308{
43ed3baf
HS
309 if (monarch_cpu == smp_processor_id())
310 ia64_mlogbuf_finish(0);
311 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
9138d581
KO
312 while (1)
313 cpu_relax();
314}
1da177e4
LT
315/*
316 * IA64_MCA log support
317 */
318#define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
319#define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
320
321typedef struct ia64_state_log_s
322{
323 spinlock_t isl_lock;
324 int isl_index;
325 unsigned long isl_count;
326 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
327} ia64_state_log_t;
328
329static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
330
331#define IA64_LOG_ALLOCATE(it, size) \
332 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
333 (ia64_err_rec_t *)alloc_bootmem(size); \
334 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
335 (ia64_err_rec_t *)alloc_bootmem(size);}
336#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
337#define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
338#define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
339#define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
340#define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
341#define IA64_LOG_INDEX_INC(it) \
342 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
343 ia64_state_log[it].isl_count++;}
344#define IA64_LOG_INDEX_DEC(it) \
345 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
346#define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
347#define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
348#define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
349
350/*
351 * ia64_log_init
352 * Reset the OS ia64 log buffer
353 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
354 * Outputs : None
355 */
0881fc8d 356static void __init
1da177e4
LT
357ia64_log_init(int sal_info_type)
358{
359 u64 max_size = 0;
360
361 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
362 IA64_LOG_LOCK_INIT(sal_info_type);
363
364 // SAL will tell us the maximum size of any error record of this type
365 max_size = ia64_sal_get_state_info_size(sal_info_type);
366 if (!max_size)
367 /* alloc_bootmem() doesn't like zero-sized allocations! */
368 return;
369
370 // set up OS data structures to hold error info
371 IA64_LOG_ALLOCATE(sal_info_type, max_size);
372 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
373 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
374}
375
376/*
377 * ia64_log_get
378 *
379 * Get the current MCA log from SAL and copy it into the OS log buffer.
380 *
381 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
382 * irq_safe whether you can use printk at this point
383 * Outputs : size (total record length)
384 * *buffer (ptr to error record)
385 *
386 */
387static u64
388ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
389{
390 sal_log_record_header_t *log_buffer;
391 u64 total_len = 0;
c53421b1 392 unsigned long s;
1da177e4
LT
393
394 IA64_LOG_LOCK(sal_info_type);
395
396 /* Get the process state information */
397 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
398
399 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
400
401 if (total_len) {
402 IA64_LOG_INDEX_INC(sal_info_type);
403 IA64_LOG_UNLOCK(sal_info_type);
404 if (irq_safe) {
405 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
406 "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
407 }
408 *buffer = (u8 *) log_buffer;
409 return total_len;
410 } else {
411 IA64_LOG_UNLOCK(sal_info_type);
412 return 0;
413 }
414}
415
416/*
417 * ia64_mca_log_sal_error_record
418 *
419 * This function retrieves a specified error record type from SAL
420 * and wakes up any processes waiting for error records.
421 *
7f613c7d
KO
422 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
423 * FIXME: remove MCA and irq_safe.
1da177e4
LT
424 */
425static void
426ia64_mca_log_sal_error_record(int sal_info_type)
427{
428 u8 *buffer;
429 sal_log_record_header_t *rh;
430 u64 size;
7f613c7d 431 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
1da177e4
LT
432#ifdef IA64_MCA_DEBUG_INFO
433 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
434#endif
435
436 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
437 if (!size)
438 return;
439
440 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
441
442 if (irq_safe)
443 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
444 smp_processor_id(),
445 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
446
447 /* Clear logs from corrected errors in case there's no user-level logger */
448 rh = (sal_log_record_header_t *)buffer;
449 if (rh->severity == sal_log_severity_corrected)
450 ia64_sal_clear_state_info(sal_info_type);
451}
452
d2a28ad9
RA
453/*
454 * search_mca_table
455 * See if the MCA surfaced in an instruction range
456 * that has been tagged as recoverable.
457 *
458 * Inputs
459 * first First address range to check
460 * last Last address range to check
461 * ip Instruction pointer, address we are looking for
462 *
463 * Return value:
464 * 1 on Success (in the table)/ 0 on Failure (not in the table)
465 */
466int
467search_mca_table (const struct mca_table_entry *first,
468 const struct mca_table_entry *last,
469 unsigned long ip)
470{
471 const struct mca_table_entry *curr;
472 u64 curr_start, curr_end;
473
474 curr = first;
475 while (curr <= last) {
476 curr_start = (u64) &curr->start_addr + curr->start_addr;
477 curr_end = (u64) &curr->end_addr + curr->end_addr;
478
479 if ((ip >= curr_start) && (ip <= curr_end)) {
480 return 1;
481 }
482 curr++;
483 }
484 return 0;
485}
486
487/* Given an address, look for it in the mca tables. */
488int mca_recover_range(unsigned long addr)
489{
490 extern struct mca_table_entry __start___mca_table[];
491 extern struct mca_table_entry __stop___mca_table[];
492
493 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
494}
495EXPORT_SYMBOL_GPL(mca_recover_range);
496
1da177e4
LT
497#ifdef CONFIG_ACPI
498
55e59c51 499int cpe_vector = -1;
ff741906 500int ia64_cpe_irq = -1;
1da177e4
LT
501
502static irqreturn_t
7d12e780 503ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
1da177e4
LT
504{
505 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
506 static int index;
507 static DEFINE_SPINLOCK(cpe_history_lock);
508
509 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
510 __FUNCTION__, cpe_irq, smp_processor_id());
511
512 /* SAL spec states this should run w/ interrupts enabled */
513 local_irq_enable();
514
1da177e4
LT
515 spin_lock(&cpe_history_lock);
516 if (!cpe_poll_enabled && cpe_vector >= 0) {
517
518 int i, count = 1; /* we know 1 happened now */
519 unsigned long now = jiffies;
520
521 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
522 if (now - cpe_history[i] <= HZ)
523 count++;
524 }
525
526 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
527 if (count >= CPE_HISTORY_LENGTH) {
528
529 cpe_poll_enabled = 1;
530 spin_unlock(&cpe_history_lock);
531 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
532
533 /*
534 * Corrected errors will still be corrected, but
535 * make sure there's a log somewhere that indicates
536 * something is generating more than we can handle.
537 */
538 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
539
540 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
541
542 /* lock already released, get out now */
ddb4f0df 543 goto out;
1da177e4
LT
544 } else {
545 cpe_history[index++] = now;
546 if (index == CPE_HISTORY_LENGTH)
547 index = 0;
548 }
549 }
550 spin_unlock(&cpe_history_lock);
ddb4f0df
HS
551out:
552 /* Get the CPE error record and log it */
553 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
554
1da177e4
LT
555 return IRQ_HANDLED;
556}
557
558#endif /* CONFIG_ACPI */
559
1da177e4
LT
560#ifdef CONFIG_ACPI
561/*
562 * ia64_mca_register_cpev
563 *
564 * Register the corrected platform error vector with SAL.
565 *
566 * Inputs
567 * cpev Corrected Platform Error Vector number
568 *
569 * Outputs
570 * None
571 */
0881fc8d 572static void __init
1da177e4
LT
573ia64_mca_register_cpev (int cpev)
574{
575 /* Register the CPE interrupt vector with SAL */
576 struct ia64_sal_retval isrv;
577
578 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
579 if (isrv.status) {
580 printk(KERN_ERR "Failed to register Corrected Platform "
581 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
582 return;
583 }
584
585 IA64_MCA_DEBUG("%s: corrected platform error "
586 "vector %#x registered\n", __FUNCTION__, cpev);
587}
588#endif /* CONFIG_ACPI */
589
1da177e4
LT
590/*
591 * ia64_mca_cmc_vector_setup
592 *
593 * Setup the corrected machine check vector register in the processor.
594 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
595 * This function is invoked on a per-processor basis.
596 *
597 * Inputs
598 * None
599 *
600 * Outputs
601 * None
602 */
0881fc8d 603void __cpuinit
1da177e4
LT
604ia64_mca_cmc_vector_setup (void)
605{
606 cmcv_reg_t cmcv;
607
608 cmcv.cmcv_regval = 0;
609 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
610 cmcv.cmcv_vector = IA64_CMC_VECTOR;
611 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
612
613 IA64_MCA_DEBUG("%s: CPU %d corrected "
614 "machine check vector %#x registered.\n",
615 __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
616
617 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
618 __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
619}
620
621/*
622 * ia64_mca_cmc_vector_disable
623 *
624 * Mask the corrected machine check vector register in the processor.
625 * This function is invoked on a per-processor basis.
626 *
627 * Inputs
628 * dummy(unused)
629 *
630 * Outputs
631 * None
632 */
633static void
634ia64_mca_cmc_vector_disable (void *dummy)
635{
636 cmcv_reg_t cmcv;
637
638 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
639
640 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
641 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
642
643 IA64_MCA_DEBUG("%s: CPU %d corrected "
644 "machine check vector %#x disabled.\n",
645 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
646}
647
648/*
649 * ia64_mca_cmc_vector_enable
650 *
651 * Unmask the corrected machine check vector register in the processor.
652 * This function is invoked on a per-processor basis.
653 *
654 * Inputs
655 * dummy(unused)
656 *
657 * Outputs
658 * None
659 */
660static void
661ia64_mca_cmc_vector_enable (void *dummy)
662{
663 cmcv_reg_t cmcv;
664
665 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
666
667 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
668 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
669
670 IA64_MCA_DEBUG("%s: CPU %d corrected "
671 "machine check vector %#x enabled.\n",
672 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
673}
674
675/*
676 * ia64_mca_cmc_vector_disable_keventd
677 *
678 * Called via keventd (smp_call_function() is not safe in interrupt context) to
679 * disable the cmc interrupt vector.
680 */
681static void
6d5aefb8 682ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
1da177e4
LT
683{
684 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
685}
686
687/*
688 * ia64_mca_cmc_vector_enable_keventd
689 *
690 * Called via keventd (smp_call_function() is not safe in interrupt context) to
691 * enable the cmc interrupt vector.
692 */
693static void
6d5aefb8 694ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
1da177e4
LT
695{
696 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
697}
698
1da177e4
LT
699/*
700 * ia64_mca_wakeup
701 *
702 * Send an inter-cpu interrupt to wake-up a particular cpu
703 * and mark that cpu to be out of rendez.
704 *
705 * Inputs : cpuid
706 * Outputs : None
707 */
708static void
709ia64_mca_wakeup(int cpu)
710{
711 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
712 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
713
714}
715
716/*
717 * ia64_mca_wakeup_all
718 *
719 * Wakeup all the cpus which have rendez'ed previously.
720 *
721 * Inputs : None
722 * Outputs : None
723 */
724static void
725ia64_mca_wakeup_all(void)
726{
727 int cpu;
728
729 /* Clear the Rendez checkin flag for all cpus */
ddf6d0a0 730 for_each_online_cpu(cpu) {
1da177e4
LT
731 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
732 ia64_mca_wakeup(cpu);
733 }
734
735}
736
737/*
738 * ia64_mca_rendez_interrupt_handler
739 *
740 * This is handler used to put slave processors into spinloop
741 * while the monarch processor does the mca handling and later
742 * wake each slave up once the monarch is done.
743 *
744 * Inputs : None
745 * Outputs : None
746 */
747static irqreturn_t
7d12e780 748ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
1da177e4
LT
749{
750 unsigned long flags;
751 int cpu = smp_processor_id();
958b166c
KO
752 struct ia64_mca_notify_die nd =
753 { .sos = NULL, .monarch_cpu = &monarch_cpu };
1da177e4
LT
754
755 /* Mask all interrupts */
756 local_irq_save(flags);
7d12e780
DH
757 if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", get_irq_regs(),
758 (long)&nd, 0, 0) == NOTIFY_STOP)
9138d581 759 ia64_mca_spin(__FUNCTION__);
1da177e4
LT
760
761 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
762 /* Register with the SAL monarch that the slave has
763 * reached SAL
764 */
765 ia64_sal_mc_rendez();
766
7d12e780
DH
767 if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", get_irq_regs(),
768 (long)&nd, 0, 0) == NOTIFY_STOP)
9138d581
KO
769 ia64_mca_spin(__FUNCTION__);
770
7f613c7d
KO
771 /* Wait for the monarch cpu to exit. */
772 while (monarch_cpu != -1)
773 cpu_relax(); /* spin until monarch leaves */
1da177e4 774
7d12e780
DH
775 if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", get_irq_regs(),
776 (long)&nd, 0, 0) == NOTIFY_STOP)
9138d581
KO
777 ia64_mca_spin(__FUNCTION__);
778
1da177e4
LT
779 /* Enable all interrupts */
780 local_irq_restore(flags);
781 return IRQ_HANDLED;
782}
783
784/*
785 * ia64_mca_wakeup_int_handler
786 *
787 * The interrupt handler for processing the inter-cpu interrupt to the
788 * slave cpu which was spinning in the rendez loop.
789 * Since this spinning is done by turning off the interrupts and
790 * polling on the wakeup-interrupt bit in the IRR, there is
791 * nothing useful to be done in the handler.
792 *
793 * Inputs : wakeup_irq (Wakeup-interrupt bit)
794 * arg (Interrupt handler specific argument)
1da177e4
LT
795 * Outputs : None
796 *
797 */
798static irqreturn_t
7d12e780 799ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
1da177e4
LT
800{
801 return IRQ_HANDLED;
802}
803
1da177e4
LT
804/* Function pointer for extra MCA recovery */
805int (*ia64_mca_ucmc_extension)
7f613c7d 806 (void*,struct ia64_sal_os_state*)
1da177e4
LT
807 = NULL;
808
809int
7f613c7d 810ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
1da177e4
LT
811{
812 if (ia64_mca_ucmc_extension)
813 return 1;
814
815 ia64_mca_ucmc_extension = fn;
816 return 0;
817}
818
819void
820ia64_unreg_MCA_extension(void)
821{
822 if (ia64_mca_ucmc_extension)
823 ia64_mca_ucmc_extension = NULL;
824}
825
826EXPORT_SYMBOL(ia64_reg_MCA_extension);
827EXPORT_SYMBOL(ia64_unreg_MCA_extension);
828
7f613c7d
KO
829
830static inline void
831copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
832{
833 u64 fslot, tslot, nat;
834 *tr = *fr;
835 fslot = ((unsigned long)fr >> 3) & 63;
836 tslot = ((unsigned long)tr >> 3) & 63;
837 *tnat &= ~(1UL << tslot);
838 nat = (fnat >> fslot) & 1;
839 *tnat |= (nat << tslot);
840}
841
e9ac054d
KO
842/* Change the comm field on the MCA/INT task to include the pid that
843 * was interrupted, it makes for easier debugging. If that pid was 0
844 * (swapper or nested MCA/INIT) then use the start of the previous comm
845 * field suffixed with its cpu.
846 */
847
848static void
36c8b586 849ia64_mca_modify_comm(const struct task_struct *previous_current)
e9ac054d
KO
850{
851 char *p, comm[sizeof(current->comm)];
852 if (previous_current->pid)
853 snprintf(comm, sizeof(comm), "%s %d",
854 current->comm, previous_current->pid);
855 else {
856 int l;
857 if ((p = strchr(previous_current->comm, ' ')))
858 l = p - previous_current->comm;
859 else
860 l = strlen(previous_current->comm);
861 snprintf(comm, sizeof(comm), "%s %*s %d",
862 current->comm, l, previous_current->comm,
863 task_thread_info(previous_current)->cpu);
864 }
865 memcpy(current->comm, comm, sizeof(current->comm));
866}
867
7f613c7d
KO
868/* On entry to this routine, we are running on the per cpu stack, see
869 * mca_asm.h. The original stack has not been touched by this event. Some of
870 * the original stack's registers will be in the RBS on this stack. This stack
871 * also contains a partial pt_regs and switch_stack, the rest of the data is in
872 * PAL minstate.
873 *
874 * The first thing to do is modify the original stack to look like a blocked
875 * task so we can run backtrace on the original task. Also mark the per cpu
876 * stack as current to ensure that we use the correct task state, it also means
877 * that we can do backtrace on the MCA/INIT handler code itself.
878 */
879
36c8b586 880static struct task_struct *
7f613c7d
KO
881ia64_mca_modify_original_stack(struct pt_regs *regs,
882 const struct switch_stack *sw,
883 struct ia64_sal_os_state *sos,
884 const char *type)
885{
e9ac054d 886 char *p;
7f613c7d
KO
887 ia64_va va;
888 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
889 const pal_min_state_area_t *ms = sos->pal_min_state;
36c8b586 890 struct task_struct *previous_current;
7f613c7d
KO
891 struct pt_regs *old_regs;
892 struct switch_stack *old_sw;
893 unsigned size = sizeof(struct pt_regs) +
894 sizeof(struct switch_stack) + 16;
895 u64 *old_bspstore, *old_bsp;
896 u64 *new_bspstore, *new_bsp;
897 u64 old_unat, old_rnat, new_rnat, nat;
898 u64 slots, loadrs = regs->loadrs;
899 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
900 u64 ar_bspstore = regs->ar_bspstore;
901 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
902 const u64 *bank;
903 const char *msg;
904 int cpu = smp_processor_id();
905
906 previous_current = curr_task(cpu);
907 set_curr_task(cpu, current);
908 if ((p = strchr(current->comm, ' ')))
909 *p = '\0';
910
911 /* Best effort attempt to cope with MCA/INIT delivered while in
912 * physical mode.
913 */
914 regs->cr_ipsr = ms->pmsa_ipsr;
915 if (ia64_psr(regs)->dt == 0) {
916 va.l = r12;
917 if (va.f.reg == 0) {
918 va.f.reg = 7;
919 r12 = va.l;
920 }
921 va.l = r13;
922 if (va.f.reg == 0) {
923 va.f.reg = 7;
924 r13 = va.l;
925 }
926 }
927 if (ia64_psr(regs)->rt == 0) {
928 va.l = ar_bspstore;
929 if (va.f.reg == 0) {
930 va.f.reg = 7;
931 ar_bspstore = va.l;
932 }
933 va.l = ar_bsp;
934 if (va.f.reg == 0) {
935 va.f.reg = 7;
936 ar_bsp = va.l;
937 }
938 }
939
940 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
941 * have been copied to the old stack, the old stack may fail the
942 * validation tests below. So ia64_old_stack() must restore the dirty
943 * registers from the new stack. The old and new bspstore probably
944 * have different alignments, so loadrs calculated on the old bsp
945 * cannot be used to restore from the new bsp. Calculate a suitable
946 * loadrs for the new stack and save it in the new pt_regs, where
947 * ia64_old_stack() can get it.
948 */
949 old_bspstore = (u64 *)ar_bspstore;
950 old_bsp = (u64 *)ar_bsp;
951 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
952 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
953 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
954 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
955
956 /* Verify the previous stack state before we change it */
957 if (user_mode(regs)) {
958 msg = "occurred in user space";
e9ac054d
KO
959 /* previous_current is guaranteed to be valid when the task was
960 * in user space, so ...
961 */
962 ia64_mca_modify_comm(previous_current);
7f613c7d
KO
963 goto no_mod;
964 }
d2a28ad9
RA
965
966 if (!mca_recover_range(ms->pmsa_iip)) {
967 if (r13 != sos->prev_IA64_KR_CURRENT) {
968 msg = "inconsistent previous current and r13";
969 goto no_mod;
970 }
971 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
972 msg = "inconsistent r12 and r13";
973 goto no_mod;
974 }
975 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
976 msg = "inconsistent ar.bspstore and r13";
977 goto no_mod;
978 }
979 va.p = old_bspstore;
980 if (va.f.reg < 5) {
981 msg = "old_bspstore is in the wrong region";
982 goto no_mod;
983 }
984 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
985 msg = "inconsistent ar.bsp and r13";
986 goto no_mod;
987 }
988 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
989 if (ar_bspstore + size > r12) {
990 msg = "no room for blocked state";
991 goto no_mod;
992 }
7f613c7d
KO
993 }
994
e9ac054d 995 ia64_mca_modify_comm(previous_current);
7f613c7d
KO
996
997 /* Make the original task look blocked. First stack a struct pt_regs,
998 * describing the state at the time of interrupt. mca_asm.S built a
999 * partial pt_regs, copy it and fill in the blanks using minstate.
1000 */
1001 p = (char *)r12 - sizeof(*regs);
1002 old_regs = (struct pt_regs *)p;
1003 memcpy(old_regs, regs, sizeof(*regs));
1004 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1005 * pmsa_{xip,xpsr,xfs}
1006 */
1007 if (ia64_psr(regs)->ic) {
1008 old_regs->cr_iip = ms->pmsa_iip;
1009 old_regs->cr_ipsr = ms->pmsa_ipsr;
1010 old_regs->cr_ifs = ms->pmsa_ifs;
1011 } else {
1012 old_regs->cr_iip = ms->pmsa_xip;
1013 old_regs->cr_ipsr = ms->pmsa_xpsr;
1014 old_regs->cr_ifs = ms->pmsa_xfs;
1015 }
1016 old_regs->pr = ms->pmsa_pr;
1017 old_regs->b0 = ms->pmsa_br0;
1018 old_regs->loadrs = loadrs;
1019 old_regs->ar_rsc = ms->pmsa_rsc;
1020 old_unat = old_regs->ar_unat;
1021 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1022 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1023 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1024 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1025 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1026 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1027 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1028 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1029 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1030 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1031 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1032 if (ia64_psr(old_regs)->bn)
1033 bank = ms->pmsa_bank1_gr;
1034 else
1035 bank = ms->pmsa_bank0_gr;
1036 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1037 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1038 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1039 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1040 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1041 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1042 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1043 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1044 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1045 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1046 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1047 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1048 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1049 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1050 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1051 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1052
1053 /* Next stack a struct switch_stack. mca_asm.S built a partial
1054 * switch_stack, copy it and fill in the blanks using pt_regs and
1055 * minstate.
1056 *
1057 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1058 * ar.pfs is set to 0.
1059 *
1060 * unwind.c::unw_unwind() does special processing for interrupt frames.
1061 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1062 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1063 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1064 * switch_stack on the original stack so it will unwind correctly when
1065 * unwind.c reads pt_regs.
1066 *
1067 * thread.ksp is updated to point to the synthesized switch_stack.
1068 */
1069 p -= sizeof(struct switch_stack);
1070 old_sw = (struct switch_stack *)p;
1071 memcpy(old_sw, sw, sizeof(*sw));
1072 old_sw->caller_unat = old_unat;
1073 old_sw->ar_fpsr = old_regs->ar_fpsr;
1074 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1075 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1076 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1077 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1078 old_sw->b0 = (u64)ia64_leave_kernel;
1079 old_sw->b1 = ms->pmsa_br1;
1080 old_sw->ar_pfs = 0;
1081 old_sw->ar_unat = old_unat;
1082 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1083 previous_current->thread.ksp = (u64)p - 16;
1084
1085 /* Finally copy the original stack's registers back to its RBS.
1086 * Registers from ar.bspstore through ar.bsp at the time of the event
1087 * are in the current RBS, copy them back to the original stack. The
1088 * copy must be done register by register because the original bspstore
1089 * and the current one have different alignments, so the saved RNAT
1090 * data occurs at different places.
1091 *
1092 * mca_asm does cover, so the old_bsp already includes all registers at
1093 * the time of MCA/INIT. It also does flushrs, so all registers before
1094 * this function have been written to backing store on the MCA/INIT
1095 * stack.
1096 */
1097 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1098 old_rnat = regs->ar_rnat;
1099 while (slots--) {
1100 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1101 new_rnat = ia64_get_rnat(new_bspstore++);
1102 }
1103 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1104 *old_bspstore++ = old_rnat;
1105 old_rnat = 0;
1106 }
1107 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1108 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1109 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1110 *old_bspstore++ = *new_bspstore++;
1111 }
1112 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1113 old_sw->ar_rnat = old_rnat;
1114
1115 sos->prev_task = previous_current;
1116 return previous_current;
1117
1118no_mod:
1119 printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1120 smp_processor_id(), type, msg);
1121 return previous_current;
1122}
1123
1124/* The monarch/slave interaction is based on monarch_cpu and requires that all
1125 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1126 * not entered rendezvous yet then wait a bit. The assumption is that any
1127 * slave that has not rendezvoused after a reasonable time is never going to do
1128 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1129 * interrupt, as well as cpus that receive the INIT slave event.
1130 */
1131
1132static void
356a5c1c 1133ia64_wait_for_slaves(int monarch, const char *type)
7f613c7d 1134{
9336b083 1135 int c, wait = 0, missing = 0;
7f613c7d
KO
1136 for_each_online_cpu(c) {
1137 if (c == monarch)
1138 continue;
1139 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1140 udelay(1000); /* short wait first */
1141 wait = 1;
1142 break;
1143 }
1144 }
1145 if (!wait)
9336b083 1146 goto all_in;
7f613c7d
KO
1147 for_each_online_cpu(c) {
1148 if (c == monarch)
1149 continue;
1150 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1151 udelay(5*1000000); /* wait 5 seconds for slaves (arbitrary) */
9336b083
KO
1152 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1153 missing = 1;
7f613c7d
KO
1154 break;
1155 }
1156 }
9336b083
KO
1157 if (!missing)
1158 goto all_in;
43ed3baf
HS
1159 /*
1160 * Maybe slave(s) dead. Print buffered messages immediately.
1161 */
1162 ia64_mlogbuf_finish(0);
1163 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
9336b083
KO
1164 for_each_online_cpu(c) {
1165 if (c == monarch)
1166 continue;
1167 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
43ed3baf 1168 mprintk(" %d", c);
9336b083 1169 }
43ed3baf 1170 mprintk("\n");
9336b083
KO
1171 return;
1172
1173all_in:
43ed3baf 1174 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
9336b083 1175 return;
7f613c7d
KO
1176}
1177
1da177e4 1178/*
7f613c7d 1179 * ia64_mca_handler
1da177e4
LT
1180 *
1181 * This is uncorrectable machine check handler called from OS_MCA
1182 * dispatch code which is in turn called from SAL_CHECK().
1183 * This is the place where the core of OS MCA handling is done.
1184 * Right now the logs are extracted and displayed in a well-defined
1185 * format. This handler code is supposed to be run only on the
1186 * monarch processor. Once the monarch is done with MCA handling
1187 * further MCA logging is enabled by clearing logs.
1188 * Monarch also has the duty of sending wakeup-IPIs to pull the
1189 * slave processors out of rendezvous spinloop.
1da177e4
LT
1190 */
1191void
7f613c7d
KO
1192ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1193 struct ia64_sal_os_state *sos)
1da177e4
LT
1194{
1195 pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
7f613c7d
KO
1196 &sos->proc_state_param;
1197 int recover, cpu = smp_processor_id();
36c8b586 1198 struct task_struct *previous_current;
958b166c
KO
1199 struct ia64_mca_notify_die nd =
1200 { .sos = sos, .monarch_cpu = &monarch_cpu };
7f613c7d 1201
43ed3baf
HS
1202 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1203 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
9336b083 1204
7f613c7d
KO
1205 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1206 monarch_cpu = cpu;
958b166c 1207 if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0)
9138d581
KO
1208 == NOTIFY_STOP)
1209 ia64_mca_spin(__FUNCTION__);
356a5c1c 1210 ia64_wait_for_slaves(cpu, "MCA");
7f613c7d
KO
1211
1212 /* Wakeup all the processors which are spinning in the rendezvous loop.
1213 * They will leave SAL, then spin in the OS with interrupts disabled
1214 * until this monarch cpu leaves the MCA handler. That gets control
1215 * back to the OS so we can backtrace the other cpus, backtrace when
1216 * spinning in SAL does not work.
1217 */
1218 ia64_mca_wakeup_all();
958b166c 1219 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0)
9138d581
KO
1220 == NOTIFY_STOP)
1221 ia64_mca_spin(__FUNCTION__);
1da177e4
LT
1222
1223 /* Get the MCA error record and log it */
1224 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1225
1226 /* TLB error is only exist in this SAL error record */
1227 recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
1228 /* other error recovery */
7f613c7d 1229 || (ia64_mca_ucmc_extension
1da177e4
LT
1230 && ia64_mca_ucmc_extension(
1231 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
7f613c7d 1232 sos));
1da177e4
LT
1233
1234 if (recover) {
1235 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1236 rh->severity = sal_log_severity_corrected;
1237 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
7f613c7d 1238 sos->os_status = IA64_MCA_CORRECTED;
43ed3baf
HS
1239 } else {
1240 /* Dump buffered message to console */
1241 ia64_mlogbuf_finish(1);
45a98fc6 1242#ifdef CONFIG_KEXEC
a7956113
ZN
1243 atomic_set(&kdump_in_progress, 1);
1244 monarch_cpu = -1;
1245#endif
1da177e4 1246 }
958b166c 1247 if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover)
9138d581
KO
1248 == NOTIFY_STOP)
1249 ia64_mca_spin(__FUNCTION__);
1da177e4 1250
7f613c7d
KO
1251 set_curr_task(cpu, previous_current);
1252 monarch_cpu = -1;
1da177e4
LT
1253}
1254
6d5aefb8
DH
1255static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1256static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1da177e4
LT
1257
1258/*
1259 * ia64_mca_cmc_int_handler
1260 *
1261 * This is corrected machine check interrupt handler.
1262 * Right now the logs are extracted and displayed in a well-defined
1263 * format.
1264 *
1265 * Inputs
1266 * interrupt number
1267 * client data arg ptr
1da177e4
LT
1268 *
1269 * Outputs
1270 * None
1271 */
1272static irqreturn_t
7d12e780 1273ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1da177e4
LT
1274{
1275 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1276 static int index;
1277 static DEFINE_SPINLOCK(cmc_history_lock);
1278
1279 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1280 __FUNCTION__, cmc_irq, smp_processor_id());
1281
1282 /* SAL spec states this should run w/ interrupts enabled */
1283 local_irq_enable();
1284
1da177e4
LT
1285 spin_lock(&cmc_history_lock);
1286 if (!cmc_polling_enabled) {
1287 int i, count = 1; /* we know 1 happened now */
1288 unsigned long now = jiffies;
1289
1290 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1291 if (now - cmc_history[i] <= HZ)
1292 count++;
1293 }
1294
1295 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1296 if (count >= CMC_HISTORY_LENGTH) {
1297
1298 cmc_polling_enabled = 1;
1299 spin_unlock(&cmc_history_lock);
76e677e2
BS
1300 /* If we're being hit with CMC interrupts, we won't
1301 * ever execute the schedule_work() below. Need to
1302 * disable CMC interrupts on this processor now.
1303 */
1304 ia64_mca_cmc_vector_disable(NULL);
1da177e4
LT
1305 schedule_work(&cmc_disable_work);
1306
1307 /*
1308 * Corrected errors will still be corrected, but
1309 * make sure there's a log somewhere that indicates
1310 * something is generating more than we can handle.
1311 */
1312 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1313
1314 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1315
1316 /* lock already released, get out now */
ddb4f0df 1317 goto out;
1da177e4
LT
1318 } else {
1319 cmc_history[index++] = now;
1320 if (index == CMC_HISTORY_LENGTH)
1321 index = 0;
1322 }
1323 }
1324 spin_unlock(&cmc_history_lock);
ddb4f0df
HS
1325out:
1326 /* Get the CMC error record and log it */
1327 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1328
1da177e4
LT
1329 return IRQ_HANDLED;
1330}
1331
1332/*
1333 * ia64_mca_cmc_int_caller
1334 *
1335 * Triggered by sw interrupt from CMC polling routine. Calls
1336 * real interrupt handler and either triggers a sw interrupt
1337 * on the next cpu or does cleanup at the end.
1338 *
1339 * Inputs
1340 * interrupt number
1341 * client data arg ptr
1da177e4
LT
1342 * Outputs
1343 * handled
1344 */
1345static irqreturn_t
7d12e780 1346ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1da177e4
LT
1347{
1348 static int start_count = -1;
1349 unsigned int cpuid;
1350
1351 cpuid = smp_processor_id();
1352
1353 /* If first cpu, update count */
1354 if (start_count == -1)
1355 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1356
7d12e780 1357 ia64_mca_cmc_int_handler(cmc_irq, arg);
1da177e4
LT
1358
1359 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1360
1361 if (cpuid < NR_CPUS) {
1362 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1363 } else {
1364 /* If no log record, switch out of polling mode */
1365 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1366
1367 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1368 schedule_work(&cmc_enable_work);
1369 cmc_polling_enabled = 0;
1370
1371 } else {
1372
1373 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1374 }
1375
1376 start_count = -1;
1377 }
1378
1379 return IRQ_HANDLED;
1380}
1381
1382/*
1383 * ia64_mca_cmc_poll
1384 *
1385 * Poll for Corrected Machine Checks (CMCs)
1386 *
1387 * Inputs : dummy(unused)
1388 * Outputs : None
1389 *
1390 */
1391static void
1392ia64_mca_cmc_poll (unsigned long dummy)
1393{
1394 /* Trigger a CMC interrupt cascade */
1395 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1396}
1397
1398/*
1399 * ia64_mca_cpe_int_caller
1400 *
1401 * Triggered by sw interrupt from CPE polling routine. Calls
1402 * real interrupt handler and either triggers a sw interrupt
1403 * on the next cpu or does cleanup at the end.
1404 *
1405 * Inputs
1406 * interrupt number
1407 * client data arg ptr
1da177e4
LT
1408 * Outputs
1409 * handled
1410 */
1411#ifdef CONFIG_ACPI
1412
1413static irqreturn_t
7d12e780 1414ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1da177e4
LT
1415{
1416 static int start_count = -1;
1417 static int poll_time = MIN_CPE_POLL_INTERVAL;
1418 unsigned int cpuid;
1419
1420 cpuid = smp_processor_id();
1421
1422 /* If first cpu, update count */
1423 if (start_count == -1)
1424 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1425
7d12e780 1426 ia64_mca_cpe_int_handler(cpe_irq, arg);
1da177e4
LT
1427
1428 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1429
1430 if (cpuid < NR_CPUS) {
1431 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1432 } else {
1433 /*
1434 * If a log was recorded, increase our polling frequency,
1435 * otherwise, backoff or return to interrupt mode.
1436 */
1437 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1438 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1439 } else if (cpe_vector < 0) {
1440 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1441 } else {
1442 poll_time = MIN_CPE_POLL_INTERVAL;
1443
1444 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1445 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1446 cpe_poll_enabled = 0;
1447 }
1448
1449 if (cpe_poll_enabled)
1450 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1451 start_count = -1;
1452 }
1453
1454 return IRQ_HANDLED;
1455}
1456
1da177e4
LT
1457/*
1458 * ia64_mca_cpe_poll
1459 *
1460 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1461 * on first cpu, from there it will trickle through all the cpus.
1462 *
1463 * Inputs : dummy(unused)
1464 * Outputs : None
1465 *
1466 */
1467static void
1468ia64_mca_cpe_poll (unsigned long dummy)
1469{
1470 /* Trigger a CPE interrupt cascade */
1471 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1472}
1473
b655913b
PC
1474#endif /* CONFIG_ACPI */
1475
9138d581
KO
1476static int
1477default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1478{
1479 int c;
1480 struct task_struct *g, *t;
1481 if (val != DIE_INIT_MONARCH_PROCESS)
1482 return NOTIFY_DONE;
43ed3baf
HS
1483
1484 /*
1485 * FIXME: mlogbuf will brim over with INIT stack dumps.
1486 * To enable show_stack from INIT, we use oops_in_progress which should
1487 * be used in real oops. This would cause something wrong after INIT.
1488 */
1489 BREAK_LOGLEVEL(console_loglevel);
1490 ia64_mlogbuf_dump_from_init();
1491
9138d581
KO
1492 printk(KERN_ERR "Processes interrupted by INIT -");
1493 for_each_online_cpu(c) {
1494 struct ia64_sal_os_state *s;
1495 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1496 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1497 g = s->prev_task;
1498 if (g) {
1499 if (g->pid)
1500 printk(" %d", g->pid);
1501 else
1502 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1503 }
1504 }
1505 printk("\n\n");
1506 if (read_trylock(&tasklist_lock)) {
1507 do_each_thread (g, t) {
1508 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1509 show_stack(t, NULL);
1510 } while_each_thread (g, t);
1511 read_unlock(&tasklist_lock);
1512 }
43ed3baf
HS
1513 /* FIXME: This will not restore zapped printk locks. */
1514 RESTORE_LOGLEVEL(console_loglevel);
9138d581
KO
1515 return NOTIFY_DONE;
1516}
1517
1da177e4
LT
1518/*
1519 * C portion of the OS INIT handler
1520 *
7f613c7d 1521 * Called from ia64_os_init_dispatch
1da177e4 1522 *
7f613c7d
KO
1523 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1524 * this event. This code is used for both monarch and slave INIT events, see
1525 * sos->monarch.
1da177e4 1526 *
7f613c7d
KO
1527 * All INIT events switch to the INIT stack and change the previous process to
1528 * blocked status. If one of the INIT events is the monarch then we are
1529 * probably processing the nmi button/command. Use the monarch cpu to dump all
1530 * the processes. The slave INIT events all spin until the monarch cpu
1531 * returns. We can also get INIT slave events for MCA, in which case the MCA
1532 * process is the monarch.
1da177e4 1533 */
7f613c7d 1534
1da177e4 1535void
7f613c7d
KO
1536ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1537 struct ia64_sal_os_state *sos)
1da177e4 1538{
7f613c7d
KO
1539 static atomic_t slaves;
1540 static atomic_t monarchs;
36c8b586 1541 struct task_struct *previous_current;
9138d581 1542 int cpu = smp_processor_id();
958b166c
KO
1543 struct ia64_mca_notify_die nd =
1544 { .sos = sos, .monarch_cpu = &monarch_cpu };
1da177e4 1545
958b166c
KO
1546 (void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0);
1547
43ed3baf 1548 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
7f613c7d
KO
1549 sos->proc_state_param, cpu, sos->monarch);
1550 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1da177e4 1551
7f613c7d
KO
1552 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1553 sos->os_status = IA64_INIT_RESUME;
1554
1555 /* FIXME: Workaround for broken proms that drive all INIT events as
1556 * slaves. The last slave that enters is promoted to be a monarch.
1557 * Remove this code in September 2006, that gives platforms a year to
1558 * fix their proms and get their customers updated.
1da177e4 1559 */
7f613c7d 1560 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
43ed3baf 1561 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
7f613c7d
KO
1562 __FUNCTION__, cpu);
1563 atomic_dec(&slaves);
1564 sos->monarch = 1;
1565 }
1da177e4 1566
7f613c7d
KO
1567 /* FIXME: Workaround for broken proms that drive all INIT events as
1568 * monarchs. Second and subsequent monarchs are demoted to slaves.
1569 * Remove this code in September 2006, that gives platforms a year to
1570 * fix their proms and get their customers updated.
1571 */
1572 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
43ed3baf 1573 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
7f613c7d
KO
1574 __FUNCTION__, cpu);
1575 atomic_dec(&monarchs);
1576 sos->monarch = 0;
1577 }
1578
1579 if (!sos->monarch) {
1580 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1581 while (monarch_cpu == -1)
1582 cpu_relax(); /* spin until monarch enters */
958b166c 1583 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0)
9138d581
KO
1584 == NOTIFY_STOP)
1585 ia64_mca_spin(__FUNCTION__);
958b166c 1586 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0)
9138d581
KO
1587 == NOTIFY_STOP)
1588 ia64_mca_spin(__FUNCTION__);
7f613c7d
KO
1589 while (monarch_cpu != -1)
1590 cpu_relax(); /* spin until monarch leaves */
958b166c 1591 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0)
9138d581
KO
1592 == NOTIFY_STOP)
1593 ia64_mca_spin(__FUNCTION__);
43ed3baf 1594 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
7f613c7d
KO
1595 set_curr_task(cpu, previous_current);
1596 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1597 atomic_dec(&slaves);
1598 return;
1599 }
1600
1601 monarch_cpu = cpu;
958b166c 1602 if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0)
9138d581
KO
1603 == NOTIFY_STOP)
1604 ia64_mca_spin(__FUNCTION__);
7f613c7d
KO
1605
1606 /*
1607 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1608 * generated via the BMC's command-line interface, but since the console is on the
1609 * same serial line, the user will need some time to switch out of the BMC before
1610 * the dump begins.
1611 */
43ed3baf 1612 mprintk("Delaying for 5 seconds...\n");
7f613c7d 1613 udelay(5*1000000);
356a5c1c 1614 ia64_wait_for_slaves(cpu, "INIT");
9138d581
KO
1615 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1616 * to default_monarch_init_process() above and just print all the
1617 * tasks.
1618 */
958b166c 1619 if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0)
9138d581
KO
1620 == NOTIFY_STOP)
1621 ia64_mca_spin(__FUNCTION__);
958b166c 1622 if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0)
9138d581
KO
1623 == NOTIFY_STOP)
1624 ia64_mca_spin(__FUNCTION__);
43ed3baf 1625 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
7f613c7d
KO
1626 atomic_dec(&monarchs);
1627 set_curr_task(cpu, previous_current);
1628 monarch_cpu = -1;
1629 return;
1da177e4
LT
1630}
1631
1632static int __init
1633ia64_mca_disable_cpe_polling(char *str)
1634{
1635 cpe_poll_enabled = 0;
1636 return 1;
1637}
1638
1639__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1640
1641static struct irqaction cmci_irqaction = {
1642 .handler = ia64_mca_cmc_int_handler,
121a4226 1643 .flags = IRQF_DISABLED,
1da177e4
LT
1644 .name = "cmc_hndlr"
1645};
1646
1647static struct irqaction cmcp_irqaction = {
1648 .handler = ia64_mca_cmc_int_caller,
121a4226 1649 .flags = IRQF_DISABLED,
1da177e4
LT
1650 .name = "cmc_poll"
1651};
1652
1653static struct irqaction mca_rdzv_irqaction = {
1654 .handler = ia64_mca_rendez_int_handler,
121a4226 1655 .flags = IRQF_DISABLED,
1da177e4
LT
1656 .name = "mca_rdzv"
1657};
1658
1659static struct irqaction mca_wkup_irqaction = {
1660 .handler = ia64_mca_wakeup_int_handler,
121a4226 1661 .flags = IRQF_DISABLED,
1da177e4
LT
1662 .name = "mca_wkup"
1663};
1664
1665#ifdef CONFIG_ACPI
1666static struct irqaction mca_cpe_irqaction = {
1667 .handler = ia64_mca_cpe_int_handler,
121a4226 1668 .flags = IRQF_DISABLED,
1da177e4
LT
1669 .name = "cpe_hndlr"
1670};
1671
1672static struct irqaction mca_cpep_irqaction = {
1673 .handler = ia64_mca_cpe_int_caller,
121a4226 1674 .flags = IRQF_DISABLED,
1da177e4
LT
1675 .name = "cpe_poll"
1676};
1677#endif /* CONFIG_ACPI */
1678
7f613c7d
KO
1679/* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1680 * these stacks can never sleep, they cannot return from the kernel to user
1681 * space, they do not appear in a normal ps listing. So there is no need to
1682 * format most of the fields.
1683 */
1684
0881fc8d 1685static void __cpuinit
7f613c7d
KO
1686format_mca_init_stack(void *mca_data, unsigned long offset,
1687 const char *type, int cpu)
1688{
1689 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1690 struct thread_info *ti;
1691 memset(p, 0, KERNEL_STACK_SIZE);
ab03591d 1692 ti = task_thread_info(p);
7f613c7d
KO
1693 ti->flags = _TIF_MCA_INIT;
1694 ti->preempt_count = 1;
1695 ti->task = p;
1696 ti->cpu = cpu;
1697 p->thread_info = ti;
1698 p->state = TASK_UNINTERRUPTIBLE;
4668f0cd 1699 cpu_set(cpu, p->cpus_allowed);
7f613c7d
KO
1700 INIT_LIST_HEAD(&p->tasks);
1701 p->parent = p->real_parent = p->group_leader = p;
1702 INIT_LIST_HEAD(&p->children);
1703 INIT_LIST_HEAD(&p->sibling);
1704 strncpy(p->comm, type, sizeof(p->comm)-1);
1705}
1706
1da177e4
LT
1707/* Do per-CPU MCA-related initialization. */
1708
0881fc8d 1709void __cpuinit
1da177e4
LT
1710ia64_mca_cpu_init(void *cpu_data)
1711{
1712 void *pal_vaddr;
ff741906 1713 static int first_time = 1;
1da177e4 1714
ff741906 1715 if (first_time) {
1da177e4
LT
1716 void *mca_data;
1717 int cpu;
1718
ff741906 1719 first_time = 0;
1da177e4 1720 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
7f613c7d
KO
1721 * NR_CPUS + KERNEL_STACK_SIZE);
1722 mca_data = (void *)(((unsigned long)mca_data +
1723 KERNEL_STACK_SIZE - 1) &
1724 (-KERNEL_STACK_SIZE));
1da177e4 1725 for (cpu = 0; cpu < NR_CPUS; cpu++) {
7f613c7d
KO
1726 format_mca_init_stack(mca_data,
1727 offsetof(struct ia64_mca_cpu, mca_stack),
1728 "MCA", cpu);
1729 format_mca_init_stack(mca_data,
1730 offsetof(struct ia64_mca_cpu, init_stack),
1731 "INIT", cpu);
1da177e4
LT
1732 __per_cpu_mca[cpu] = __pa(mca_data);
1733 mca_data += sizeof(struct ia64_mca_cpu);
1734 }
1735 }
1736
7f613c7d
KO
1737 /*
1738 * The MCA info structure was allocated earlier and its
1739 * physical address saved in __per_cpu_mca[cpu]. Copy that
1740 * address * to ia64_mca_data so we can access it as a per-CPU
1741 * variable.
1742 */
1da177e4
LT
1743 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1744
1745 /*
1746 * Stash away a copy of the PTE needed to map the per-CPU page.
1747 * We may need it during MCA recovery.
1748 */
1749 __get_cpu_var(ia64_mca_per_cpu_pte) =
1750 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1751
7f613c7d
KO
1752 /*
1753 * Also, stash away a copy of the PAL address and the PTE
1754 * needed to map it.
1755 */
1756 pal_vaddr = efi_get_pal_addr();
1da177e4
LT
1757 if (!pal_vaddr)
1758 return;
1759 __get_cpu_var(ia64_mca_pal_base) =
1760 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1761 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1762 PAGE_KERNEL));
1763}
1764
1765/*
1766 * ia64_mca_init
1767 *
1768 * Do all the system level mca specific initialization.
1769 *
1770 * 1. Register spinloop and wakeup request interrupt vectors
1771 *
1772 * 2. Register OS_MCA handler entry point
1773 *
1774 * 3. Register OS_INIT handler entry point
1775 *
1776 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1777 *
1778 * Note that this initialization is done very early before some kernel
1779 * services are available.
1780 *
1781 * Inputs : None
1782 *
1783 * Outputs : None
1784 */
1785void __init
1786ia64_mca_init(void)
1787{
7f613c7d
KO
1788 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1789 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1da177e4
LT
1790 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1791 int i;
1792 s64 rc;
1793 struct ia64_sal_retval isrv;
1794 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
9138d581
KO
1795 static struct notifier_block default_init_monarch_nb = {
1796 .notifier_call = default_monarch_init_process,
1797 .priority = 0/* we need to notified last */
1798 };
1da177e4
LT
1799
1800 IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1801
1802 /* Clear the Rendez checkin flag for all cpus */
1803 for(i = 0 ; i < NR_CPUS; i++)
1804 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1805
1806 /*
1807 * Register the rendezvous spinloop and wakeup mechanism with SAL
1808 */
1809
1810 /* Register the rendezvous interrupt vector with SAL */
1811 while (1) {
1812 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1813 SAL_MC_PARAM_MECHANISM_INT,
1814 IA64_MCA_RENDEZ_VECTOR,
1815 timeout,
1816 SAL_MC_PARAM_RZ_ALWAYS);
1817 rc = isrv.status;
1818 if (rc == 0)
1819 break;
1820 if (rc == -2) {
1821 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1822 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1823 timeout = isrv.v0;
958b166c 1824 (void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0);
1da177e4
LT
1825 continue;
1826 }
1827 printk(KERN_ERR "Failed to register rendezvous interrupt "
1828 "with SAL (status %ld)\n", rc);
1829 return;
1830 }
1831
1832 /* Register the wakeup interrupt vector with SAL */
1833 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1834 SAL_MC_PARAM_MECHANISM_INT,
1835 IA64_MCA_WAKEUP_VECTOR,
1836 0, 0);
1837 rc = isrv.status;
1838 if (rc) {
1839 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1840 "(status %ld)\n", rc);
1841 return;
1842 }
1843
1844 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1845
1846 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1847 /*
1848 * XXX - disable SAL checksum by setting size to 0; should be
1849 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1850 */
1851 ia64_mc_info.imi_mca_handler_size = 0;
1852
1853 /* Register the os mca handler with SAL */
1854 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1855 ia64_mc_info.imi_mca_handler,
1856 ia64_tpa(mca_hldlr_ptr->gp),
1857 ia64_mc_info.imi_mca_handler_size,
1858 0, 0, 0)))
1859 {
1860 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1861 "(status %ld)\n", rc);
1862 return;
1863 }
1864
1865 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1866 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1867
1868 /*
1869 * XXX - disable SAL checksum by setting size to 0, should be
1870 * size of the actual init handler in mca_asm.S.
1871 */
7f613c7d 1872 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1da177e4 1873 ia64_mc_info.imi_monarch_init_handler_size = 0;
7f613c7d 1874 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1da177e4
LT
1875 ia64_mc_info.imi_slave_init_handler_size = 0;
1876
1877 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1878 ia64_mc_info.imi_monarch_init_handler);
1879
1880 /* Register the os init handler with SAL */
1881 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1882 ia64_mc_info.imi_monarch_init_handler,
1883 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1884 ia64_mc_info.imi_monarch_init_handler_size,
1885 ia64_mc_info.imi_slave_init_handler,
1886 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1887 ia64_mc_info.imi_slave_init_handler_size)))
1888 {
1889 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1890 "(status %ld)\n", rc);
1891 return;
1892 }
9138d581
KO
1893 if (register_die_notifier(&default_init_monarch_nb)) {
1894 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1895 return;
1896 }
1da177e4
LT
1897
1898 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1899
1900 /*
1901 * Configure the CMCI/P vector and handler. Interrupts for CMC are
1902 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1903 */
1904 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1905 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1906 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
1907
1908 /* Setup the MCA rendezvous interrupt vector */
1909 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1910
1911 /* Setup the MCA wakeup interrupt vector */
1912 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1913
1914#ifdef CONFIG_ACPI
bb68c12b 1915 /* Setup the CPEI/P handler */
1da177e4
LT
1916 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1917#endif
1918
1919 /* Initialize the areas set aside by the OS to buffer the
1920 * platform/processor error states for MCA/INIT/CMC
1921 * handling.
1922 */
1923 ia64_log_init(SAL_INFO_TYPE_MCA);
1924 ia64_log_init(SAL_INFO_TYPE_INIT);
1925 ia64_log_init(SAL_INFO_TYPE_CMC);
1926 ia64_log_init(SAL_INFO_TYPE_CPE);
1927
1928 mca_init = 1;
1929 printk(KERN_INFO "MCA related initialization done\n");
1930}
1931
1932/*
1933 * ia64_mca_late_init
1934 *
1935 * Opportunity to setup things that require initialization later
1936 * than ia64_mca_init. Setup a timer to poll for CPEs if the
1937 * platform doesn't support an interrupt driven mechanism.
1938 *
1939 * Inputs : None
1940 * Outputs : Status
1941 */
1942static int __init
1943ia64_mca_late_init(void)
1944{
1945 if (!mca_init)
1946 return 0;
1947
1948 /* Setup the CMCI/P vector and handler */
1949 init_timer(&cmc_poll_timer);
1950 cmc_poll_timer.function = ia64_mca_cmc_poll;
1951
1952 /* Unmask/enable the vector */
1953 cmc_polling_enabled = 0;
1954 schedule_work(&cmc_enable_work);
1955
1956 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1957
1958#ifdef CONFIG_ACPI
1959 /* Setup the CPEI/P vector and handler */
bb68c12b 1960 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1da177e4
LT
1961 init_timer(&cpe_poll_timer);
1962 cpe_poll_timer.function = ia64_mca_cpe_poll;
1963
1964 {
1965 irq_desc_t *desc;
1966 unsigned int irq;
1967
1968 if (cpe_vector >= 0) {
1969 /* If platform supports CPEI, enable the irq. */
1970 cpe_poll_enabled = 0;
1971 for (irq = 0; irq < NR_IRQS; ++irq)
1972 if (irq_to_vector(irq) == cpe_vector) {
a8553acd 1973 desc = irq_desc + irq;
1da177e4
LT
1974 desc->status |= IRQ_PER_CPU;
1975 setup_irq(irq, &mca_cpe_irqaction);
ff741906 1976 ia64_cpe_irq = irq;
1da177e4
LT
1977 }
1978 ia64_mca_register_cpev(cpe_vector);
1979 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1980 } else {
1981 /* If platform doesn't support CPEI, get the timer going. */
1982 if (cpe_poll_enabled) {
1983 ia64_mca_cpe_poll(0UL);
1984 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1985 }
1986 }
1987 }
1988#endif
1989
1990 return 0;
1991}
1992
1993device_initcall(ia64_mca_late_init);