]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - arch/ia64/kernel/perfmon.c
Merge branch 'for-rmk-realview' of git://linux-arm.org/linux-2.6 into devel
[mirror_ubuntu-eoan-kernel.git] / arch / ia64 / kernel / perfmon.c
CommitLineData
1da177e4
LT
1/*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
4 *
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
7 *
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
10 *
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
13 *
a1ecf7f6 14 * Copyright (C) 1999-2005 Hewlett Packard Co
1da177e4
LT
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
17 *
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
20 */
21
1da177e4
LT
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/sched.h>
25#include <linux/interrupt.h>
1da177e4
LT
26#include <linux/proc_fs.h>
27#include <linux/seq_file.h>
28#include <linux/init.h>
29#include <linux/vmalloc.h>
30#include <linux/mm.h>
31#include <linux/sysctl.h>
32#include <linux/list.h>
33#include <linux/file.h>
34#include <linux/poll.h>
35#include <linux/vfs.h>
a3bc0dbc 36#include <linux/smp.h>
1da177e4
LT
37#include <linux/pagemap.h>
38#include <linux/mount.h>
1da177e4 39#include <linux/bitops.h>
a9415644 40#include <linux/capability.h>
badf1662 41#include <linux/rcupdate.h>
60f1c444 42#include <linux/completion.h>
f14488cc 43#include <linux/tracehook.h>
1da177e4
LT
44
45#include <asm/errno.h>
46#include <asm/intrinsics.h>
47#include <asm/page.h>
48#include <asm/perfmon.h>
49#include <asm/processor.h>
50#include <asm/signal.h>
51#include <asm/system.h>
52#include <asm/uaccess.h>
53#include <asm/delay.h>
54
55#ifdef CONFIG_PERFMON
56/*
57 * perfmon context state
58 */
59#define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
60#define PFM_CTX_LOADED 2 /* context is loaded onto a task */
61#define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
62#define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
63
64#define PFM_INVALID_ACTIVATION (~0UL)
65
35589a8f
KA
66#define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
67#define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
68
1da177e4
LT
69/*
70 * depth of message queue
71 */
72#define PFM_MAX_MSGS 32
73#define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
74
75/*
76 * type of a PMU register (bitmask).
77 * bitmask structure:
78 * bit0 : register implemented
79 * bit1 : end marker
80 * bit2-3 : reserved
81 * bit4 : pmc has pmc.pm
82 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
83 * bit6-7 : register type
84 * bit8-31: reserved
85 */
86#define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
87#define PFM_REG_IMPL 0x1 /* register implemented */
88#define PFM_REG_END 0x2 /* end marker */
89#define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
90#define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
91#define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
92#define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
93#define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
94
95#define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
96#define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
97
98#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
99
100/* i assumed unsigned */
101#define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
102#define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
103
104/* XXX: these assume that register i is implemented */
105#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107#define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
108#define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
109
110#define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
111#define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
112#define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
113#define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
114
115#define PFM_NUM_IBRS IA64_NUM_DBG_REGS
116#define PFM_NUM_DBRS IA64_NUM_DBG_REGS
117
118#define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
119#define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
120#define PFM_CTX_TASK(h) (h)->ctx_task
121
122#define PMU_PMC_OI 5 /* position of pmc.oi bit */
123
124/* XXX: does not support more than 64 PMDs */
125#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
126#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
127
128#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
129
130#define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
131#define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
132#define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
133#define PFM_CODE_RR 0 /* requesting code range restriction */
134#define PFM_DATA_RR 1 /* requestion data range restriction */
135
136#define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
137#define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
138#define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
139
140#define RDEP(x) (1UL<<(x))
141
142/*
143 * context protection macros
144 * in SMP:
145 * - we need to protect against CPU concurrency (spin_lock)
146 * - we need to protect against PMU overflow interrupts (local_irq_disable)
147 * in UP:
148 * - we need to protect against PMU overflow interrupts (local_irq_disable)
149 *
85d1fe09 150 * spin_lock_irqsave()/spin_unlock_irqrestore():
1da177e4
LT
151 * in SMP: local_irq_disable + spin_lock
152 * in UP : local_irq_disable
153 *
154 * spin_lock()/spin_lock():
155 * in UP : removed automatically
156 * in SMP: protect against context accesses from other CPU. interrupts
157 * are not masked. This is useful for the PMU interrupt handler
158 * because we know we will not get PMU concurrency in that code.
159 */
160#define PROTECT_CTX(c, f) \
161 do { \
19c5870c 162 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
1da177e4 163 spin_lock_irqsave(&(c)->ctx_lock, f); \
19c5870c 164 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
1da177e4
LT
165 } while(0)
166
167#define UNPROTECT_CTX(c, f) \
168 do { \
19c5870c 169 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
1da177e4
LT
170 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
171 } while(0)
172
173#define PROTECT_CTX_NOPRINT(c, f) \
174 do { \
175 spin_lock_irqsave(&(c)->ctx_lock, f); \
176 } while(0)
177
178
179#define UNPROTECT_CTX_NOPRINT(c, f) \
180 do { \
181 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
182 } while(0)
183
184
185#define PROTECT_CTX_NOIRQ(c) \
186 do { \
187 spin_lock(&(c)->ctx_lock); \
188 } while(0)
189
190#define UNPROTECT_CTX_NOIRQ(c) \
191 do { \
192 spin_unlock(&(c)->ctx_lock); \
193 } while(0)
194
195
196#ifdef CONFIG_SMP
197
198#define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
199#define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
200#define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
201
202#else /* !CONFIG_SMP */
203#define SET_ACTIVATION(t) do {} while(0)
204#define GET_ACTIVATION(t) do {} while(0)
205#define INC_ACTIVATION(t) do {} while(0)
206#endif /* CONFIG_SMP */
207
208#define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
209#define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
210#define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
211
212#define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
213#define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
214
215#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
216
217/*
218 * cmp0 must be the value of pmc0
219 */
220#define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
221
222#define PFMFS_MAGIC 0xa0b4d889
223
224/*
225 * debugging
226 */
227#define PFM_DEBUGGING 1
228#ifdef PFM_DEBUGGING
229#define DPRINT(a) \
230 do { \
d4ed8084 231 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
1da177e4
LT
232 } while (0)
233
234#define DPRINT_ovfl(a) \
235 do { \
d4ed8084 236 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
1da177e4
LT
237 } while (0)
238#endif
239
240/*
241 * 64-bit software counter structure
242 *
243 * the next_reset_type is applied to the next call to pfm_reset_regs()
244 */
245typedef struct {
246 unsigned long val; /* virtual 64bit counter value */
247 unsigned long lval; /* last reset value */
248 unsigned long long_reset; /* reset value on sampling overflow */
249 unsigned long short_reset; /* reset value on overflow */
250 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
251 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
252 unsigned long seed; /* seed for random-number generator */
253 unsigned long mask; /* mask for random-number generator */
254 unsigned int flags; /* notify/do not notify */
255 unsigned long eventid; /* overflow event identifier */
256} pfm_counter_t;
257
258/*
259 * context flags
260 */
261typedef struct {
262 unsigned int block:1; /* when 1, task will blocked on user notifications */
263 unsigned int system:1; /* do system wide monitoring */
264 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
265 unsigned int is_sampling:1; /* true if using a custom format */
266 unsigned int excl_idle:1; /* exclude idle task in system wide session */
267 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
268 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
269 unsigned int no_msg:1; /* no message sent on overflow */
270 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
271 unsigned int reserved:22;
272} pfm_context_flags_t;
273
274#define PFM_TRAP_REASON_NONE 0x0 /* default value */
275#define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
276#define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
277
278
279/*
280 * perfmon context: encapsulates all the state of a monitoring session
281 */
282
283typedef struct pfm_context {
284 spinlock_t ctx_lock; /* context protection */
285
286 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
287 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
288
289 struct task_struct *ctx_task; /* task to which context is attached */
290
291 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
292
60f1c444 293 struct completion ctx_restart_done; /* use for blocking notification mode */
1da177e4
LT
294
295 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
296 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
297 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
298
299 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
300 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
301 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
302
35589a8f 303 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
1da177e4
LT
304
305 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
306 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
307 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
308 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
309
35589a8f
KA
310 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
311
312 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
313 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
1da177e4
LT
314
315 u64 ctx_saved_psr_up; /* only contains psr.up value */
316
317 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
318 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
319 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
320
321 int ctx_fd; /* file descriptor used my this context */
322 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
323
324 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
325 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
326 unsigned long ctx_smpl_size; /* size of sampling buffer */
327 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
328
329 wait_queue_head_t ctx_msgq_wait;
330 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
331 int ctx_msgq_head;
332 int ctx_msgq_tail;
333 struct fasync_struct *ctx_async_queue;
334
335 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
336} pfm_context_t;
337
338/*
339 * magic number used to verify that structure is really
340 * a perfmon context
341 */
342#define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
343
344#define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
345
346#ifdef CONFIG_SMP
347#define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
348#define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
349#else
350#define SET_LAST_CPU(ctx, v) do {} while(0)
351#define GET_LAST_CPU(ctx) do {} while(0)
352#endif
353
354
355#define ctx_fl_block ctx_flags.block
356#define ctx_fl_system ctx_flags.system
357#define ctx_fl_using_dbreg ctx_flags.using_dbreg
358#define ctx_fl_is_sampling ctx_flags.is_sampling
359#define ctx_fl_excl_idle ctx_flags.excl_idle
360#define ctx_fl_going_zombie ctx_flags.going_zombie
361#define ctx_fl_trap_reason ctx_flags.trap_reason
362#define ctx_fl_no_msg ctx_flags.no_msg
363#define ctx_fl_can_restart ctx_flags.can_restart
364
365#define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
366#define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
367
368/*
369 * global information about all sessions
370 * mostly used to synchronize between system wide and per-process
371 */
372typedef struct {
373 spinlock_t pfs_lock; /* lock the structure */
374
375 unsigned int pfs_task_sessions; /* number of per task sessions */
376 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
377 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
378 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
379 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
380} pfm_session_t;
381
382/*
383 * information about a PMC or PMD.
384 * dep_pmd[]: a bitmask of dependent PMD registers
385 * dep_pmc[]: a bitmask of dependent PMC registers
386 */
387typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
388typedef struct {
389 unsigned int type;
390 int pm_pos;
391 unsigned long default_value; /* power-on default value */
392 unsigned long reserved_mask; /* bitmask of reserved bits */
393 pfm_reg_check_t read_check;
394 pfm_reg_check_t write_check;
395 unsigned long dep_pmd[4];
396 unsigned long dep_pmc[4];
397} pfm_reg_desc_t;
398
399/* assume cnum is a valid monitor */
400#define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
401
402/*
403 * This structure is initialized at boot time and contains
404 * a description of the PMU main characteristics.
405 *
406 * If the probe function is defined, detection is based
407 * on its return value:
408 * - 0 means recognized PMU
409 * - anything else means not supported
410 * When the probe function is not defined, then the pmu_family field
411 * is used and it must match the host CPU family such that:
412 * - cpu->family & config->pmu_family != 0
413 */
414typedef struct {
415 unsigned long ovfl_val; /* overflow value for counters */
416
417 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
418 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
419
420 unsigned int num_pmcs; /* number of PMCS: computed at init time */
421 unsigned int num_pmds; /* number of PMDS: computed at init time */
422 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
423 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
424
425 char *pmu_name; /* PMU family name */
426 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
427 unsigned int flags; /* pmu specific flags */
428 unsigned int num_ibrs; /* number of IBRS: computed at init time */
429 unsigned int num_dbrs; /* number of DBRS: computed at init time */
430 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
431 int (*probe)(void); /* customized probe routine */
432 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
433} pmu_config_t;
434/*
435 * PMU specific flags
436 */
437#define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
438
439/*
440 * debug register related type definitions
441 */
442typedef struct {
443 unsigned long ibr_mask:56;
444 unsigned long ibr_plm:4;
445 unsigned long ibr_ig:3;
446 unsigned long ibr_x:1;
447} ibr_mask_reg_t;
448
449typedef struct {
450 unsigned long dbr_mask:56;
451 unsigned long dbr_plm:4;
452 unsigned long dbr_ig:2;
453 unsigned long dbr_w:1;
454 unsigned long dbr_r:1;
455} dbr_mask_reg_t;
456
457typedef union {
458 unsigned long val;
459 ibr_mask_reg_t ibr;
460 dbr_mask_reg_t dbr;
461} dbreg_t;
462
463
464/*
465 * perfmon command descriptions
466 */
467typedef struct {
468 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
469 char *cmd_name;
470 int cmd_flags;
471 unsigned int cmd_narg;
472 size_t cmd_argsize;
473 int (*cmd_getsize)(void *arg, size_t *sz);
474} pfm_cmd_desc_t;
475
476#define PFM_CMD_FD 0x01 /* command requires a file descriptor */
477#define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
478#define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
479#define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
480
481
482#define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
483#define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
484#define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
485#define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
486#define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
487
488#define PFM_CMD_ARG_MANY -1 /* cannot be zero */
489
1da177e4
LT
490typedef struct {
491 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
492 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
493 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
494 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
497 unsigned long pfm_smpl_handler_calls;
498 unsigned long pfm_smpl_handler_cycles;
499 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
500} pfm_stats_t;
501
502/*
503 * perfmon internal variables
504 */
505static pfm_stats_t pfm_stats[NR_CPUS];
506static pfm_session_t pfm_sessions; /* global sessions information */
507
a9f6a0dd 508static DEFINE_SPINLOCK(pfm_alt_install_check);
a1ecf7f6
TL
509static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
510
1da177e4
LT
511static struct proc_dir_entry *perfmon_dir;
512static pfm_uuid_t pfm_null_uuid = {0,};
513
514static spinlock_t pfm_buffer_fmt_lock;
515static LIST_HEAD(pfm_buffer_fmt_list);
516
517static pmu_config_t *pmu_conf;
518
519/* sysctl() controls */
4944930a
SE
520pfm_sysctl_t pfm_sysctl;
521EXPORT_SYMBOL(pfm_sysctl);
1da177e4
LT
522
523static ctl_table pfm_ctl_table[]={
4e009901
EB
524 {
525 .ctl_name = CTL_UNNUMBERED,
526 .procname = "debug",
527 .data = &pfm_sysctl.debug,
528 .maxlen = sizeof(int),
529 .mode = 0666,
530 .proc_handler = &proc_dointvec,
531 },
532 {
533 .ctl_name = CTL_UNNUMBERED,
534 .procname = "debug_ovfl",
535 .data = &pfm_sysctl.debug_ovfl,
536 .maxlen = sizeof(int),
537 .mode = 0666,
538 .proc_handler = &proc_dointvec,
539 },
540 {
541 .ctl_name = CTL_UNNUMBERED,
542 .procname = "fastctxsw",
543 .data = &pfm_sysctl.fastctxsw,
544 .maxlen = sizeof(int),
545 .mode = 0600,
546 .proc_handler = &proc_dointvec,
547 },
548 {
549 .ctl_name = CTL_UNNUMBERED,
550 .procname = "expert_mode",
551 .data = &pfm_sysctl.expert_mode,
552 .maxlen = sizeof(int),
553 .mode = 0600,
554 .proc_handler = &proc_dointvec,
555 },
556 {}
1da177e4
LT
557};
558static ctl_table pfm_sysctl_dir[] = {
4e009901
EB
559 {
560 .ctl_name = CTL_UNNUMBERED,
561 .procname = "perfmon",
e3ad42be 562 .mode = 0555,
4e009901
EB
563 .child = pfm_ctl_table,
564 },
565 {}
1da177e4
LT
566};
567static ctl_table pfm_sysctl_root[] = {
4e009901
EB
568 {
569 .ctl_name = CTL_KERN,
570 .procname = "kernel",
e3ad42be 571 .mode = 0555,
4e009901
EB
572 .child = pfm_sysctl_dir,
573 },
574 {}
1da177e4
LT
575};
576static struct ctl_table_header *pfm_sysctl_header;
577
578static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
1da177e4
LT
579
580#define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
581#define pfm_get_cpu_data(a,b) per_cpu(a, b)
582
583static inline void
584pfm_put_task(struct task_struct *task)
585{
586 if (task != current) put_task_struct(task);
587}
588
1da177e4
LT
589static inline void
590pfm_reserve_page(unsigned long a)
591{
592 SetPageReserved(vmalloc_to_page((void *)a));
593}
594static inline void
595pfm_unreserve_page(unsigned long a)
596{
597 ClearPageReserved(vmalloc_to_page((void*)a));
598}
599
600static inline unsigned long
601pfm_protect_ctx_ctxsw(pfm_context_t *x)
602{
603 spin_lock(&(x)->ctx_lock);
604 return 0UL;
605}
606
24b8e0cc 607static inline void
1da177e4
LT
608pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
609{
610 spin_unlock(&(x)->ctx_lock);
611}
612
613static inline unsigned int
614pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
615{
616 return do_munmap(mm, addr, len);
617}
618
619static inline unsigned long
620pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
621{
622 return get_unmapped_area(file, addr, len, pgoff, flags);
623}
624
625
454e2398
DH
626static int
627pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data,
628 struct vfsmount *mnt)
1da177e4 629{
454e2398 630 return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC, mnt);
1da177e4
LT
631}
632
633static struct file_system_type pfm_fs_type = {
634 .name = "pfmfs",
635 .get_sb = pfmfs_get_sb,
636 .kill_sb = kill_anon_super,
637};
638
639DEFINE_PER_CPU(unsigned long, pfm_syst_info);
640DEFINE_PER_CPU(struct task_struct *, pmu_owner);
641DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
642DEFINE_PER_CPU(unsigned long, pmu_activation_number);
fffcc150 643EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
1da177e4
LT
644
645
646/* forward declaration */
5dfe4c96 647static const struct file_operations pfm_file_ops;
1da177e4
LT
648
649/*
650 * forward declarations
651 */
652#ifndef CONFIG_SMP
653static void pfm_lazy_save_regs (struct task_struct *ta);
654#endif
655
656void dump_pmu_state(const char *);
657static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
658
659#include "perfmon_itanium.h"
660#include "perfmon_mckinley.h"
9179cb65 661#include "perfmon_montecito.h"
1da177e4
LT
662#include "perfmon_generic.h"
663
664static pmu_config_t *pmu_confs[]={
9179cb65 665 &pmu_conf_mont,
1da177e4
LT
666 &pmu_conf_mck,
667 &pmu_conf_ita,
668 &pmu_conf_gen, /* must be last */
669 NULL
670};
671
672
673static int pfm_end_notify_user(pfm_context_t *ctx);
674
675static inline void
676pfm_clear_psr_pp(void)
677{
678 ia64_rsm(IA64_PSR_PP);
679 ia64_srlz_i();
680}
681
682static inline void
683pfm_set_psr_pp(void)
684{
685 ia64_ssm(IA64_PSR_PP);
686 ia64_srlz_i();
687}
688
689static inline void
690pfm_clear_psr_up(void)
691{
692 ia64_rsm(IA64_PSR_UP);
693 ia64_srlz_i();
694}
695
696static inline void
697pfm_set_psr_up(void)
698{
699 ia64_ssm(IA64_PSR_UP);
700 ia64_srlz_i();
701}
702
703static inline unsigned long
704pfm_get_psr(void)
705{
706 unsigned long tmp;
707 tmp = ia64_getreg(_IA64_REG_PSR);
708 ia64_srlz_i();
709 return tmp;
710}
711
712static inline void
713pfm_set_psr_l(unsigned long val)
714{
715 ia64_setreg(_IA64_REG_PSR_L, val);
716 ia64_srlz_i();
717}
718
719static inline void
720pfm_freeze_pmu(void)
721{
722 ia64_set_pmc(0,1UL);
723 ia64_srlz_d();
724}
725
726static inline void
727pfm_unfreeze_pmu(void)
728{
729 ia64_set_pmc(0,0UL);
730 ia64_srlz_d();
731}
732
733static inline void
734pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
735{
736 int i;
737
738 for (i=0; i < nibrs; i++) {
739 ia64_set_ibr(i, ibrs[i]);
740 ia64_dv_serialize_instruction();
741 }
742 ia64_srlz_i();
743}
744
745static inline void
746pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
747{
748 int i;
749
750 for (i=0; i < ndbrs; i++) {
751 ia64_set_dbr(i, dbrs[i]);
752 ia64_dv_serialize_data();
753 }
754 ia64_srlz_d();
755}
756
757/*
758 * PMD[i] must be a counter. no check is made
759 */
760static inline unsigned long
761pfm_read_soft_counter(pfm_context_t *ctx, int i)
762{
763 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
764}
765
766/*
767 * PMD[i] must be a counter. no check is made
768 */
769static inline void
770pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
771{
772 unsigned long ovfl_val = pmu_conf->ovfl_val;
773
774 ctx->ctx_pmds[i].val = val & ~ovfl_val;
775 /*
776 * writing to unimplemented part is ignore, so we do not need to
777 * mask off top part
778 */
779 ia64_set_pmd(i, val & ovfl_val);
780}
781
782static pfm_msg_t *
783pfm_get_new_msg(pfm_context_t *ctx)
784{
785 int idx, next;
786
787 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
788
789 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
790 if (next == ctx->ctx_msgq_head) return NULL;
791
792 idx = ctx->ctx_msgq_tail;
793 ctx->ctx_msgq_tail = next;
794
795 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
796
797 return ctx->ctx_msgq+idx;
798}
799
800static pfm_msg_t *
801pfm_get_next_msg(pfm_context_t *ctx)
802{
803 pfm_msg_t *msg;
804
805 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
806
807 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
808
809 /*
810 * get oldest message
811 */
812 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
813
814 /*
815 * and move forward
816 */
817 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
818
819 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
820
821 return msg;
822}
823
824static void
825pfm_reset_msgq(pfm_context_t *ctx)
826{
827 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
828 DPRINT(("ctx=%p msgq reset\n", ctx));
829}
830
831static void *
832pfm_rvmalloc(unsigned long size)
833{
834 void *mem;
835 unsigned long addr;
836
837 size = PAGE_ALIGN(size);
838 mem = vmalloc(size);
839 if (mem) {
840 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
841 memset(mem, 0, size);
842 addr = (unsigned long)mem;
843 while (size > 0) {
844 pfm_reserve_page(addr);
845 addr+=PAGE_SIZE;
846 size-=PAGE_SIZE;
847 }
848 }
849 return mem;
850}
851
852static void
853pfm_rvfree(void *mem, unsigned long size)
854{
855 unsigned long addr;
856
857 if (mem) {
858 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
859 addr = (unsigned long) mem;
860 while ((long) size > 0) {
861 pfm_unreserve_page(addr);
862 addr+=PAGE_SIZE;
863 size-=PAGE_SIZE;
864 }
865 vfree(mem);
866 }
867 return;
868}
869
870static pfm_context_t *
f8e811b9 871pfm_context_alloc(int ctx_flags)
1da177e4
LT
872{
873 pfm_context_t *ctx;
874
875 /*
876 * allocate context descriptor
877 * must be able to free with interrupts disabled
878 */
52fd9108 879 ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
1da177e4 880 if (ctx) {
1da177e4 881 DPRINT(("alloc ctx @%p\n", ctx));
f8e811b9
AV
882
883 /*
884 * init context protection lock
885 */
886 spin_lock_init(&ctx->ctx_lock);
887
888 /*
889 * context is unloaded
890 */
891 ctx->ctx_state = PFM_CTX_UNLOADED;
892
893 /*
894 * initialization of context's flags
895 */
896 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
897 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
898 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
899 /*
900 * will move to set properties
901 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
902 */
903
904 /*
905 * init restart semaphore to locked
906 */
907 init_completion(&ctx->ctx_restart_done);
908
909 /*
910 * activation is used in SMP only
911 */
912 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
913 SET_LAST_CPU(ctx, -1);
914
915 /*
916 * initialize notification message queue
917 */
918 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
919 init_waitqueue_head(&ctx->ctx_msgq_wait);
920 init_waitqueue_head(&ctx->ctx_zombieq);
921
1da177e4
LT
922 }
923 return ctx;
924}
925
926static void
927pfm_context_free(pfm_context_t *ctx)
928{
929 if (ctx) {
930 DPRINT(("free ctx @%p\n", ctx));
931 kfree(ctx);
932 }
933}
934
935static void
936pfm_mask_monitoring(struct task_struct *task)
937{
938 pfm_context_t *ctx = PFM_GET_CTX(task);
1da177e4
LT
939 unsigned long mask, val, ovfl_mask;
940 int i;
941
19c5870c 942 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
1da177e4
LT
943
944 ovfl_mask = pmu_conf->ovfl_val;
945 /*
946 * monitoring can only be masked as a result of a valid
947 * counter overflow. In UP, it means that the PMU still
948 * has an owner. Note that the owner can be different
949 * from the current task. However the PMU state belongs
950 * to the owner.
951 * In SMP, a valid overflow only happens when task is
952 * current. Therefore if we come here, we know that
953 * the PMU state belongs to the current task, therefore
954 * we can access the live registers.
955 *
956 * So in both cases, the live register contains the owner's
957 * state. We can ONLY touch the PMU registers and NOT the PSR.
958 *
35589a8f 959 * As a consequence to this call, the ctx->th_pmds[] array
1da177e4
LT
960 * contains stale information which must be ignored
961 * when context is reloaded AND monitoring is active (see
962 * pfm_restart).
963 */
964 mask = ctx->ctx_used_pmds[0];
965 for (i = 0; mask; i++, mask>>=1) {
966 /* skip non used pmds */
967 if ((mask & 0x1) == 0) continue;
968 val = ia64_get_pmd(i);
969
970 if (PMD_IS_COUNTING(i)) {
971 /*
972 * we rebuild the full 64 bit value of the counter
973 */
974 ctx->ctx_pmds[i].val += (val & ovfl_mask);
975 } else {
976 ctx->ctx_pmds[i].val = val;
977 }
978 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
979 i,
980 ctx->ctx_pmds[i].val,
981 val & ovfl_mask));
982 }
983 /*
984 * mask monitoring by setting the privilege level to 0
985 * we cannot use psr.pp/psr.up for this, it is controlled by
986 * the user
987 *
988 * if task is current, modify actual registers, otherwise modify
989 * thread save state, i.e., what will be restored in pfm_load_regs()
990 */
991 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
992 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
993 if ((mask & 0x1) == 0UL) continue;
35589a8f
KA
994 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
995 ctx->th_pmcs[i] &= ~0xfUL;
996 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1da177e4
LT
997 }
998 /*
999 * make all of this visible
1000 */
1001 ia64_srlz_d();
1002}
1003
1004/*
1005 * must always be done with task == current
1006 *
1007 * context must be in MASKED state when calling
1008 */
1009static void
1010pfm_restore_monitoring(struct task_struct *task)
1011{
1012 pfm_context_t *ctx = PFM_GET_CTX(task);
1da177e4
LT
1013 unsigned long mask, ovfl_mask;
1014 unsigned long psr, val;
1015 int i, is_system;
1016
1017 is_system = ctx->ctx_fl_system;
1018 ovfl_mask = pmu_conf->ovfl_val;
1019
1020 if (task != current) {
19c5870c 1021 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1da177e4
LT
1022 return;
1023 }
1024 if (ctx->ctx_state != PFM_CTX_MASKED) {
1025 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
19c5870c 1026 task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1da177e4
LT
1027 return;
1028 }
1029 psr = pfm_get_psr();
1030 /*
1031 * monitoring is masked via the PMC.
1032 * As we restore their value, we do not want each counter to
1033 * restart right away. We stop monitoring using the PSR,
1034 * restore the PMC (and PMD) and then re-establish the psr
1035 * as it was. Note that there can be no pending overflow at
1036 * this point, because monitoring was MASKED.
1037 *
1038 * system-wide session are pinned and self-monitoring
1039 */
1040 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1041 /* disable dcr pp */
1042 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1043 pfm_clear_psr_pp();
1044 } else {
1045 pfm_clear_psr_up();
1046 }
1047 /*
1048 * first, we restore the PMD
1049 */
1050 mask = ctx->ctx_used_pmds[0];
1051 for (i = 0; mask; i++, mask>>=1) {
1052 /* skip non used pmds */
1053 if ((mask & 0x1) == 0) continue;
1054
1055 if (PMD_IS_COUNTING(i)) {
1056 /*
1057 * we split the 64bit value according to
1058 * counter width
1059 */
1060 val = ctx->ctx_pmds[i].val & ovfl_mask;
1061 ctx->ctx_pmds[i].val &= ~ovfl_mask;
1062 } else {
1063 val = ctx->ctx_pmds[i].val;
1064 }
1065 ia64_set_pmd(i, val);
1066
1067 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1068 i,
1069 ctx->ctx_pmds[i].val,
1070 val));
1071 }
1072 /*
1073 * restore the PMCs
1074 */
1075 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1076 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1077 if ((mask & 0x1) == 0UL) continue;
35589a8f
KA
1078 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1079 ia64_set_pmc(i, ctx->th_pmcs[i]);
19c5870c
AD
1080 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1081 task_pid_nr(task), i, ctx->th_pmcs[i]));
1da177e4
LT
1082 }
1083 ia64_srlz_d();
1084
1085 /*
1086 * must restore DBR/IBR because could be modified while masked
1087 * XXX: need to optimize
1088 */
1089 if (ctx->ctx_fl_using_dbreg) {
1090 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1091 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1092 }
1093
1094 /*
1095 * now restore PSR
1096 */
1097 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1098 /* enable dcr pp */
1099 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1100 ia64_srlz_i();
1101 }
1102 pfm_set_psr_l(psr);
1103}
1104
1105static inline void
1106pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1107{
1108 int i;
1109
1110 ia64_srlz_d();
1111
1112 for (i=0; mask; i++, mask>>=1) {
1113 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1114 }
1115}
1116
1117/*
1118 * reload from thread state (used for ctxw only)
1119 */
1120static inline void
1121pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1122{
1123 int i;
1124 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1125
1126 for (i=0; mask; i++, mask>>=1) {
1127 if ((mask & 0x1) == 0) continue;
1128 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1129 ia64_set_pmd(i, val);
1130 }
1131 ia64_srlz_d();
1132}
1133
1134/*
1135 * propagate PMD from context to thread-state
1136 */
1137static inline void
1138pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1139{
1da177e4
LT
1140 unsigned long ovfl_val = pmu_conf->ovfl_val;
1141 unsigned long mask = ctx->ctx_all_pmds[0];
1142 unsigned long val;
1143 int i;
1144
1145 DPRINT(("mask=0x%lx\n", mask));
1146
1147 for (i=0; mask; i++, mask>>=1) {
1148
1149 val = ctx->ctx_pmds[i].val;
1150
1151 /*
1152 * We break up the 64 bit value into 2 pieces
1153 * the lower bits go to the machine state in the
1154 * thread (will be reloaded on ctxsw in).
1155 * The upper part stays in the soft-counter.
1156 */
1157 if (PMD_IS_COUNTING(i)) {
1158 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1159 val &= ovfl_val;
1160 }
35589a8f 1161 ctx->th_pmds[i] = val;
1da177e4
LT
1162
1163 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1164 i,
35589a8f 1165 ctx->th_pmds[i],
1da177e4
LT
1166 ctx->ctx_pmds[i].val));
1167 }
1168}
1169
1170/*
1171 * propagate PMC from context to thread-state
1172 */
1173static inline void
1174pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1175{
1da177e4
LT
1176 unsigned long mask = ctx->ctx_all_pmcs[0];
1177 int i;
1178
1179 DPRINT(("mask=0x%lx\n", mask));
1180
1181 for (i=0; mask; i++, mask>>=1) {
1182 /* masking 0 with ovfl_val yields 0 */
35589a8f
KA
1183 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1184 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1da177e4
LT
1185 }
1186}
1187
1188
1189
1190static inline void
1191pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1192{
1193 int i;
1194
1195 for (i=0; mask; i++, mask>>=1) {
1196 if ((mask & 0x1) == 0) continue;
1197 ia64_set_pmc(i, pmcs[i]);
1198 }
1199 ia64_srlz_d();
1200}
1201
1202static inline int
1203pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1204{
1205 return memcmp(a, b, sizeof(pfm_uuid_t));
1206}
1207
1208static inline int
1209pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1210{
1211 int ret = 0;
1212 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1213 return ret;
1214}
1215
1216static inline int
1217pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1218{
1219 int ret = 0;
1220 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1221 return ret;
1222}
1223
1224
1225static inline int
1226pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1227 int cpu, void *arg)
1228{
1229 int ret = 0;
1230 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1231 return ret;
1232}
1233
1234static inline int
1235pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1236 int cpu, void *arg)
1237{
1238 int ret = 0;
1239 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1240 return ret;
1241}
1242
1243static inline int
1244pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1245{
1246 int ret = 0;
1247 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1248 return ret;
1249}
1250
1251static inline int
1252pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1253{
1254 int ret = 0;
1255 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1256 return ret;
1257}
1258
1259static pfm_buffer_fmt_t *
1260__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1261{
1262 struct list_head * pos;
1263 pfm_buffer_fmt_t * entry;
1264
1265 list_for_each(pos, &pfm_buffer_fmt_list) {
1266 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1267 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1268 return entry;
1269 }
1270 return NULL;
1271}
1272
1273/*
1274 * find a buffer format based on its uuid
1275 */
1276static pfm_buffer_fmt_t *
1277pfm_find_buffer_fmt(pfm_uuid_t uuid)
1278{
1279 pfm_buffer_fmt_t * fmt;
1280 spin_lock(&pfm_buffer_fmt_lock);
1281 fmt = __pfm_find_buffer_fmt(uuid);
1282 spin_unlock(&pfm_buffer_fmt_lock);
1283 return fmt;
1284}
1285
1286int
1287pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1288{
1289 int ret = 0;
1290
1291 /* some sanity checks */
1292 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1293
1294 /* we need at least a handler */
1295 if (fmt->fmt_handler == NULL) return -EINVAL;
1296
1297 /*
1298 * XXX: need check validity of fmt_arg_size
1299 */
1300
1301 spin_lock(&pfm_buffer_fmt_lock);
1302
1303 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1304 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1305 ret = -EBUSY;
1306 goto out;
1307 }
1308 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1309 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1310
1311out:
1312 spin_unlock(&pfm_buffer_fmt_lock);
1313 return ret;
1314}
1315EXPORT_SYMBOL(pfm_register_buffer_fmt);
1316
1317int
1318pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1319{
1320 pfm_buffer_fmt_t *fmt;
1321 int ret = 0;
1322
1323 spin_lock(&pfm_buffer_fmt_lock);
1324
1325 fmt = __pfm_find_buffer_fmt(uuid);
1326 if (!fmt) {
1327 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1328 ret = -EINVAL;
1329 goto out;
1330 }
1331 list_del_init(&fmt->fmt_list);
1332 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1333
1334out:
1335 spin_unlock(&pfm_buffer_fmt_lock);
1336 return ret;
1337
1338}
1339EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1340
8df5a500
SE
1341extern void update_pal_halt_status(int);
1342
1da177e4
LT
1343static int
1344pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1345{
1346 unsigned long flags;
1347 /*
72fdbdce 1348 * validity checks on cpu_mask have been done upstream
1da177e4
LT
1349 */
1350 LOCK_PFS(flags);
1351
1352 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1353 pfm_sessions.pfs_sys_sessions,
1354 pfm_sessions.pfs_task_sessions,
1355 pfm_sessions.pfs_sys_use_dbregs,
1356 is_syswide,
1357 cpu));
1358
1359 if (is_syswide) {
1360 /*
1361 * cannot mix system wide and per-task sessions
1362 */
1363 if (pfm_sessions.pfs_task_sessions > 0UL) {
1364 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1365 pfm_sessions.pfs_task_sessions));
1366 goto abort;
1367 }
1368
1369 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1370
1371 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1372
1373 pfm_sessions.pfs_sys_session[cpu] = task;
1374
1375 pfm_sessions.pfs_sys_sessions++ ;
1376
1377 } else {
1378 if (pfm_sessions.pfs_sys_sessions) goto abort;
1379 pfm_sessions.pfs_task_sessions++;
1380 }
1381
1382 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1383 pfm_sessions.pfs_sys_sessions,
1384 pfm_sessions.pfs_task_sessions,
1385 pfm_sessions.pfs_sys_use_dbregs,
1386 is_syswide,
1387 cpu));
1388
8df5a500
SE
1389 /*
1390 * disable default_idle() to go to PAL_HALT
1391 */
1392 update_pal_halt_status(0);
1393
1da177e4
LT
1394 UNLOCK_PFS(flags);
1395
1396 return 0;
1397
1398error_conflict:
1399 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
19c5870c 1400 task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
a1ecf7f6 1401 cpu));
1da177e4
LT
1402abort:
1403 UNLOCK_PFS(flags);
1404
1405 return -EBUSY;
1406
1407}
1408
1409static int
1410pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1411{
1412 unsigned long flags;
1413 /*
72fdbdce 1414 * validity checks on cpu_mask have been done upstream
1da177e4
LT
1415 */
1416 LOCK_PFS(flags);
1417
1418 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1419 pfm_sessions.pfs_sys_sessions,
1420 pfm_sessions.pfs_task_sessions,
1421 pfm_sessions.pfs_sys_use_dbregs,
1422 is_syswide,
1423 cpu));
1424
1425
1426 if (is_syswide) {
1427 pfm_sessions.pfs_sys_session[cpu] = NULL;
1428 /*
1429 * would not work with perfmon+more than one bit in cpu_mask
1430 */
1431 if (ctx && ctx->ctx_fl_using_dbreg) {
1432 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1433 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1434 } else {
1435 pfm_sessions.pfs_sys_use_dbregs--;
1436 }
1437 }
1438 pfm_sessions.pfs_sys_sessions--;
1439 } else {
1440 pfm_sessions.pfs_task_sessions--;
1441 }
1442 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1443 pfm_sessions.pfs_sys_sessions,
1444 pfm_sessions.pfs_task_sessions,
1445 pfm_sessions.pfs_sys_use_dbregs,
1446 is_syswide,
1447 cpu));
1448
8df5a500
SE
1449 /*
1450 * if possible, enable default_idle() to go into PAL_HALT
1451 */
1452 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1453 update_pal_halt_status(1);
1454
1da177e4
LT
1455 UNLOCK_PFS(flags);
1456
1457 return 0;
1458}
1459
1460/*
1461 * removes virtual mapping of the sampling buffer.
1462 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1463 * a PROTECT_CTX() section.
1464 */
1465static int
1466pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1467{
1468 int r;
1469
1470 /* sanity checks */
1471 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
19c5870c 1472 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1da177e4
LT
1473 return -EINVAL;
1474 }
1475
1476 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1477
1478 /*
1479 * does the actual unmapping
1480 */
1481 down_write(&task->mm->mmap_sem);
1482
1483 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1484
1485 r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1486
1487 up_write(&task->mm->mmap_sem);
1488 if (r !=0) {
19c5870c 1489 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1da177e4
LT
1490 }
1491
1492 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1493
1494 return 0;
1495}
1496
1497/*
1498 * free actual physical storage used by sampling buffer
1499 */
1500#if 0
1501static int
1502pfm_free_smpl_buffer(pfm_context_t *ctx)
1503{
1504 pfm_buffer_fmt_t *fmt;
1505
1506 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1507
1508 /*
1509 * we won't use the buffer format anymore
1510 */
1511 fmt = ctx->ctx_buf_fmt;
1512
1513 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1514 ctx->ctx_smpl_hdr,
1515 ctx->ctx_smpl_size,
1516 ctx->ctx_smpl_vaddr));
1517
1518 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1519
1520 /*
1521 * free the buffer
1522 */
1523 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1524
1525 ctx->ctx_smpl_hdr = NULL;
1526 ctx->ctx_smpl_size = 0UL;
1527
1528 return 0;
1529
1530invalid_free:
19c5870c 1531 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1da177e4
LT
1532 return -EINVAL;
1533}
1534#endif
1535
1536static inline void
1537pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1538{
1539 if (fmt == NULL) return;
1540
1541 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1542
1543}
1544
1545/*
1546 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1547 * no real gain from having the whole whorehouse mounted. So we don't need
1548 * any operations on the root directory. However, we need a non-trivial
1549 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1550 */
1551static struct vfsmount *pfmfs_mnt;
1552
1553static int __init
1554init_pfm_fs(void)
1555{
1556 int err = register_filesystem(&pfm_fs_type);
1557 if (!err) {
1558 pfmfs_mnt = kern_mount(&pfm_fs_type);
1559 err = PTR_ERR(pfmfs_mnt);
1560 if (IS_ERR(pfmfs_mnt))
1561 unregister_filesystem(&pfm_fs_type);
1562 else
1563 err = 0;
1564 }
1565 return err;
1566}
1567
1da177e4
LT
1568static ssize_t
1569pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1570{
1571 pfm_context_t *ctx;
1572 pfm_msg_t *msg;
1573 ssize_t ret;
1574 unsigned long flags;
1575 DECLARE_WAITQUEUE(wait, current);
1576 if (PFM_IS_FILE(filp) == 0) {
19c5870c 1577 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1da177e4
LT
1578 return -EINVAL;
1579 }
1580
1581 ctx = (pfm_context_t *)filp->private_data;
1582 if (ctx == NULL) {
19c5870c 1583 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1da177e4
LT
1584 return -EINVAL;
1585 }
1586
1587 /*
1588 * check even when there is no message
1589 */
1590 if (size < sizeof(pfm_msg_t)) {
1591 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1592 return -EINVAL;
1593 }
1594
1595 PROTECT_CTX(ctx, flags);
1596
1597 /*
1598 * put ourselves on the wait queue
1599 */
1600 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1601
1602
1603 for(;;) {
1604 /*
1605 * check wait queue
1606 */
1607
1608 set_current_state(TASK_INTERRUPTIBLE);
1609
1610 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1611
1612 ret = 0;
1613 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1614
1615 UNPROTECT_CTX(ctx, flags);
1616
1617 /*
1618 * check non-blocking read
1619 */
1620 ret = -EAGAIN;
1621 if(filp->f_flags & O_NONBLOCK) break;
1622
1623 /*
1624 * check pending signals
1625 */
1626 if(signal_pending(current)) {
1627 ret = -EINTR;
1628 break;
1629 }
1630 /*
1631 * no message, so wait
1632 */
1633 schedule();
1634
1635 PROTECT_CTX(ctx, flags);
1636 }
19c5870c 1637 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1da177e4
LT
1638 set_current_state(TASK_RUNNING);
1639 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1640
1641 if (ret < 0) goto abort;
1642
1643 ret = -EINVAL;
1644 msg = pfm_get_next_msg(ctx);
1645 if (msg == NULL) {
19c5870c 1646 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1da177e4
LT
1647 goto abort_locked;
1648 }
1649
4944930a 1650 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1da177e4
LT
1651
1652 ret = -EFAULT;
1653 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1654
1655abort_locked:
1656 UNPROTECT_CTX(ctx, flags);
1657abort:
1658 return ret;
1659}
1660
1661static ssize_t
1662pfm_write(struct file *file, const char __user *ubuf,
1663 size_t size, loff_t *ppos)
1664{
1665 DPRINT(("pfm_write called\n"));
1666 return -EINVAL;
1667}
1668
1669static unsigned int
1670pfm_poll(struct file *filp, poll_table * wait)
1671{
1672 pfm_context_t *ctx;
1673 unsigned long flags;
1674 unsigned int mask = 0;
1675
1676 if (PFM_IS_FILE(filp) == 0) {
19c5870c 1677 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1da177e4
LT
1678 return 0;
1679 }
1680
1681 ctx = (pfm_context_t *)filp->private_data;
1682 if (ctx == NULL) {
19c5870c 1683 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1da177e4
LT
1684 return 0;
1685 }
1686
1687
1688 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1689
1690 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1691
1692 PROTECT_CTX(ctx, flags);
1693
1694 if (PFM_CTXQ_EMPTY(ctx) == 0)
1695 mask = POLLIN | POLLRDNORM;
1696
1697 UNPROTECT_CTX(ctx, flags);
1698
1699 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1700
1701 return mask;
1702}
1703
1704static int
1705pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1706{
1707 DPRINT(("pfm_ioctl called\n"));
1708 return -EINVAL;
1709}
1710
1711/*
1712 * interrupt cannot be masked when coming here
1713 */
1714static inline int
1715pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1716{
1717 int ret;
1718
1719 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1720
1721 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
19c5870c 1722 task_pid_nr(current),
1da177e4
LT
1723 fd,
1724 on,
1725 ctx->ctx_async_queue, ret));
1726
1727 return ret;
1728}
1729
1730static int
1731pfm_fasync(int fd, struct file *filp, int on)
1732{
1733 pfm_context_t *ctx;
1734 int ret;
1735
1736 if (PFM_IS_FILE(filp) == 0) {
19c5870c 1737 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1da177e4
LT
1738 return -EBADF;
1739 }
1740
1741 ctx = (pfm_context_t *)filp->private_data;
1742 if (ctx == NULL) {
19c5870c 1743 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1da177e4
LT
1744 return -EBADF;
1745 }
1746 /*
1747 * we cannot mask interrupts during this call because this may
1748 * may go to sleep if memory is not readily avalaible.
1749 *
1750 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1751 * done in caller. Serialization of this function is ensured by caller.
1752 */
1753 ret = pfm_do_fasync(fd, filp, ctx, on);
1754
1755
1756 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1757 fd,
1758 on,
1759 ctx->ctx_async_queue, ret));
1760
1761 return ret;
1762}
1763
1764#ifdef CONFIG_SMP
1765/*
1766 * this function is exclusively called from pfm_close().
1767 * The context is not protected at that time, nor are interrupts
1768 * on the remote CPU. That's necessary to avoid deadlocks.
1769 */
1770static void
1771pfm_syswide_force_stop(void *info)
1772{
1773 pfm_context_t *ctx = (pfm_context_t *)info;
6450578f 1774 struct pt_regs *regs = task_pt_regs(current);
1da177e4
LT
1775 struct task_struct *owner;
1776 unsigned long flags;
1777 int ret;
1778
1779 if (ctx->ctx_cpu != smp_processor_id()) {
1780 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1781 ctx->ctx_cpu,
1782 smp_processor_id());
1783 return;
1784 }
1785 owner = GET_PMU_OWNER();
1786 if (owner != ctx->ctx_task) {
1787 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1788 smp_processor_id(),
19c5870c 1789 task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1da177e4
LT
1790 return;
1791 }
1792 if (GET_PMU_CTX() != ctx) {
1793 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1794 smp_processor_id(),
1795 GET_PMU_CTX(), ctx);
1796 return;
1797 }
1798
19c5870c 1799 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1da177e4
LT
1800 /*
1801 * the context is already protected in pfm_close(), we simply
1802 * need to mask interrupts to avoid a PMU interrupt race on
1803 * this CPU
1804 */
1805 local_irq_save(flags);
1806
1807 ret = pfm_context_unload(ctx, NULL, 0, regs);
1808 if (ret) {
1809 DPRINT(("context_unload returned %d\n", ret));
1810 }
1811
1812 /*
1813 * unmask interrupts, PMU interrupts are now spurious here
1814 */
1815 local_irq_restore(flags);
1816}
1817
1818static void
1819pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1820{
1821 int ret;
1822
1823 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
8691e5a8 1824 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1da177e4
LT
1825 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1826}
1827#endif /* CONFIG_SMP */
1828
1829/*
1830 * called for each close(). Partially free resources.
1831 * When caller is self-monitoring, the context is unloaded.
1832 */
1833static int
75e1fcc0 1834pfm_flush(struct file *filp, fl_owner_t id)
1da177e4
LT
1835{
1836 pfm_context_t *ctx;
1837 struct task_struct *task;
1838 struct pt_regs *regs;
1839 unsigned long flags;
1840 unsigned long smpl_buf_size = 0UL;
1841 void *smpl_buf_vaddr = NULL;
1842 int state, is_system;
1843
1844 if (PFM_IS_FILE(filp) == 0) {
1845 DPRINT(("bad magic for\n"));
1846 return -EBADF;
1847 }
1848
1849 ctx = (pfm_context_t *)filp->private_data;
1850 if (ctx == NULL) {
19c5870c 1851 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1da177e4
LT
1852 return -EBADF;
1853 }
1854
1855 /*
1856 * remove our file from the async queue, if we use this mode.
1857 * This can be done without the context being protected. We come
72fdbdce 1858 * here when the context has become unreachable by other tasks.
1da177e4
LT
1859 *
1860 * We may still have active monitoring at this point and we may
1861 * end up in pfm_overflow_handler(). However, fasync_helper()
1862 * operates with interrupts disabled and it cleans up the
1863 * queue. If the PMU handler is called prior to entering
1864 * fasync_helper() then it will send a signal. If it is
1865 * invoked after, it will find an empty queue and no
1866 * signal will be sent. In both case, we are safe
1867 */
1da177e4
LT
1868 PROTECT_CTX(ctx, flags);
1869
1870 state = ctx->ctx_state;
1871 is_system = ctx->ctx_fl_system;
1872
1873 task = PFM_CTX_TASK(ctx);
6450578f 1874 regs = task_pt_regs(task);
1da177e4
LT
1875
1876 DPRINT(("ctx_state=%d is_current=%d\n",
1877 state,
1878 task == current ? 1 : 0));
1879
1880 /*
1881 * if state == UNLOADED, then task is NULL
1882 */
1883
1884 /*
1885 * we must stop and unload because we are losing access to the context.
1886 */
1887 if (task == current) {
1888#ifdef CONFIG_SMP
1889 /*
1890 * the task IS the owner but it migrated to another CPU: that's bad
1891 * but we must handle this cleanly. Unfortunately, the kernel does
1892 * not provide a mechanism to block migration (while the context is loaded).
1893 *
1894 * We need to release the resource on the ORIGINAL cpu.
1895 */
1896 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1897
1898 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1899 /*
1900 * keep context protected but unmask interrupt for IPI
1901 */
1902 local_irq_restore(flags);
1903
1904 pfm_syswide_cleanup_other_cpu(ctx);
1905
1906 /*
1907 * restore interrupt masking
1908 */
1909 local_irq_save(flags);
1910
1911 /*
1912 * context is unloaded at this point
1913 */
1914 } else
1915#endif /* CONFIG_SMP */
1916 {
1917
1918 DPRINT(("forcing unload\n"));
1919 /*
1920 * stop and unload, returning with state UNLOADED
1921 * and session unreserved.
1922 */
1923 pfm_context_unload(ctx, NULL, 0, regs);
1924
1925 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1926 }
1927 }
1928
1929 /*
1930 * remove virtual mapping, if any, for the calling task.
1931 * cannot reset ctx field until last user is calling close().
1932 *
1933 * ctx_smpl_vaddr must never be cleared because it is needed
1934 * by every task with access to the context
1935 *
1936 * When called from do_exit(), the mm context is gone already, therefore
1937 * mm is NULL, i.e., the VMA is already gone and we do not have to
1938 * do anything here
1939 */
1940 if (ctx->ctx_smpl_vaddr && current->mm) {
1941 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1942 smpl_buf_size = ctx->ctx_smpl_size;
1943 }
1944
1945 UNPROTECT_CTX(ctx, flags);
1946
1947 /*
1948 * if there was a mapping, then we systematically remove it
1949 * at this point. Cannot be done inside critical section
1950 * because some VM function reenables interrupts.
1951 *
1952 */
1953 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1954
1955 return 0;
1956}
1957/*
1958 * called either on explicit close() or from exit_files().
1959 * Only the LAST user of the file gets to this point, i.e., it is
1960 * called only ONCE.
1961 *
1962 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1963 * (fput()),i.e, last task to access the file. Nobody else can access the
1964 * file at this point.
1965 *
1966 * When called from exit_files(), the VMA has been freed because exit_mm()
1967 * is executed before exit_files().
1968 *
1969 * When called from exit_files(), the current task is not yet ZOMBIE but we
1970 * flush the PMU state to the context.
1971 */
1972static int
1973pfm_close(struct inode *inode, struct file *filp)
1974{
1975 pfm_context_t *ctx;
1976 struct task_struct *task;
1977 struct pt_regs *regs;
1978 DECLARE_WAITQUEUE(wait, current);
1979 unsigned long flags;
1980 unsigned long smpl_buf_size = 0UL;
1981 void *smpl_buf_addr = NULL;
1982 int free_possible = 1;
1983 int state, is_system;
1984
1985 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1986
1987 if (PFM_IS_FILE(filp) == 0) {
1988 DPRINT(("bad magic\n"));
1989 return -EBADF;
1990 }
1991
1992 ctx = (pfm_context_t *)filp->private_data;
1993 if (ctx == NULL) {
19c5870c 1994 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1da177e4
LT
1995 return -EBADF;
1996 }
1997
1998 PROTECT_CTX(ctx, flags);
1999
2000 state = ctx->ctx_state;
2001 is_system = ctx->ctx_fl_system;
2002
2003 task = PFM_CTX_TASK(ctx);
6450578f 2004 regs = task_pt_regs(task);
1da177e4
LT
2005
2006 DPRINT(("ctx_state=%d is_current=%d\n",
2007 state,
2008 task == current ? 1 : 0));
2009
2010 /*
2011 * if task == current, then pfm_flush() unloaded the context
2012 */
2013 if (state == PFM_CTX_UNLOADED) goto doit;
2014
2015 /*
2016 * context is loaded/masked and task != current, we need to
2017 * either force an unload or go zombie
2018 */
2019
2020 /*
2021 * The task is currently blocked or will block after an overflow.
2022 * we must force it to wakeup to get out of the
2023 * MASKED state and transition to the unloaded state by itself.
2024 *
2025 * This situation is only possible for per-task mode
2026 */
2027 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2028
2029 /*
2030 * set a "partial" zombie state to be checked
2031 * upon return from down() in pfm_handle_work().
2032 *
2033 * We cannot use the ZOMBIE state, because it is checked
2034 * by pfm_load_regs() which is called upon wakeup from down().
2035 * In such case, it would free the context and then we would
2036 * return to pfm_handle_work() which would access the
2037 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2038 * but visible to pfm_handle_work().
2039 *
2040 * For some window of time, we have a zombie context with
2041 * ctx_state = MASKED and not ZOMBIE
2042 */
2043 ctx->ctx_fl_going_zombie = 1;
2044
2045 /*
2046 * force task to wake up from MASKED state
2047 */
60f1c444 2048 complete(&ctx->ctx_restart_done);
1da177e4
LT
2049
2050 DPRINT(("waking up ctx_state=%d\n", state));
2051
2052 /*
2053 * put ourself to sleep waiting for the other
2054 * task to report completion
2055 *
2056 * the context is protected by mutex, therefore there
2057 * is no risk of being notified of completion before
2058 * begin actually on the waitq.
2059 */
2060 set_current_state(TASK_INTERRUPTIBLE);
2061 add_wait_queue(&ctx->ctx_zombieq, &wait);
2062
2063 UNPROTECT_CTX(ctx, flags);
2064
2065 /*
2066 * XXX: check for signals :
2067 * - ok for explicit close
2068 * - not ok when coming from exit_files()
2069 */
2070 schedule();
2071
2072
2073 PROTECT_CTX(ctx, flags);
2074
2075
2076 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2077 set_current_state(TASK_RUNNING);
2078
2079 /*
2080 * context is unloaded at this point
2081 */
2082 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2083 }
2084 else if (task != current) {
2085#ifdef CONFIG_SMP
2086 /*
2087 * switch context to zombie state
2088 */
2089 ctx->ctx_state = PFM_CTX_ZOMBIE;
2090
19c5870c 2091 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
1da177e4
LT
2092 /*
2093 * cannot free the context on the spot. deferred until
2094 * the task notices the ZOMBIE state
2095 */
2096 free_possible = 0;
2097#else
2098 pfm_context_unload(ctx, NULL, 0, regs);
2099#endif
2100 }
2101
2102doit:
2103 /* reload state, may have changed during opening of critical section */
2104 state = ctx->ctx_state;
2105
2106 /*
2107 * the context is still attached to a task (possibly current)
2108 * we cannot destroy it right now
2109 */
2110
2111 /*
2112 * we must free the sampling buffer right here because
2113 * we cannot rely on it being cleaned up later by the
2114 * monitored task. It is not possible to free vmalloc'ed
2115 * memory in pfm_load_regs(). Instead, we remove the buffer
2116 * now. should there be subsequent PMU overflow originally
2117 * meant for sampling, the will be converted to spurious
2118 * and that's fine because the monitoring tools is gone anyway.
2119 */
2120 if (ctx->ctx_smpl_hdr) {
2121 smpl_buf_addr = ctx->ctx_smpl_hdr;
2122 smpl_buf_size = ctx->ctx_smpl_size;
2123 /* no more sampling */
2124 ctx->ctx_smpl_hdr = NULL;
2125 ctx->ctx_fl_is_sampling = 0;
2126 }
2127
2128 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2129 state,
2130 free_possible,
2131 smpl_buf_addr,
2132 smpl_buf_size));
2133
2134 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2135
2136 /*
2137 * UNLOADED that the session has already been unreserved.
2138 */
2139 if (state == PFM_CTX_ZOMBIE) {
2140 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2141 }
2142
2143 /*
2144 * disconnect file descriptor from context must be done
2145 * before we unlock.
2146 */
2147 filp->private_data = NULL;
2148
2149 /*
72fdbdce 2150 * if we free on the spot, the context is now completely unreachable
1da177e4
LT
2151 * from the callers side. The monitored task side is also cut, so we
2152 * can freely cut.
2153 *
2154 * If we have a deferred free, only the caller side is disconnected.
2155 */
2156 UNPROTECT_CTX(ctx, flags);
2157
2158 /*
2159 * All memory free operations (especially for vmalloc'ed memory)
2160 * MUST be done with interrupts ENABLED.
2161 */
2162 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2163
2164 /*
2165 * return the memory used by the context
2166 */
2167 if (free_possible) pfm_context_free(ctx);
2168
2169 return 0;
2170}
2171
2172static int
2173pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2174{
2175 DPRINT(("pfm_no_open called\n"));
2176 return -ENXIO;
2177}
2178
2179
2180
5dfe4c96 2181static const struct file_operations pfm_file_ops = {
1da177e4
LT
2182 .llseek = no_llseek,
2183 .read = pfm_read,
2184 .write = pfm_write,
2185 .poll = pfm_poll,
2186 .ioctl = pfm_ioctl,
2187 .open = pfm_no_open, /* special open code to disallow open via /proc */
2188 .fasync = pfm_fasync,
2189 .release = pfm_close,
2190 .flush = pfm_flush
2191};
2192
2193static int
2194pfmfs_delete_dentry(struct dentry *dentry)
2195{
2196 return 1;
2197}
2198
2199static struct dentry_operations pfmfs_dentry_operations = {
2200 .d_delete = pfmfs_delete_dentry,
2201};
2202
2203
f8e811b9
AV
2204static struct file *
2205pfm_alloc_file(pfm_context_t *ctx)
1da177e4 2206{
f8e811b9
AV
2207 struct file *file;
2208 struct inode *inode;
2209 struct dentry *dentry;
1da177e4
LT
2210 char name[32];
2211 struct qstr this;
2212
1da177e4
LT
2213 /*
2214 * allocate a new inode
2215 */
2216 inode = new_inode(pfmfs_mnt->mnt_sb);
f8e811b9
AV
2217 if (!inode)
2218 return ERR_PTR(-ENOMEM);
1da177e4
LT
2219
2220 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2221
2222 inode->i_mode = S_IFCHR|S_IRUGO;
2223 inode->i_uid = current->fsuid;
2224 inode->i_gid = current->fsgid;
2225
2226 sprintf(name, "[%lu]", inode->i_ino);
2227 this.name = name;
2228 this.len = strlen(name);
2229 this.hash = inode->i_ino;
2230
1da177e4
LT
2231 /*
2232 * allocate a new dcache entry
2233 */
f8e811b9
AV
2234 dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2235 if (!dentry) {
2236 iput(inode);
2237 return ERR_PTR(-ENOMEM);
2238 }
1da177e4 2239
f8e811b9
AV
2240 dentry->d_op = &pfmfs_dentry_operations;
2241 d_add(dentry, inode);
1da177e4 2242
f8e811b9
AV
2243 file = alloc_file(pfmfs_mnt, dentry, FMODE_READ, &pfm_file_ops);
2244 if (!file) {
2245 dput(dentry);
2246 return ERR_PTR(-ENFILE);
2247 }
1da177e4 2248
1da177e4 2249 file->f_flags = O_RDONLY;
f8e811b9 2250 file->private_data = ctx;
1da177e4 2251
f8e811b9 2252 return file;
1da177e4
LT
2253}
2254
2255static int
2256pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2257{
2258 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2259
2260 while (size > 0) {
2261 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2262
2263
2264 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2265 return -ENOMEM;
2266
2267 addr += PAGE_SIZE;
2268 buf += PAGE_SIZE;
2269 size -= PAGE_SIZE;
2270 }
2271 return 0;
2272}
2273
2274/*
2275 * allocate a sampling buffer and remaps it into the user address space of the task
2276 */
2277static int
41d5e5d7 2278pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
1da177e4
LT
2279{
2280 struct mm_struct *mm = task->mm;
2281 struct vm_area_struct *vma = NULL;
2282 unsigned long size;
2283 void *smpl_buf;
2284
2285
2286 /*
2287 * the fixed header + requested size and align to page boundary
2288 */
2289 size = PAGE_ALIGN(rsize);
2290
2291 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2292
2293 /*
2294 * check requested size to avoid Denial-of-service attacks
2295 * XXX: may have to refine this test
2296 * Check against address space limit.
2297 *
2298 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2299 * return -ENOMEM;
2300 */
2301 if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2302 return -ENOMEM;
2303
2304 /*
2305 * We do the easy to undo allocations first.
2306 *
2307 * pfm_rvmalloc(), clears the buffer, so there is no leak
2308 */
2309 smpl_buf = pfm_rvmalloc(size);
2310 if (smpl_buf == NULL) {
2311 DPRINT(("Can't allocate sampling buffer\n"));
2312 return -ENOMEM;
2313 }
2314
2315 DPRINT(("smpl_buf @%p\n", smpl_buf));
2316
2317 /* allocate vma */
c3762229 2318 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1da177e4
LT
2319 if (!vma) {
2320 DPRINT(("Cannot allocate vma\n"));
2321 goto error_kmem;
2322 }
1da177e4
LT
2323
2324 /*
2325 * partially initialize the vma for the sampling buffer
2326 */
2327 vma->vm_mm = mm;
41d5e5d7 2328 vma->vm_file = filp;
1da177e4
LT
2329 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2330 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2331
2332 /*
2333 * Now we have everything we need and we can initialize
2334 * and connect all the data structures
2335 */
2336
2337 ctx->ctx_smpl_hdr = smpl_buf;
2338 ctx->ctx_smpl_size = size; /* aligned size */
2339
2340 /*
2341 * Let's do the difficult operations next.
2342 *
2343 * now we atomically find some area in the address space and
2344 * remap the buffer in it.
2345 */
2346 down_write(&task->mm->mmap_sem);
2347
2348 /* find some free area in address space, must have mmap sem held */
2349 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2350 if (vma->vm_start == 0UL) {
2351 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2352 up_write(&task->mm->mmap_sem);
2353 goto error;
2354 }
2355 vma->vm_end = vma->vm_start + size;
2356 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2357
2358 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2359
2360 /* can only be applied to current task, need to have the mm semaphore held when called */
2361 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2362 DPRINT(("Can't remap buffer\n"));
2363 up_write(&task->mm->mmap_sem);
2364 goto error;
2365 }
2366
41d5e5d7
NP
2367 get_file(filp);
2368
1da177e4
LT
2369 /*
2370 * now insert the vma in the vm list for the process, must be
2371 * done with mmap lock held
2372 */
2373 insert_vm_struct(mm, vma);
2374
2375 mm->total_vm += size >> PAGE_SHIFT;
ab50b8ed
HD
2376 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2377 vma_pages(vma));
1da177e4
LT
2378 up_write(&task->mm->mmap_sem);
2379
2380 /*
2381 * keep track of user level virtual address
2382 */
2383 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2384 *(unsigned long *)user_vaddr = vma->vm_start;
2385
2386 return 0;
2387
2388error:
2389 kmem_cache_free(vm_area_cachep, vma);
2390error_kmem:
2391 pfm_rvfree(smpl_buf, size);
2392
2393 return -ENOMEM;
2394}
2395
2396/*
2397 * XXX: do something better here
2398 */
2399static int
2400pfm_bad_permissions(struct task_struct *task)
2401{
2402 /* inspired by ptrace_attach() */
2403 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2404 current->uid,
2405 current->gid,
2406 task->euid,
2407 task->suid,
2408 task->uid,
2409 task->egid,
2410 task->sgid));
2411
2412 return ((current->uid != task->euid)
2413 || (current->uid != task->suid)
2414 || (current->uid != task->uid)
2415 || (current->gid != task->egid)
2416 || (current->gid != task->sgid)
2417 || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
2418}
2419
2420static int
2421pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2422{
2423 int ctx_flags;
2424
2425 /* valid signal */
2426
2427 ctx_flags = pfx->ctx_flags;
2428
2429 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2430
2431 /*
2432 * cannot block in this mode
2433 */
2434 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2435 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2436 return -EINVAL;
2437 }
2438 } else {
2439 }
2440 /* probably more to add here */
2441
2442 return 0;
2443}
2444
2445static int
41d5e5d7 2446pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
1da177e4
LT
2447 unsigned int cpu, pfarg_context_t *arg)
2448{
2449 pfm_buffer_fmt_t *fmt = NULL;
2450 unsigned long size = 0UL;
2451 void *uaddr = NULL;
2452 void *fmt_arg = NULL;
2453 int ret = 0;
2454#define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2455
2456 /* invoke and lock buffer format, if found */
2457 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2458 if (fmt == NULL) {
19c5870c 2459 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
1da177e4
LT
2460 return -EINVAL;
2461 }
2462
2463 /*
2464 * buffer argument MUST be contiguous to pfarg_context_t
2465 */
2466 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2467
2468 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2469
19c5870c 2470 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
1da177e4
LT
2471
2472 if (ret) goto error;
2473
2474 /* link buffer format and context */
2475 ctx->ctx_buf_fmt = fmt;
f8e811b9 2476 ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
1da177e4
LT
2477
2478 /*
2479 * check if buffer format wants to use perfmon buffer allocation/mapping service
2480 */
2481 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2482 if (ret) goto error;
2483
2484 if (size) {
2485 /*
2486 * buffer is always remapped into the caller's address space
2487 */
41d5e5d7 2488 ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
1da177e4
LT
2489 if (ret) goto error;
2490
2491 /* keep track of user address of buffer */
2492 arg->ctx_smpl_vaddr = uaddr;
2493 }
2494 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2495
2496error:
2497 return ret;
2498}
2499
2500static void
2501pfm_reset_pmu_state(pfm_context_t *ctx)
2502{
2503 int i;
2504
2505 /*
2506 * install reset values for PMC.
2507 */
2508 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2509 if (PMC_IS_IMPL(i) == 0) continue;
2510 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2511 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2512 }
2513 /*
2514 * PMD registers are set to 0UL when the context in memset()
2515 */
2516
2517 /*
2518 * On context switched restore, we must restore ALL pmc and ALL pmd even
2519 * when they are not actively used by the task. In UP, the incoming process
2520 * may otherwise pick up left over PMC, PMD state from the previous process.
2521 * As opposed to PMD, stale PMC can cause harm to the incoming
2522 * process because they may change what is being measured.
2523 * Therefore, we must systematically reinstall the entire
2524 * PMC state. In SMP, the same thing is possible on the
2525 * same CPU but also on between 2 CPUs.
2526 *
2527 * The problem with PMD is information leaking especially
2528 * to user level when psr.sp=0
2529 *
2530 * There is unfortunately no easy way to avoid this problem
2531 * on either UP or SMP. This definitively slows down the
2532 * pfm_load_regs() function.
2533 */
2534
2535 /*
2536 * bitmask of all PMCs accessible to this context
2537 *
2538 * PMC0 is treated differently.
2539 */
2540 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2541
2542 /*
72fdbdce 2543 * bitmask of all PMDs that are accessible to this context
1da177e4
LT
2544 */
2545 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2546
2547 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2548
2549 /*
2550 * useful in case of re-enable after disable
2551 */
2552 ctx->ctx_used_ibrs[0] = 0UL;
2553 ctx->ctx_used_dbrs[0] = 0UL;
2554}
2555
2556static int
2557pfm_ctx_getsize(void *arg, size_t *sz)
2558{
2559 pfarg_context_t *req = (pfarg_context_t *)arg;
2560 pfm_buffer_fmt_t *fmt;
2561
2562 *sz = 0;
2563
2564 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2565
2566 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2567 if (fmt == NULL) {
2568 DPRINT(("cannot find buffer format\n"));
2569 return -EINVAL;
2570 }
2571 /* get just enough to copy in user parameters */
2572 *sz = fmt->fmt_arg_size;
2573 DPRINT(("arg_size=%lu\n", *sz));
2574
2575 return 0;
2576}
2577
2578
2579
2580/*
2581 * cannot attach if :
2582 * - kernel task
2583 * - task not owned by caller
2584 * - task incompatible with context mode
2585 */
2586static int
2587pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2588{
2589 /*
2590 * no kernel task or task not owner by caller
2591 */
2592 if (task->mm == NULL) {
19c5870c 2593 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
1da177e4
LT
2594 return -EPERM;
2595 }
2596 if (pfm_bad_permissions(task)) {
19c5870c 2597 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task)));
1da177e4
LT
2598 return -EPERM;
2599 }
2600 /*
2601 * cannot block in self-monitoring mode
2602 */
2603 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
19c5870c 2604 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
1da177e4
LT
2605 return -EINVAL;
2606 }
2607
2608 if (task->exit_state == EXIT_ZOMBIE) {
19c5870c 2609 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task)));
1da177e4
LT
2610 return -EBUSY;
2611 }
2612
2613 /*
2614 * always ok for self
2615 */
2616 if (task == current) return 0;
2617
21498223 2618 if (!task_is_stopped_or_traced(task)) {
19c5870c 2619 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
1da177e4
LT
2620 return -EBUSY;
2621 }
2622 /*
2623 * make sure the task is off any CPU
2624 */
85ba2d86 2625 wait_task_inactive(task, 0);
1da177e4
LT
2626
2627 /* more to come... */
2628
2629 return 0;
2630}
2631
2632static int
2633pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2634{
2635 struct task_struct *p = current;
2636 int ret;
2637
2638 /* XXX: need to add more checks here */
2639 if (pid < 2) return -EPERM;
2640
e1b0d4ba 2641 if (pid != task_pid_vnr(current)) {
1da177e4
LT
2642
2643 read_lock(&tasklist_lock);
2644
e1b0d4ba 2645 p = find_task_by_vpid(pid);
1da177e4
LT
2646
2647 /* make sure task cannot go away while we operate on it */
2648 if (p) get_task_struct(p);
2649
2650 read_unlock(&tasklist_lock);
2651
2652 if (p == NULL) return -ESRCH;
2653 }
2654
2655 ret = pfm_task_incompatible(ctx, p);
2656 if (ret == 0) {
2657 *task = p;
2658 } else if (p != current) {
2659 pfm_put_task(p);
2660 }
2661 return ret;
2662}
2663
2664
2665
2666static int
2667pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2668{
2669 pfarg_context_t *req = (pfarg_context_t *)arg;
2670 struct file *filp;
f8e811b9 2671 struct path path;
1da177e4 2672 int ctx_flags;
f8e811b9 2673 int fd;
1da177e4
LT
2674 int ret;
2675
2676 /* let's check the arguments first */
2677 ret = pfarg_is_sane(current, req);
f8e811b9
AV
2678 if (ret < 0)
2679 return ret;
1da177e4
LT
2680
2681 ctx_flags = req->ctx_flags;
2682
2683 ret = -ENOMEM;
2684
f8e811b9
AV
2685 fd = get_unused_fd();
2686 if (fd < 0)
2687 return fd;
1da177e4 2688
f8e811b9
AV
2689 ctx = pfm_context_alloc(ctx_flags);
2690 if (!ctx)
2691 goto error;
1da177e4 2692
f8e811b9
AV
2693 filp = pfm_alloc_file(ctx);
2694 if (IS_ERR(filp)) {
2695 ret = PTR_ERR(filp);
2696 goto error_file;
2697 }
1da177e4 2698
f8e811b9 2699 req->ctx_fd = ctx->ctx_fd = fd;
1da177e4
LT
2700
2701 /*
2702 * does the user want to sample?
2703 */
2704 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
41d5e5d7 2705 ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
f8e811b9
AV
2706 if (ret)
2707 goto buffer_error;
1da177e4
LT
2708 }
2709
1da177e4
LT
2710 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2711 ctx,
2712 ctx_flags,
2713 ctx->ctx_fl_system,
2714 ctx->ctx_fl_block,
2715 ctx->ctx_fl_excl_idle,
2716 ctx->ctx_fl_no_msg,
2717 ctx->ctx_fd));
2718
2719 /*
2720 * initialize soft PMU state
2721 */
2722 pfm_reset_pmu_state(ctx);
2723
f8e811b9
AV
2724 fd_install(fd, filp);
2725
1da177e4
LT
2726 return 0;
2727
2728buffer_error:
f8e811b9
AV
2729 path = filp->f_path;
2730 put_filp(filp);
2731 path_put(&path);
1da177e4
LT
2732
2733 if (ctx->ctx_buf_fmt) {
2734 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2735 }
2736error_file:
2737 pfm_context_free(ctx);
2738
2739error:
f8e811b9 2740 put_unused_fd(fd);
1da177e4
LT
2741 return ret;
2742}
2743
2744static inline unsigned long
2745pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2746{
2747 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2748 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2749 extern unsigned long carta_random32 (unsigned long seed);
2750
2751 if (reg->flags & PFM_REGFL_RANDOM) {
2752 new_seed = carta_random32(old_seed);
2753 val -= (old_seed & mask); /* counter values are negative numbers! */
2754 if ((mask >> 32) != 0)
2755 /* construct a full 64-bit random value: */
2756 new_seed |= carta_random32(old_seed >> 32) << 32;
2757 reg->seed = new_seed;
2758 }
2759 reg->lval = val;
2760 return val;
2761}
2762
2763static void
2764pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2765{
2766 unsigned long mask = ovfl_regs[0];
2767 unsigned long reset_others = 0UL;
2768 unsigned long val;
2769 int i;
2770
2771 /*
2772 * now restore reset value on sampling overflowed counters
2773 */
2774 mask >>= PMU_FIRST_COUNTER;
2775 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2776
2777 if ((mask & 0x1UL) == 0UL) continue;
2778
2779 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2780 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2781
2782 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2783 }
2784
2785 /*
2786 * Now take care of resetting the other registers
2787 */
2788 for(i = 0; reset_others; i++, reset_others >>= 1) {
2789
2790 if ((reset_others & 0x1) == 0) continue;
2791
2792 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2793
2794 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2795 is_long_reset ? "long" : "short", i, val));
2796 }
2797}
2798
2799static void
2800pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2801{
2802 unsigned long mask = ovfl_regs[0];
2803 unsigned long reset_others = 0UL;
2804 unsigned long val;
2805 int i;
2806
2807 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2808
2809 if (ctx->ctx_state == PFM_CTX_MASKED) {
2810 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2811 return;
2812 }
2813
2814 /*
2815 * now restore reset value on sampling overflowed counters
2816 */
2817 mask >>= PMU_FIRST_COUNTER;
2818 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2819
2820 if ((mask & 0x1UL) == 0UL) continue;
2821
2822 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2823 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2824
2825 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2826
2827 pfm_write_soft_counter(ctx, i, val);
2828 }
2829
2830 /*
2831 * Now take care of resetting the other registers
2832 */
2833 for(i = 0; reset_others; i++, reset_others >>= 1) {
2834
2835 if ((reset_others & 0x1) == 0) continue;
2836
2837 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2838
2839 if (PMD_IS_COUNTING(i)) {
2840 pfm_write_soft_counter(ctx, i, val);
2841 } else {
2842 ia64_set_pmd(i, val);
2843 }
2844 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2845 is_long_reset ? "long" : "short", i, val));
2846 }
2847 ia64_srlz_d();
2848}
2849
2850static int
2851pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2852{
1da177e4
LT
2853 struct task_struct *task;
2854 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2855 unsigned long value, pmc_pm;
2856 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2857 unsigned int cnum, reg_flags, flags, pmc_type;
2858 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2859 int is_monitor, is_counting, state;
2860 int ret = -EINVAL;
2861 pfm_reg_check_t wr_func;
2862#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2863
2864 state = ctx->ctx_state;
2865 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2866 is_system = ctx->ctx_fl_system;
2867 task = ctx->ctx_task;
2868 impl_pmds = pmu_conf->impl_pmds[0];
2869
2870 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2871
2872 if (is_loaded) {
1da177e4
LT
2873 /*
2874 * In system wide and when the context is loaded, access can only happen
2875 * when the caller is running on the CPU being monitored by the session.
2876 * It does not have to be the owner (ctx_task) of the context per se.
2877 */
2878 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2879 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2880 return -EBUSY;
2881 }
2882 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2883 }
2884 expert_mode = pfm_sysctl.expert_mode;
2885
2886 for (i = 0; i < count; i++, req++) {
2887
2888 cnum = req->reg_num;
2889 reg_flags = req->reg_flags;
2890 value = req->reg_value;
2891 smpl_pmds = req->reg_smpl_pmds[0];
2892 reset_pmds = req->reg_reset_pmds[0];
2893 flags = 0;
2894
2895
2896 if (cnum >= PMU_MAX_PMCS) {
2897 DPRINT(("pmc%u is invalid\n", cnum));
2898 goto error;
2899 }
2900
2901 pmc_type = pmu_conf->pmc_desc[cnum].type;
2902 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2903 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2904 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2905
2906 /*
2907 * we reject all non implemented PMC as well
2908 * as attempts to modify PMC[0-3] which are used
2909 * as status registers by the PMU
2910 */
2911 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2912 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2913 goto error;
2914 }
2915 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2916 /*
2917 * If the PMC is a monitor, then if the value is not the default:
2918 * - system-wide session: PMCx.pm=1 (privileged monitor)
2919 * - per-task : PMCx.pm=0 (user monitor)
2920 */
2921 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2922 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2923 cnum,
2924 pmc_pm,
2925 is_system));
2926 goto error;
2927 }
2928
2929 if (is_counting) {
2930 /*
2931 * enforce generation of overflow interrupt. Necessary on all
2932 * CPUs.
2933 */
2934 value |= 1 << PMU_PMC_OI;
2935
2936 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2937 flags |= PFM_REGFL_OVFL_NOTIFY;
2938 }
2939
2940 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2941
2942 /* verify validity of smpl_pmds */
2943 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2944 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2945 goto error;
2946 }
2947
2948 /* verify validity of reset_pmds */
2949 if ((reset_pmds & impl_pmds) != reset_pmds) {
2950 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2951 goto error;
2952 }
2953 } else {
2954 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2955 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2956 goto error;
2957 }
2958 /* eventid on non-counting monitors are ignored */
2959 }
2960
2961 /*
2962 * execute write checker, if any
2963 */
2964 if (likely(expert_mode == 0 && wr_func)) {
2965 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2966 if (ret) goto error;
2967 ret = -EINVAL;
2968 }
2969
2970 /*
2971 * no error on this register
2972 */
2973 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2974
2975 /*
2976 * Now we commit the changes to the software state
2977 */
2978
2979 /*
2980 * update overflow information
2981 */
2982 if (is_counting) {
2983 /*
2984 * full flag update each time a register is programmed
2985 */
2986 ctx->ctx_pmds[cnum].flags = flags;
2987
2988 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2989 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2990 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
2991
2992 /*
2993 * Mark all PMDS to be accessed as used.
2994 *
2995 * We do not keep track of PMC because we have to
2996 * systematically restore ALL of them.
2997 *
2998 * We do not update the used_monitors mask, because
2999 * if we have not programmed them, then will be in
3000 * a quiescent state, therefore we will not need to
3001 * mask/restore then when context is MASKED.
3002 */
3003 CTX_USED_PMD(ctx, reset_pmds);
3004 CTX_USED_PMD(ctx, smpl_pmds);
3005 /*
3006 * make sure we do not try to reset on
3007 * restart because we have established new values
3008 */
3009 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3010 }
3011 /*
3012 * Needed in case the user does not initialize the equivalent
3013 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3014 * possible leak here.
3015 */
3016 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3017
3018 /*
3019 * keep track of the monitor PMC that we are using.
3020 * we save the value of the pmc in ctx_pmcs[] and if
3021 * the monitoring is not stopped for the context we also
3022 * place it in the saved state area so that it will be
3023 * picked up later by the context switch code.
3024 *
3025 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3026 *
35589a8f 3027 * The value in th_pmcs[] may be modified on overflow, i.e., when
1da177e4
LT
3028 * monitoring needs to be stopped.
3029 */
3030 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3031
3032 /*
3033 * update context state
3034 */
3035 ctx->ctx_pmcs[cnum] = value;
3036
3037 if (is_loaded) {
3038 /*
3039 * write thread state
3040 */
35589a8f 3041 if (is_system == 0) ctx->th_pmcs[cnum] = value;
1da177e4
LT
3042
3043 /*
3044 * write hardware register if we can
3045 */
3046 if (can_access_pmu) {
3047 ia64_set_pmc(cnum, value);
3048 }
3049#ifdef CONFIG_SMP
3050 else {
3051 /*
3052 * per-task SMP only here
3053 *
3054 * we are guaranteed that the task is not running on the other CPU,
3055 * we indicate that this PMD will need to be reloaded if the task
3056 * is rescheduled on the CPU it ran last on.
3057 */
3058 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3059 }
3060#endif
3061 }
3062
3063 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3064 cnum,
3065 value,
3066 is_loaded,
3067 can_access_pmu,
3068 flags,
3069 ctx->ctx_all_pmcs[0],
3070 ctx->ctx_used_pmds[0],
3071 ctx->ctx_pmds[cnum].eventid,
3072 smpl_pmds,
3073 reset_pmds,
3074 ctx->ctx_reload_pmcs[0],
3075 ctx->ctx_used_monitors[0],
3076 ctx->ctx_ovfl_regs[0]));
3077 }
3078
3079 /*
3080 * make sure the changes are visible
3081 */
3082 if (can_access_pmu) ia64_srlz_d();
3083
3084 return 0;
3085error:
3086 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3087 return ret;
3088}
3089
3090static int
3091pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3092{
1da177e4
LT
3093 struct task_struct *task;
3094 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3095 unsigned long value, hw_value, ovfl_mask;
3096 unsigned int cnum;
3097 int i, can_access_pmu = 0, state;
3098 int is_counting, is_loaded, is_system, expert_mode;
3099 int ret = -EINVAL;
3100 pfm_reg_check_t wr_func;
3101
3102
3103 state = ctx->ctx_state;
3104 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3105 is_system = ctx->ctx_fl_system;
3106 ovfl_mask = pmu_conf->ovfl_val;
3107 task = ctx->ctx_task;
3108
3109 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3110
3111 /*
3112 * on both UP and SMP, we can only write to the PMC when the task is
3113 * the owner of the local PMU.
3114 */
3115 if (likely(is_loaded)) {
1da177e4
LT
3116 /*
3117 * In system wide and when the context is loaded, access can only happen
3118 * when the caller is running on the CPU being monitored by the session.
3119 * It does not have to be the owner (ctx_task) of the context per se.
3120 */
3121 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3122 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3123 return -EBUSY;
3124 }
3125 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3126 }
3127 expert_mode = pfm_sysctl.expert_mode;
3128
3129 for (i = 0; i < count; i++, req++) {
3130
3131 cnum = req->reg_num;
3132 value = req->reg_value;
3133
3134 if (!PMD_IS_IMPL(cnum)) {
3135 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3136 goto abort_mission;
3137 }
3138 is_counting = PMD_IS_COUNTING(cnum);
3139 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3140
3141 /*
3142 * execute write checker, if any
3143 */
3144 if (unlikely(expert_mode == 0 && wr_func)) {
3145 unsigned long v = value;
3146
3147 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3148 if (ret) goto abort_mission;
3149
3150 value = v;
3151 ret = -EINVAL;
3152 }
3153
3154 /*
3155 * no error on this register
3156 */
3157 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3158
3159 /*
3160 * now commit changes to software state
3161 */
3162 hw_value = value;
3163
3164 /*
3165 * update virtualized (64bits) counter
3166 */
3167 if (is_counting) {
3168 /*
3169 * write context state
3170 */
3171 ctx->ctx_pmds[cnum].lval = value;
3172
3173 /*
3174 * when context is load we use the split value
3175 */
3176 if (is_loaded) {
3177 hw_value = value & ovfl_mask;
3178 value = value & ~ovfl_mask;
3179 }
3180 }
3181 /*
3182 * update reset values (not just for counters)
3183 */
3184 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3185 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3186
3187 /*
3188 * update randomization parameters (not just for counters)
3189 */
3190 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3191 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3192
3193 /*
3194 * update context value
3195 */
3196 ctx->ctx_pmds[cnum].val = value;
3197
3198 /*
3199 * Keep track of what we use
3200 *
3201 * We do not keep track of PMC because we have to
3202 * systematically restore ALL of them.
3203 */
3204 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3205
3206 /*
3207 * mark this PMD register used as well
3208 */
3209 CTX_USED_PMD(ctx, RDEP(cnum));
3210
3211 /*
3212 * make sure we do not try to reset on
3213 * restart because we have established new values
3214 */
3215 if (is_counting && state == PFM_CTX_MASKED) {
3216 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3217 }
3218
3219 if (is_loaded) {
3220 /*
3221 * write thread state
3222 */
35589a8f 3223 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
1da177e4
LT
3224
3225 /*
3226 * write hardware register if we can
3227 */
3228 if (can_access_pmu) {
3229 ia64_set_pmd(cnum, hw_value);
3230 } else {
3231#ifdef CONFIG_SMP
3232 /*
3233 * we are guaranteed that the task is not running on the other CPU,
3234 * we indicate that this PMD will need to be reloaded if the task
3235 * is rescheduled on the CPU it ran last on.
3236 */
3237 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3238#endif
3239 }
3240 }
3241
3242 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3243 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3244 cnum,
3245 value,
3246 is_loaded,
3247 can_access_pmu,
3248 hw_value,
3249 ctx->ctx_pmds[cnum].val,
3250 ctx->ctx_pmds[cnum].short_reset,
3251 ctx->ctx_pmds[cnum].long_reset,
3252 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3253 ctx->ctx_pmds[cnum].seed,
3254 ctx->ctx_pmds[cnum].mask,
3255 ctx->ctx_used_pmds[0],
3256 ctx->ctx_pmds[cnum].reset_pmds[0],
3257 ctx->ctx_reload_pmds[0],
3258 ctx->ctx_all_pmds[0],
3259 ctx->ctx_ovfl_regs[0]));
3260 }
3261
3262 /*
3263 * make changes visible
3264 */
3265 if (can_access_pmu) ia64_srlz_d();
3266
3267 return 0;
3268
3269abort_mission:
3270 /*
3271 * for now, we have only one possibility for error
3272 */
3273 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3274 return ret;
3275}
3276
3277/*
3278 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3279 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3280 * interrupt is delivered during the call, it will be kept pending until we leave, making
3281 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3282 * guaranteed to return consistent data to the user, it may simply be old. It is not
3283 * trivial to treat the overflow while inside the call because you may end up in
3284 * some module sampling buffer code causing deadlocks.
3285 */
3286static int
3287pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3288{
1da177e4
LT
3289 struct task_struct *task;
3290 unsigned long val = 0UL, lval, ovfl_mask, sval;
3291 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3292 unsigned int cnum, reg_flags = 0;
3293 int i, can_access_pmu = 0, state;
3294 int is_loaded, is_system, is_counting, expert_mode;
3295 int ret = -EINVAL;
3296 pfm_reg_check_t rd_func;
3297
3298 /*
3299 * access is possible when loaded only for
3300 * self-monitoring tasks or in UP mode
3301 */
3302
3303 state = ctx->ctx_state;
3304 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3305 is_system = ctx->ctx_fl_system;
3306 ovfl_mask = pmu_conf->ovfl_val;
3307 task = ctx->ctx_task;
3308
3309 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3310
3311 if (likely(is_loaded)) {
1da177e4
LT
3312 /*
3313 * In system wide and when the context is loaded, access can only happen
3314 * when the caller is running on the CPU being monitored by the session.
3315 * It does not have to be the owner (ctx_task) of the context per se.
3316 */
3317 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3318 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3319 return -EBUSY;
3320 }
3321 /*
3322 * this can be true when not self-monitoring only in UP
3323 */
3324 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3325
3326 if (can_access_pmu) ia64_srlz_d();
3327 }
3328 expert_mode = pfm_sysctl.expert_mode;
3329
3330 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3331 is_loaded,
3332 can_access_pmu,
3333 state));
3334
3335 /*
3336 * on both UP and SMP, we can only read the PMD from the hardware register when
3337 * the task is the owner of the local PMU.
3338 */
3339
3340 for (i = 0; i < count; i++, req++) {
3341
3342 cnum = req->reg_num;
3343 reg_flags = req->reg_flags;
3344
3345 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3346 /*
3347 * we can only read the register that we use. That includes
72fdbdce 3348 * the one we explicitly initialize AND the one we want included
1da177e4
LT
3349 * in the sampling buffer (smpl_regs).
3350 *
3351 * Having this restriction allows optimization in the ctxsw routine
3352 * without compromising security (leaks)
3353 */
3354 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3355
3356 sval = ctx->ctx_pmds[cnum].val;
3357 lval = ctx->ctx_pmds[cnum].lval;
3358 is_counting = PMD_IS_COUNTING(cnum);
3359
3360 /*
3361 * If the task is not the current one, then we check if the
3362 * PMU state is still in the local live register due to lazy ctxsw.
3363 * If true, then we read directly from the registers.
3364 */
3365 if (can_access_pmu){
3366 val = ia64_get_pmd(cnum);
3367 } else {
3368 /*
3369 * context has been saved
3370 * if context is zombie, then task does not exist anymore.
3371 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3372 */
35589a8f 3373 val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
1da177e4
LT
3374 }
3375 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3376
3377 if (is_counting) {
3378 /*
3379 * XXX: need to check for overflow when loaded
3380 */
3381 val &= ovfl_mask;
3382 val += sval;
3383 }
3384
3385 /*
3386 * execute read checker, if any
3387 */
3388 if (unlikely(expert_mode == 0 && rd_func)) {
3389 unsigned long v = val;
3390 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3391 if (ret) goto error;
3392 val = v;
3393 ret = -EINVAL;
3394 }
3395
3396 PFM_REG_RETFLAG_SET(reg_flags, 0);
3397
3398 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3399
3400 /*
3401 * update register return value, abort all if problem during copy.
3402 * we only modify the reg_flags field. no check mode is fine because
3403 * access has been verified upfront in sys_perfmonctl().
3404 */
3405 req->reg_value = val;
3406 req->reg_flags = reg_flags;
3407 req->reg_last_reset_val = lval;
3408 }
3409
3410 return 0;
3411
3412error:
3413 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3414 return ret;
3415}
3416
3417int
3418pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3419{
3420 pfm_context_t *ctx;
3421
3422 if (req == NULL) return -EINVAL;
3423
3424 ctx = GET_PMU_CTX();
3425
3426 if (ctx == NULL) return -EINVAL;
3427
3428 /*
3429 * for now limit to current task, which is enough when calling
3430 * from overflow handler
3431 */
3432 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3433
3434 return pfm_write_pmcs(ctx, req, nreq, regs);
3435}
3436EXPORT_SYMBOL(pfm_mod_write_pmcs);
3437
3438int
3439pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3440{
3441 pfm_context_t *ctx;
3442
3443 if (req == NULL) return -EINVAL;
3444
3445 ctx = GET_PMU_CTX();
3446
3447 if (ctx == NULL) return -EINVAL;
3448
3449 /*
3450 * for now limit to current task, which is enough when calling
3451 * from overflow handler
3452 */
3453 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3454
3455 return pfm_read_pmds(ctx, req, nreq, regs);
3456}
3457EXPORT_SYMBOL(pfm_mod_read_pmds);
3458
3459/*
3460 * Only call this function when a process it trying to
3461 * write the debug registers (reading is always allowed)
3462 */
3463int
3464pfm_use_debug_registers(struct task_struct *task)
3465{
3466 pfm_context_t *ctx = task->thread.pfm_context;
3467 unsigned long flags;
3468 int ret = 0;
3469
3470 if (pmu_conf->use_rr_dbregs == 0) return 0;
3471
19c5870c 3472 DPRINT(("called for [%d]\n", task_pid_nr(task)));
1da177e4
LT
3473
3474 /*
3475 * do it only once
3476 */
3477 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3478
3479 /*
3480 * Even on SMP, we do not need to use an atomic here because
3481 * the only way in is via ptrace() and this is possible only when the
3482 * process is stopped. Even in the case where the ctxsw out is not totally
3483 * completed by the time we come here, there is no way the 'stopped' process
3484 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3485 * So this is always safe.
3486 */
3487 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3488
3489 LOCK_PFS(flags);
3490
3491 /*
3492 * We cannot allow setting breakpoints when system wide monitoring
3493 * sessions are using the debug registers.
3494 */
3495 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3496 ret = -1;
3497 else
3498 pfm_sessions.pfs_ptrace_use_dbregs++;
3499
3500 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3501 pfm_sessions.pfs_ptrace_use_dbregs,
3502 pfm_sessions.pfs_sys_use_dbregs,
19c5870c 3503 task_pid_nr(task), ret));
1da177e4
LT
3504
3505 UNLOCK_PFS(flags);
3506
3507 return ret;
3508}
3509
3510/*
3511 * This function is called for every task that exits with the
3512 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3513 * able to use the debug registers for debugging purposes via
3514 * ptrace(). Therefore we know it was not using them for
3515 * perfmormance monitoring, so we only decrement the number
3516 * of "ptraced" debug register users to keep the count up to date
3517 */
3518int
3519pfm_release_debug_registers(struct task_struct *task)
3520{
3521 unsigned long flags;
3522 int ret;
3523
3524 if (pmu_conf->use_rr_dbregs == 0) return 0;
3525
3526 LOCK_PFS(flags);
3527 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
19c5870c 3528 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
1da177e4
LT
3529 ret = -1;
3530 } else {
3531 pfm_sessions.pfs_ptrace_use_dbregs--;
3532 ret = 0;
3533 }
3534 UNLOCK_PFS(flags);
3535
3536 return ret;
3537}
3538
3539static int
3540pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3541{
3542 struct task_struct *task;
3543 pfm_buffer_fmt_t *fmt;
3544 pfm_ovfl_ctrl_t rst_ctrl;
3545 int state, is_system;
3546 int ret = 0;
3547
3548 state = ctx->ctx_state;
3549 fmt = ctx->ctx_buf_fmt;
3550 is_system = ctx->ctx_fl_system;
3551 task = PFM_CTX_TASK(ctx);
3552
3553 switch(state) {
3554 case PFM_CTX_MASKED:
3555 break;
3556 case PFM_CTX_LOADED:
3557 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3558 /* fall through */
3559 case PFM_CTX_UNLOADED:
3560 case PFM_CTX_ZOMBIE:
3561 DPRINT(("invalid state=%d\n", state));
3562 return -EBUSY;
3563 default:
3564 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3565 return -EINVAL;
3566 }
3567
3568 /*
3569 * In system wide and when the context is loaded, access can only happen
3570 * when the caller is running on the CPU being monitored by the session.
3571 * It does not have to be the owner (ctx_task) of the context per se.
3572 */
3573 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3574 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3575 return -EBUSY;
3576 }
3577
3578 /* sanity check */
3579 if (unlikely(task == NULL)) {
19c5870c 3580 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
1da177e4
LT
3581 return -EINVAL;
3582 }
3583
3584 if (task == current || is_system) {
3585
3586 fmt = ctx->ctx_buf_fmt;
3587
3588 DPRINT(("restarting self %d ovfl=0x%lx\n",
19c5870c 3589 task_pid_nr(task),
1da177e4
LT
3590 ctx->ctx_ovfl_regs[0]));
3591
3592 if (CTX_HAS_SMPL(ctx)) {
3593
3594 prefetch(ctx->ctx_smpl_hdr);
3595
3596 rst_ctrl.bits.mask_monitoring = 0;
3597 rst_ctrl.bits.reset_ovfl_pmds = 0;
3598
3599 if (state == PFM_CTX_LOADED)
3600 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3601 else
3602 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3603 } else {
3604 rst_ctrl.bits.mask_monitoring = 0;
3605 rst_ctrl.bits.reset_ovfl_pmds = 1;
3606 }
3607
3608 if (ret == 0) {
3609 if (rst_ctrl.bits.reset_ovfl_pmds)
3610 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3611
3612 if (rst_ctrl.bits.mask_monitoring == 0) {
19c5870c 3613 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
1da177e4
LT
3614
3615 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3616 } else {
19c5870c 3617 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
1da177e4
LT
3618
3619 // cannot use pfm_stop_monitoring(task, regs);
3620 }
3621 }
3622 /*
3623 * clear overflowed PMD mask to remove any stale information
3624 */
3625 ctx->ctx_ovfl_regs[0] = 0UL;
3626
3627 /*
3628 * back to LOADED state
3629 */
3630 ctx->ctx_state = PFM_CTX_LOADED;
3631
3632 /*
3633 * XXX: not really useful for self monitoring
3634 */
3635 ctx->ctx_fl_can_restart = 0;
3636
3637 return 0;
3638 }
3639
3640 /*
3641 * restart another task
3642 */
3643
3644 /*
3645 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3646 * one is seen by the task.
3647 */
3648 if (state == PFM_CTX_MASKED) {
3649 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3650 /*
3651 * will prevent subsequent restart before this one is
3652 * seen by other task
3653 */
3654 ctx->ctx_fl_can_restart = 0;
3655 }
3656
3657 /*
3658 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3659 * the task is blocked or on its way to block. That's the normal
3660 * restart path. If the monitoring is not masked, then the task
3661 * can be actively monitoring and we cannot directly intervene.
3662 * Therefore we use the trap mechanism to catch the task and
3663 * force it to reset the buffer/reset PMDs.
3664 *
3665 * if non-blocking, then we ensure that the task will go into
3666 * pfm_handle_work() before returning to user mode.
3667 *
72fdbdce 3668 * We cannot explicitly reset another task, it MUST always
1da177e4
LT
3669 * be done by the task itself. This works for system wide because
3670 * the tool that is controlling the session is logically doing
3671 * "self-monitoring".
3672 */
3673 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
19c5870c 3674 DPRINT(("unblocking [%d] \n", task_pid_nr(task)));
60f1c444 3675 complete(&ctx->ctx_restart_done);
1da177e4 3676 } else {
19c5870c 3677 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
1da177e4
LT
3678
3679 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3680
3681 PFM_SET_WORK_PENDING(task, 1);
3682
f14488cc 3683 set_notify_resume(task);
1da177e4
LT
3684
3685 /*
3686 * XXX: send reschedule if task runs on another CPU
3687 */
3688 }
3689 return 0;
3690}
3691
3692static int
3693pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3694{
3695 unsigned int m = *(unsigned int *)arg;
3696
3697 pfm_sysctl.debug = m == 0 ? 0 : 1;
3698
1da177e4
LT
3699 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3700
3701 if (m == 0) {
3702 memset(pfm_stats, 0, sizeof(pfm_stats));
3703 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3704 }
3705 return 0;
3706}
3707
3708/*
3709 * arg can be NULL and count can be zero for this function
3710 */
3711static int
3712pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3713{
3714 struct thread_struct *thread = NULL;
3715 struct task_struct *task;
3716 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3717 unsigned long flags;
3718 dbreg_t dbreg;
3719 unsigned int rnum;
3720 int first_time;
3721 int ret = 0, state;
3722 int i, can_access_pmu = 0;
3723 int is_system, is_loaded;
3724
3725 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3726
3727 state = ctx->ctx_state;
3728 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3729 is_system = ctx->ctx_fl_system;
3730 task = ctx->ctx_task;
3731
3732 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3733
3734 /*
3735 * on both UP and SMP, we can only write to the PMC when the task is
3736 * the owner of the local PMU.
3737 */
3738 if (is_loaded) {
3739 thread = &task->thread;
3740 /*
3741 * In system wide and when the context is loaded, access can only happen
3742 * when the caller is running on the CPU being monitored by the session.
3743 * It does not have to be the owner (ctx_task) of the context per se.
3744 */
3745 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3746 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3747 return -EBUSY;
3748 }
3749 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3750 }
3751
3752 /*
3753 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3754 * ensuring that no real breakpoint can be installed via this call.
3755 *
3756 * IMPORTANT: regs can be NULL in this function
3757 */
3758
3759 first_time = ctx->ctx_fl_using_dbreg == 0;
3760
3761 /*
3762 * don't bother if we are loaded and task is being debugged
3763 */
3764 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
19c5870c 3765 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
1da177e4
LT
3766 return -EBUSY;
3767 }
3768
3769 /*
3770 * check for debug registers in system wide mode
3771 *
3772 * If though a check is done in pfm_context_load(),
3773 * we must repeat it here, in case the registers are
3774 * written after the context is loaded
3775 */
3776 if (is_loaded) {
3777 LOCK_PFS(flags);
3778
3779 if (first_time && is_system) {
3780 if (pfm_sessions.pfs_ptrace_use_dbregs)
3781 ret = -EBUSY;
3782 else
3783 pfm_sessions.pfs_sys_use_dbregs++;
3784 }
3785 UNLOCK_PFS(flags);
3786 }
3787
3788 if (ret != 0) return ret;
3789
3790 /*
3791 * mark ourself as user of the debug registers for
3792 * perfmon purposes.
3793 */
3794 ctx->ctx_fl_using_dbreg = 1;
3795
3796 /*
3797 * clear hardware registers to make sure we don't
3798 * pick up stale state.
3799 *
3800 * for a system wide session, we do not use
3801 * thread.dbr, thread.ibr because this process
3802 * never leaves the current CPU and the state
3803 * is shared by all processes running on it
3804 */
3805 if (first_time && can_access_pmu) {
19c5870c 3806 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
1da177e4
LT
3807 for (i=0; i < pmu_conf->num_ibrs; i++) {
3808 ia64_set_ibr(i, 0UL);
3809 ia64_dv_serialize_instruction();
3810 }
3811 ia64_srlz_i();
3812 for (i=0; i < pmu_conf->num_dbrs; i++) {
3813 ia64_set_dbr(i, 0UL);
3814 ia64_dv_serialize_data();
3815 }
3816 ia64_srlz_d();
3817 }
3818
3819 /*
3820 * Now install the values into the registers
3821 */
3822 for (i = 0; i < count; i++, req++) {
3823
3824 rnum = req->dbreg_num;
3825 dbreg.val = req->dbreg_value;
3826
3827 ret = -EINVAL;
3828
3829 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3830 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3831 rnum, dbreg.val, mode, i, count));
3832
3833 goto abort_mission;
3834 }
3835
3836 /*
3837 * make sure we do not install enabled breakpoint
3838 */
3839 if (rnum & 0x1) {
3840 if (mode == PFM_CODE_RR)
3841 dbreg.ibr.ibr_x = 0;
3842 else
3843 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3844 }
3845
3846 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3847
3848 /*
3849 * Debug registers, just like PMC, can only be modified
3850 * by a kernel call. Moreover, perfmon() access to those
3851 * registers are centralized in this routine. The hardware
3852 * does not modify the value of these registers, therefore,
3853 * if we save them as they are written, we can avoid having
3854 * to save them on context switch out. This is made possible
3855 * by the fact that when perfmon uses debug registers, ptrace()
3856 * won't be able to modify them concurrently.
3857 */
3858 if (mode == PFM_CODE_RR) {
3859 CTX_USED_IBR(ctx, rnum);
3860
3861 if (can_access_pmu) {
3862 ia64_set_ibr(rnum, dbreg.val);
3863 ia64_dv_serialize_instruction();
3864 }
3865
3866 ctx->ctx_ibrs[rnum] = dbreg.val;
3867
3868 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3869 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3870 } else {
3871 CTX_USED_DBR(ctx, rnum);
3872
3873 if (can_access_pmu) {
3874 ia64_set_dbr(rnum, dbreg.val);
3875 ia64_dv_serialize_data();
3876 }
3877 ctx->ctx_dbrs[rnum] = dbreg.val;
3878
3879 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3880 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3881 }
3882 }
3883
3884 return 0;
3885
3886abort_mission:
3887 /*
3888 * in case it was our first attempt, we undo the global modifications
3889 */
3890 if (first_time) {
3891 LOCK_PFS(flags);
3892 if (ctx->ctx_fl_system) {
3893 pfm_sessions.pfs_sys_use_dbregs--;
3894 }
3895 UNLOCK_PFS(flags);
3896 ctx->ctx_fl_using_dbreg = 0;
3897 }
3898 /*
3899 * install error return flag
3900 */
3901 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3902
3903 return ret;
3904}
3905
3906static int
3907pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3908{
3909 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3910}
3911
3912static int
3913pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3914{
3915 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3916}
3917
3918int
3919pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3920{
3921 pfm_context_t *ctx;
3922
3923 if (req == NULL) return -EINVAL;
3924
3925 ctx = GET_PMU_CTX();
3926
3927 if (ctx == NULL) return -EINVAL;
3928
3929 /*
3930 * for now limit to current task, which is enough when calling
3931 * from overflow handler
3932 */
3933 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3934
3935 return pfm_write_ibrs(ctx, req, nreq, regs);
3936}
3937EXPORT_SYMBOL(pfm_mod_write_ibrs);
3938
3939int
3940pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3941{
3942 pfm_context_t *ctx;
3943
3944 if (req == NULL) return -EINVAL;
3945
3946 ctx = GET_PMU_CTX();
3947
3948 if (ctx == NULL) return -EINVAL;
3949
3950 /*
3951 * for now limit to current task, which is enough when calling
3952 * from overflow handler
3953 */
3954 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3955
3956 return pfm_write_dbrs(ctx, req, nreq, regs);
3957}
3958EXPORT_SYMBOL(pfm_mod_write_dbrs);
3959
3960
3961static int
3962pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3963{
3964 pfarg_features_t *req = (pfarg_features_t *)arg;
3965
3966 req->ft_version = PFM_VERSION;
3967 return 0;
3968}
3969
3970static int
3971pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3972{
3973 struct pt_regs *tregs;
3974 struct task_struct *task = PFM_CTX_TASK(ctx);
3975 int state, is_system;
3976
3977 state = ctx->ctx_state;
3978 is_system = ctx->ctx_fl_system;
3979
3980 /*
3981 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3982 */
3983 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3984
3985 /*
3986 * In system wide and when the context is loaded, access can only happen
3987 * when the caller is running on the CPU being monitored by the session.
3988 * It does not have to be the owner (ctx_task) of the context per se.
3989 */
3990 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3991 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3992 return -EBUSY;
3993 }
3994 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
19c5870c 3995 task_pid_nr(PFM_CTX_TASK(ctx)),
1da177e4
LT
3996 state,
3997 is_system));
3998 /*
3999 * in system mode, we need to update the PMU directly
4000 * and the user level state of the caller, which may not
4001 * necessarily be the creator of the context.
4002 */
4003 if (is_system) {
4004 /*
4005 * Update local PMU first
4006 *
4007 * disable dcr pp
4008 */
4009 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4010 ia64_srlz_i();
4011
4012 /*
4013 * update local cpuinfo
4014 */
4015 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4016
4017 /*
4018 * stop monitoring, does srlz.i
4019 */
4020 pfm_clear_psr_pp();
4021
4022 /*
4023 * stop monitoring in the caller
4024 */
4025 ia64_psr(regs)->pp = 0;
4026
4027 return 0;
4028 }
4029 /*
4030 * per-task mode
4031 */
4032
4033 if (task == current) {
4034 /* stop monitoring at kernel level */
4035 pfm_clear_psr_up();
4036
4037 /*
4038 * stop monitoring at the user level
4039 */
4040 ia64_psr(regs)->up = 0;
4041 } else {
6450578f 4042 tregs = task_pt_regs(task);
1da177e4
LT
4043
4044 /*
4045 * stop monitoring at the user level
4046 */
4047 ia64_psr(tregs)->up = 0;
4048
4049 /*
4050 * monitoring disabled in kernel at next reschedule
4051 */
4052 ctx->ctx_saved_psr_up = 0;
19c5870c 4053 DPRINT(("task=[%d]\n", task_pid_nr(task)));
1da177e4
LT
4054 }
4055 return 0;
4056}
4057
4058
4059static int
4060pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4061{
4062 struct pt_regs *tregs;
4063 int state, is_system;
4064
4065 state = ctx->ctx_state;
4066 is_system = ctx->ctx_fl_system;
4067
4068 if (state != PFM_CTX_LOADED) return -EINVAL;
4069
4070 /*
4071 * In system wide and when the context is loaded, access can only happen
4072 * when the caller is running on the CPU being monitored by the session.
4073 * It does not have to be the owner (ctx_task) of the context per se.
4074 */
4075 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4076 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4077 return -EBUSY;
4078 }
4079
4080 /*
4081 * in system mode, we need to update the PMU directly
4082 * and the user level state of the caller, which may not
4083 * necessarily be the creator of the context.
4084 */
4085 if (is_system) {
4086
4087 /*
4088 * set user level psr.pp for the caller
4089 */
4090 ia64_psr(regs)->pp = 1;
4091
4092 /*
4093 * now update the local PMU and cpuinfo
4094 */
4095 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4096
4097 /*
4098 * start monitoring at kernel level
4099 */
4100 pfm_set_psr_pp();
4101
4102 /* enable dcr pp */
4103 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4104 ia64_srlz_i();
4105
4106 return 0;
4107 }
4108
4109 /*
4110 * per-process mode
4111 */
4112
4113 if (ctx->ctx_task == current) {
4114
4115 /* start monitoring at kernel level */
4116 pfm_set_psr_up();
4117
4118 /*
4119 * activate monitoring at user level
4120 */
4121 ia64_psr(regs)->up = 1;
4122
4123 } else {
6450578f 4124 tregs = task_pt_regs(ctx->ctx_task);
1da177e4
LT
4125
4126 /*
4127 * start monitoring at the kernel level the next
4128 * time the task is scheduled
4129 */
4130 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4131
4132 /*
4133 * activate monitoring at user level
4134 */
4135 ia64_psr(tregs)->up = 1;
4136 }
4137 return 0;
4138}
4139
4140static int
4141pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4142{
4143 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4144 unsigned int cnum;
4145 int i;
4146 int ret = -EINVAL;
4147
4148 for (i = 0; i < count; i++, req++) {
4149
4150 cnum = req->reg_num;
4151
4152 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4153
4154 req->reg_value = PMC_DFL_VAL(cnum);
4155
4156 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4157
4158 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4159 }
4160 return 0;
4161
4162abort_mission:
4163 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4164 return ret;
4165}
4166
4167static int
4168pfm_check_task_exist(pfm_context_t *ctx)
4169{
4170 struct task_struct *g, *t;
4171 int ret = -ESRCH;
4172
4173 read_lock(&tasklist_lock);
4174
4175 do_each_thread (g, t) {
4176 if (t->thread.pfm_context == ctx) {
4177 ret = 0;
6794c752 4178 goto out;
1da177e4
LT
4179 }
4180 } while_each_thread (g, t);
6794c752 4181out:
1da177e4
LT
4182 read_unlock(&tasklist_lock);
4183
4184 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4185
4186 return ret;
4187}
4188
4189static int
4190pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4191{
4192 struct task_struct *task;
4193 struct thread_struct *thread;
4194 struct pfm_context_t *old;
4195 unsigned long flags;
4196#ifndef CONFIG_SMP
4197 struct task_struct *owner_task = NULL;
4198#endif
4199 pfarg_load_t *req = (pfarg_load_t *)arg;
4200 unsigned long *pmcs_source, *pmds_source;
4201 int the_cpu;
4202 int ret = 0;
4203 int state, is_system, set_dbregs = 0;
4204
4205 state = ctx->ctx_state;
4206 is_system = ctx->ctx_fl_system;
4207 /*
4208 * can only load from unloaded or terminated state
4209 */
4210 if (state != PFM_CTX_UNLOADED) {
4211 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4212 req->load_pid,
4213 ctx->ctx_state));
a5a70b75 4214 return -EBUSY;
1da177e4
LT
4215 }
4216
4217 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4218
4219 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4220 DPRINT(("cannot use blocking mode on self\n"));
4221 return -EINVAL;
4222 }
4223
4224 ret = pfm_get_task(ctx, req->load_pid, &task);
4225 if (ret) {
4226 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4227 return ret;
4228 }
4229
4230 ret = -EINVAL;
4231
4232 /*
4233 * system wide is self monitoring only
4234 */
4235 if (is_system && task != current) {
4236 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4237 req->load_pid));
4238 goto error;
4239 }
4240
4241 thread = &task->thread;
4242
4243 ret = 0;
4244 /*
4245 * cannot load a context which is using range restrictions,
4246 * into a task that is being debugged.
4247 */
4248 if (ctx->ctx_fl_using_dbreg) {
4249 if (thread->flags & IA64_THREAD_DBG_VALID) {
4250 ret = -EBUSY;
4251 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4252 goto error;
4253 }
4254 LOCK_PFS(flags);
4255
4256 if (is_system) {
4257 if (pfm_sessions.pfs_ptrace_use_dbregs) {
19c5870c
AD
4258 DPRINT(("cannot load [%d] dbregs in use\n",
4259 task_pid_nr(task)));
1da177e4
LT
4260 ret = -EBUSY;
4261 } else {
4262 pfm_sessions.pfs_sys_use_dbregs++;
19c5870c 4263 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
1da177e4
LT
4264 set_dbregs = 1;
4265 }
4266 }
4267
4268 UNLOCK_PFS(flags);
4269
4270 if (ret) goto error;
4271 }
4272
4273 /*
4274 * SMP system-wide monitoring implies self-monitoring.
4275 *
4276 * The programming model expects the task to
4277 * be pinned on a CPU throughout the session.
4278 * Here we take note of the current CPU at the
4279 * time the context is loaded. No call from
4280 * another CPU will be allowed.
4281 *
4282 * The pinning via shed_setaffinity()
4283 * must be done by the calling task prior
4284 * to this call.
4285 *
4286 * systemwide: keep track of CPU this session is supposed to run on
4287 */
4288 the_cpu = ctx->ctx_cpu = smp_processor_id();
4289
4290 ret = -EBUSY;
4291 /*
4292 * now reserve the session
4293 */
4294 ret = pfm_reserve_session(current, is_system, the_cpu);
4295 if (ret) goto error;
4296
4297 /*
4298 * task is necessarily stopped at this point.
4299 *
4300 * If the previous context was zombie, then it got removed in
4301 * pfm_save_regs(). Therefore we should not see it here.
4302 * If we see a context, then this is an active context
4303 *
4304 * XXX: needs to be atomic
4305 */
4306 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4307 thread->pfm_context, ctx));
4308
6bf11e8c 4309 ret = -EBUSY;
1da177e4
LT
4310 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4311 if (old != NULL) {
4312 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4313 goto error_unres;
4314 }
4315
4316 pfm_reset_msgq(ctx);
4317
4318 ctx->ctx_state = PFM_CTX_LOADED;
4319
4320 /*
4321 * link context to task
4322 */
4323 ctx->ctx_task = task;
4324
4325 if (is_system) {
4326 /*
4327 * we load as stopped
4328 */
4329 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4330 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4331
4332 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4333 } else {
4334 thread->flags |= IA64_THREAD_PM_VALID;
4335 }
4336
4337 /*
4338 * propagate into thread-state
4339 */
4340 pfm_copy_pmds(task, ctx);
4341 pfm_copy_pmcs(task, ctx);
4342
35589a8f
KA
4343 pmcs_source = ctx->th_pmcs;
4344 pmds_source = ctx->th_pmds;
1da177e4
LT
4345
4346 /*
4347 * always the case for system-wide
4348 */
4349 if (task == current) {
4350
4351 if (is_system == 0) {
4352
4353 /* allow user level control */
4354 ia64_psr(regs)->sp = 0;
19c5870c 4355 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
1da177e4
LT
4356
4357 SET_LAST_CPU(ctx, smp_processor_id());
4358 INC_ACTIVATION();
4359 SET_ACTIVATION(ctx);
4360#ifndef CONFIG_SMP
4361 /*
4362 * push the other task out, if any
4363 */
4364 owner_task = GET_PMU_OWNER();
4365 if (owner_task) pfm_lazy_save_regs(owner_task);
4366#endif
4367 }
4368 /*
4369 * load all PMD from ctx to PMU (as opposed to thread state)
4370 * restore all PMC from ctx to PMU
4371 */
4372 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4373 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4374
4375 ctx->ctx_reload_pmcs[0] = 0UL;
4376 ctx->ctx_reload_pmds[0] = 0UL;
4377
4378 /*
4379 * guaranteed safe by earlier check against DBG_VALID
4380 */
4381 if (ctx->ctx_fl_using_dbreg) {
4382 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4383 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4384 }
4385 /*
4386 * set new ownership
4387 */
4388 SET_PMU_OWNER(task, ctx);
4389
19c5870c 4390 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
1da177e4
LT
4391 } else {
4392 /*
4393 * when not current, task MUST be stopped, so this is safe
4394 */
6450578f 4395 regs = task_pt_regs(task);
1da177e4
LT
4396
4397 /* force a full reload */
4398 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4399 SET_LAST_CPU(ctx, -1);
4400
4401 /* initial saved psr (stopped) */
4402 ctx->ctx_saved_psr_up = 0UL;
4403 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4404 }
4405
4406 ret = 0;
4407
4408error_unres:
4409 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4410error:
4411 /*
4412 * we must undo the dbregs setting (for system-wide)
4413 */
4414 if (ret && set_dbregs) {
4415 LOCK_PFS(flags);
4416 pfm_sessions.pfs_sys_use_dbregs--;
4417 UNLOCK_PFS(flags);
4418 }
4419 /*
4420 * release task, there is now a link with the context
4421 */
4422 if (is_system == 0 && task != current) {
4423 pfm_put_task(task);
4424
4425 if (ret == 0) {
4426 ret = pfm_check_task_exist(ctx);
4427 if (ret) {
4428 ctx->ctx_state = PFM_CTX_UNLOADED;
4429 ctx->ctx_task = NULL;
4430 }
4431 }
4432 }
4433 return ret;
4434}
4435
4436/*
4437 * in this function, we do not need to increase the use count
4438 * for the task via get_task_struct(), because we hold the
4439 * context lock. If the task were to disappear while having
4440 * a context attached, it would go through pfm_exit_thread()
4441 * which also grabs the context lock and would therefore be blocked
4442 * until we are here.
4443 */
4444static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4445
4446static int
4447pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4448{
4449 struct task_struct *task = PFM_CTX_TASK(ctx);
4450 struct pt_regs *tregs;
4451 int prev_state, is_system;
4452 int ret;
4453
19c5870c 4454 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
1da177e4
LT
4455
4456 prev_state = ctx->ctx_state;
4457 is_system = ctx->ctx_fl_system;
4458
4459 /*
4460 * unload only when necessary
4461 */
4462 if (prev_state == PFM_CTX_UNLOADED) {
4463 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4464 return 0;
4465 }
4466
4467 /*
4468 * clear psr and dcr bits
4469 */
4470 ret = pfm_stop(ctx, NULL, 0, regs);
4471 if (ret) return ret;
4472
4473 ctx->ctx_state = PFM_CTX_UNLOADED;
4474
4475 /*
4476 * in system mode, we need to update the PMU directly
4477 * and the user level state of the caller, which may not
4478 * necessarily be the creator of the context.
4479 */
4480 if (is_system) {
4481
4482 /*
4483 * Update cpuinfo
4484 *
4485 * local PMU is taken care of in pfm_stop()
4486 */
4487 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4488 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4489
4490 /*
4491 * save PMDs in context
4492 * release ownership
4493 */
4494 pfm_flush_pmds(current, ctx);
4495
4496 /*
4497 * at this point we are done with the PMU
4498 * so we can unreserve the resource.
4499 */
4500 if (prev_state != PFM_CTX_ZOMBIE)
4501 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4502
4503 /*
4504 * disconnect context from task
4505 */
4506 task->thread.pfm_context = NULL;
4507 /*
4508 * disconnect task from context
4509 */
4510 ctx->ctx_task = NULL;
4511
4512 /*
4513 * There is nothing more to cleanup here.
4514 */
4515 return 0;
4516 }
4517
4518 /*
4519 * per-task mode
4520 */
6450578f 4521 tregs = task == current ? regs : task_pt_regs(task);
1da177e4
LT
4522
4523 if (task == current) {
4524 /*
4525 * cancel user level control
4526 */
4527 ia64_psr(regs)->sp = 1;
4528
19c5870c 4529 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
1da177e4
LT
4530 }
4531 /*
4532 * save PMDs to context
4533 * release ownership
4534 */
4535 pfm_flush_pmds(task, ctx);
4536
4537 /*
4538 * at this point we are done with the PMU
4539 * so we can unreserve the resource.
4540 *
4541 * when state was ZOMBIE, we have already unreserved.
4542 */
4543 if (prev_state != PFM_CTX_ZOMBIE)
4544 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4545
4546 /*
4547 * reset activation counter and psr
4548 */
4549 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4550 SET_LAST_CPU(ctx, -1);
4551
4552 /*
4553 * PMU state will not be restored
4554 */
4555 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4556
4557 /*
4558 * break links between context and task
4559 */
4560 task->thread.pfm_context = NULL;
4561 ctx->ctx_task = NULL;
4562
4563 PFM_SET_WORK_PENDING(task, 0);
4564
4565 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4566 ctx->ctx_fl_can_restart = 0;
4567 ctx->ctx_fl_going_zombie = 0;
4568
19c5870c 4569 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
1da177e4
LT
4570
4571 return 0;
4572}
4573
4574
4575/*
4576 * called only from exit_thread(): task == current
4577 * we come here only if current has a context attached (loaded or masked)
4578 */
4579void
4580pfm_exit_thread(struct task_struct *task)
4581{
4582 pfm_context_t *ctx;
4583 unsigned long flags;
6450578f 4584 struct pt_regs *regs = task_pt_regs(task);
1da177e4
LT
4585 int ret, state;
4586 int free_ok = 0;
4587
4588 ctx = PFM_GET_CTX(task);
4589
4590 PROTECT_CTX(ctx, flags);
4591
19c5870c 4592 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
1da177e4
LT
4593
4594 state = ctx->ctx_state;
4595 switch(state) {
4596 case PFM_CTX_UNLOADED:
4597 /*
72fdbdce 4598 * only comes to this function if pfm_context is not NULL, i.e., cannot
1da177e4
LT
4599 * be in unloaded state
4600 */
19c5870c 4601 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
1da177e4
LT
4602 break;
4603 case PFM_CTX_LOADED:
4604 case PFM_CTX_MASKED:
4605 ret = pfm_context_unload(ctx, NULL, 0, regs);
4606 if (ret) {
19c5870c 4607 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
1da177e4
LT
4608 }
4609 DPRINT(("ctx unloaded for current state was %d\n", state));
4610
4611 pfm_end_notify_user(ctx);
4612 break;
4613 case PFM_CTX_ZOMBIE:
4614 ret = pfm_context_unload(ctx, NULL, 0, regs);
4615 if (ret) {
19c5870c 4616 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
1da177e4
LT
4617 }
4618 free_ok = 1;
4619 break;
4620 default:
19c5870c 4621 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
1da177e4
LT
4622 break;
4623 }
4624 UNPROTECT_CTX(ctx, flags);
4625
4626 { u64 psr = pfm_get_psr();
4627 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4628 BUG_ON(GET_PMU_OWNER());
4629 BUG_ON(ia64_psr(regs)->up);
4630 BUG_ON(ia64_psr(regs)->pp);
4631 }
4632
4633 /*
4634 * All memory free operations (especially for vmalloc'ed memory)
4635 * MUST be done with interrupts ENABLED.
4636 */
4637 if (free_ok) pfm_context_free(ctx);
4638}
4639
4640/*
4641 * functions MUST be listed in the increasing order of their index (see permfon.h)
4642 */
4643#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4644#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4645#define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4646#define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4647#define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4648
4649static pfm_cmd_desc_t pfm_cmd_tab[]={
4650/* 0 */PFM_CMD_NONE,
4651/* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4652/* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4653/* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4654/* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4655/* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4656/* 6 */PFM_CMD_NONE,
4657/* 7 */PFM_CMD_NONE,
4658/* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4659/* 9 */PFM_CMD_NONE,
4660/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4661/* 11 */PFM_CMD_NONE,
4662/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4663/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4664/* 14 */PFM_CMD_NONE,
4665/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4666/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4667/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4668/* 18 */PFM_CMD_NONE,
4669/* 19 */PFM_CMD_NONE,
4670/* 20 */PFM_CMD_NONE,
4671/* 21 */PFM_CMD_NONE,
4672/* 22 */PFM_CMD_NONE,
4673/* 23 */PFM_CMD_NONE,
4674/* 24 */PFM_CMD_NONE,
4675/* 25 */PFM_CMD_NONE,
4676/* 26 */PFM_CMD_NONE,
4677/* 27 */PFM_CMD_NONE,
4678/* 28 */PFM_CMD_NONE,
4679/* 29 */PFM_CMD_NONE,
4680/* 30 */PFM_CMD_NONE,
4681/* 31 */PFM_CMD_NONE,
4682/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4683/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4684};
4685#define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4686
4687static int
4688pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4689{
4690 struct task_struct *task;
4691 int state, old_state;
4692
4693recheck:
4694 state = ctx->ctx_state;
4695 task = ctx->ctx_task;
4696
4697 if (task == NULL) {
4698 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4699 return 0;
4700 }
4701
4702 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4703 ctx->ctx_fd,
4704 state,
19c5870c 4705 task_pid_nr(task),
1da177e4
LT
4706 task->state, PFM_CMD_STOPPED(cmd)));
4707
4708 /*
4709 * self-monitoring always ok.
4710 *
4711 * for system-wide the caller can either be the creator of the
4712 * context (to one to which the context is attached to) OR
4713 * a task running on the same CPU as the session.
4714 */
4715 if (task == current || ctx->ctx_fl_system) return 0;
4716
4717 /*
a5a70b75 4718 * we are monitoring another thread
1da177e4 4719 */
a5a70b75 4720 switch(state) {
4721 case PFM_CTX_UNLOADED:
4722 /*
4723 * if context is UNLOADED we are safe to go
4724 */
4725 return 0;
4726 case PFM_CTX_ZOMBIE:
4727 /*
4728 * no command can operate on a zombie context
4729 */
4730 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4731 return -EINVAL;
4732 case PFM_CTX_MASKED:
4733 /*
4734 * PMU state has been saved to software even though
4735 * the thread may still be running.
4736 */
4737 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
1da177e4
LT
4738 }
4739
4740 /*
4741 * context is LOADED or MASKED. Some commands may need to have
4742 * the task stopped.
4743 *
4744 * We could lift this restriction for UP but it would mean that
4745 * the user has no guarantee the task would not run between
4746 * two successive calls to perfmonctl(). That's probably OK.
4747 * If this user wants to ensure the task does not run, then
4748 * the task must be stopped.
4749 */
4750 if (PFM_CMD_STOPPED(cmd)) {
21498223 4751 if (!task_is_stopped_or_traced(task)) {
19c5870c 4752 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
1da177e4
LT
4753 return -EBUSY;
4754 }
4755 /*
4756 * task is now stopped, wait for ctxsw out
4757 *
4758 * This is an interesting point in the code.
4759 * We need to unprotect the context because
4760 * the pfm_save_regs() routines needs to grab
4761 * the same lock. There are danger in doing
4762 * this because it leaves a window open for
4763 * another task to get access to the context
4764 * and possibly change its state. The one thing
4765 * that is not possible is for the context to disappear
4766 * because we are protected by the VFS layer, i.e.,
4767 * get_fd()/put_fd().
4768 */
4769 old_state = state;
4770
4771 UNPROTECT_CTX(ctx, flags);
4772
85ba2d86 4773 wait_task_inactive(task, 0);
1da177e4
LT
4774
4775 PROTECT_CTX(ctx, flags);
4776
4777 /*
4778 * we must recheck to verify if state has changed
4779 */
4780 if (ctx->ctx_state != old_state) {
4781 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4782 goto recheck;
4783 }
4784 }
4785 return 0;
4786}
4787
4788/*
4789 * system-call entry point (must return long)
4790 */
4791asmlinkage long
4792sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4793{
4794 struct file *file = NULL;
4795 pfm_context_t *ctx = NULL;
4796 unsigned long flags = 0UL;
4797 void *args_k = NULL;
4798 long ret; /* will expand int return types */
4799 size_t base_sz, sz, xtra_sz = 0;
4800 int narg, completed_args = 0, call_made = 0, cmd_flags;
4801 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4802 int (*getsize)(void *arg, size_t *sz);
4803#define PFM_MAX_ARGSIZE 4096
4804
4805 /*
4806 * reject any call if perfmon was disabled at initialization
4807 */
4808 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4809
4810 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4811 DPRINT(("invalid cmd=%d\n", cmd));
4812 return -EINVAL;
4813 }
4814
4815 func = pfm_cmd_tab[cmd].cmd_func;
4816 narg = pfm_cmd_tab[cmd].cmd_narg;
4817 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4818 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4819 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4820
4821 if (unlikely(func == NULL)) {
4822 DPRINT(("invalid cmd=%d\n", cmd));
4823 return -EINVAL;
4824 }
4825
4826 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4827 PFM_CMD_NAME(cmd),
4828 cmd,
4829 narg,
4830 base_sz,
4831 count));
4832
4833 /*
4834 * check if number of arguments matches what the command expects
4835 */
4836 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4837 return -EINVAL;
4838
4839restart_args:
4840 sz = xtra_sz + base_sz*count;
4841 /*
4842 * limit abuse to min page size
4843 */
4844 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
19c5870c 4845 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
1da177e4
LT
4846 return -E2BIG;
4847 }
4848
4849 /*
4850 * allocate default-sized argument buffer
4851 */
4852 if (likely(count && args_k == NULL)) {
4853 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4854 if (args_k == NULL) return -ENOMEM;
4855 }
4856
4857 ret = -EFAULT;
4858
4859 /*
4860 * copy arguments
4861 *
4862 * assume sz = 0 for command without parameters
4863 */
4864 if (sz && copy_from_user(args_k, arg, sz)) {
4865 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4866 goto error_args;
4867 }
4868
4869 /*
4870 * check if command supports extra parameters
4871 */
4872 if (completed_args == 0 && getsize) {
4873 /*
4874 * get extra parameters size (based on main argument)
4875 */
4876 ret = (*getsize)(args_k, &xtra_sz);
4877 if (ret) goto error_args;
4878
4879 completed_args = 1;
4880
4881 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4882
4883 /* retry if necessary */
4884 if (likely(xtra_sz)) goto restart_args;
4885 }
4886
4887 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4888
4889 ret = -EBADF;
4890
4891 file = fget(fd);
4892 if (unlikely(file == NULL)) {
4893 DPRINT(("invalid fd %d\n", fd));
4894 goto error_args;
4895 }
4896 if (unlikely(PFM_IS_FILE(file) == 0)) {
4897 DPRINT(("fd %d not related to perfmon\n", fd));
4898 goto error_args;
4899 }
4900
4901 ctx = (pfm_context_t *)file->private_data;
4902 if (unlikely(ctx == NULL)) {
4903 DPRINT(("no context for fd %d\n", fd));
4904 goto error_args;
4905 }
4906 prefetch(&ctx->ctx_state);
4907
4908 PROTECT_CTX(ctx, flags);
4909
4910 /*
4911 * check task is stopped
4912 */
4913 ret = pfm_check_task_state(ctx, cmd, flags);
4914 if (unlikely(ret)) goto abort_locked;
4915
4916skip_fd:
6450578f 4917 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
1da177e4
LT
4918
4919 call_made = 1;
4920
4921abort_locked:
4922 if (likely(ctx)) {
4923 DPRINT(("context unlocked\n"));
4924 UNPROTECT_CTX(ctx, flags);
1da177e4
LT
4925 }
4926
4927 /* copy argument back to user, if needed */
4928 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4929
4930error_args:
b8444d00
SE
4931 if (file)
4932 fput(file);
4933
b2325fe1 4934 kfree(args_k);
1da177e4
LT
4935
4936 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4937
4938 return ret;
4939}
4940
4941static void
4942pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4943{
4944 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4945 pfm_ovfl_ctrl_t rst_ctrl;
4946 int state;
4947 int ret = 0;
4948
4949 state = ctx->ctx_state;
4950 /*
4951 * Unlock sampling buffer and reset index atomically
4952 * XXX: not really needed when blocking
4953 */
4954 if (CTX_HAS_SMPL(ctx)) {
4955
4956 rst_ctrl.bits.mask_monitoring = 0;
4957 rst_ctrl.bits.reset_ovfl_pmds = 0;
4958
4959 if (state == PFM_CTX_LOADED)
4960 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4961 else
4962 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4963 } else {
4964 rst_ctrl.bits.mask_monitoring = 0;
4965 rst_ctrl.bits.reset_ovfl_pmds = 1;
4966 }
4967
4968 if (ret == 0) {
4969 if (rst_ctrl.bits.reset_ovfl_pmds) {
4970 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4971 }
4972 if (rst_ctrl.bits.mask_monitoring == 0) {
4973 DPRINT(("resuming monitoring\n"));
4974 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4975 } else {
4976 DPRINT(("stopping monitoring\n"));
4977 //pfm_stop_monitoring(current, regs);
4978 }
4979 ctx->ctx_state = PFM_CTX_LOADED;
4980 }
4981}
4982
4983/*
4984 * context MUST BE LOCKED when calling
4985 * can only be called for current
4986 */
4987static void
4988pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4989{
4990 int ret;
4991
19c5870c 4992 DPRINT(("entering for [%d]\n", task_pid_nr(current)));
1da177e4
LT
4993
4994 ret = pfm_context_unload(ctx, NULL, 0, regs);
4995 if (ret) {
19c5870c 4996 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
1da177e4
LT
4997 }
4998
4999 /*
5000 * and wakeup controlling task, indicating we are now disconnected
5001 */
5002 wake_up_interruptible(&ctx->ctx_zombieq);
5003
5004 /*
5005 * given that context is still locked, the controlling
5006 * task will only get access when we return from
5007 * pfm_handle_work().
5008 */
5009}
5010
5011static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
0fb232fd 5012
4944930a
SE
5013 /*
5014 * pfm_handle_work() can be called with interrupts enabled
5015 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5016 * call may sleep, therefore we must re-enable interrupts
5017 * to avoid deadlocks. It is safe to do so because this function
0fb232fd 5018 * is called ONLY when returning to user level (pUStk=1), in which case
4944930a
SE
5019 * there is no risk of kernel stack overflow due to deep
5020 * interrupt nesting.
5021 */
1da177e4
LT
5022void
5023pfm_handle_work(void)
5024{
5025 pfm_context_t *ctx;
5026 struct pt_regs *regs;
4944930a 5027 unsigned long flags, dummy_flags;
1da177e4
LT
5028 unsigned long ovfl_regs;
5029 unsigned int reason;
5030 int ret;
5031
5032 ctx = PFM_GET_CTX(current);
5033 if (ctx == NULL) {
0fb232fd
HS
5034 printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5035 task_pid_nr(current));
1da177e4
LT
5036 return;
5037 }
5038
5039 PROTECT_CTX(ctx, flags);
5040
5041 PFM_SET_WORK_PENDING(current, 0);
5042
6450578f 5043 regs = task_pt_regs(current);
1da177e4
LT
5044
5045 /*
5046 * extract reason for being here and clear
5047 */
5048 reason = ctx->ctx_fl_trap_reason;
5049 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5050 ovfl_regs = ctx->ctx_ovfl_regs[0];
5051
5052 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5053
5054 /*
5055 * must be done before we check for simple-reset mode
5056 */
0fb232fd
HS
5057 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5058 goto do_zombie;
1da177e4
LT
5059
5060 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
0fb232fd
HS
5061 if (reason == PFM_TRAP_REASON_RESET)
5062 goto skip_blocking;
1da177e4 5063
4944930a
SE
5064 /*
5065 * restore interrupt mask to what it was on entry.
5066 * Could be enabled/diasbled.
5067 */
1da177e4
LT
5068 UNPROTECT_CTX(ctx, flags);
5069
4944930a
SE
5070 /*
5071 * force interrupt enable because of down_interruptible()
5072 */
1da177e4
LT
5073 local_irq_enable();
5074
5075 DPRINT(("before block sleeping\n"));
5076
5077 /*
5078 * may go through without blocking on SMP systems
5079 * if restart has been received already by the time we call down()
5080 */
60f1c444 5081 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
1da177e4
LT
5082
5083 DPRINT(("after block sleeping ret=%d\n", ret));
5084
5085 /*
4944930a
SE
5086 * lock context and mask interrupts again
5087 * We save flags into a dummy because we may have
5088 * altered interrupts mask compared to entry in this
5089 * function.
1da177e4 5090 */
4944930a 5091 PROTECT_CTX(ctx, dummy_flags);
1da177e4
LT
5092
5093 /*
5094 * we need to read the ovfl_regs only after wake-up
5095 * because we may have had pfm_write_pmds() in between
5096 * and that can changed PMD values and therefore
5097 * ovfl_regs is reset for these new PMD values.
5098 */
5099 ovfl_regs = ctx->ctx_ovfl_regs[0];
5100
5101 if (ctx->ctx_fl_going_zombie) {
5102do_zombie:
5103 DPRINT(("context is zombie, bailing out\n"));
5104 pfm_context_force_terminate(ctx, regs);
5105 goto nothing_to_do;
5106 }
5107 /*
5108 * in case of interruption of down() we don't restart anything
5109 */
0fb232fd
HS
5110 if (ret < 0)
5111 goto nothing_to_do;
1da177e4
LT
5112
5113skip_blocking:
5114 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5115 ctx->ctx_ovfl_regs[0] = 0UL;
5116
5117nothing_to_do:
4944930a
SE
5118 /*
5119 * restore flags as they were upon entry
5120 */
1da177e4
LT
5121 UNPROTECT_CTX(ctx, flags);
5122}
5123
5124static int
5125pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5126{
5127 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5128 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5129 return 0;
5130 }
5131
5132 DPRINT(("waking up somebody\n"));
5133
5134 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5135
5136 /*
5137 * safe, we are not in intr handler, nor in ctxsw when
5138 * we come here
5139 */
5140 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5141
5142 return 0;
5143}
5144
5145static int
5146pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5147{
5148 pfm_msg_t *msg = NULL;
5149
5150 if (ctx->ctx_fl_no_msg == 0) {
5151 msg = pfm_get_new_msg(ctx);
5152 if (msg == NULL) {
5153 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5154 return -1;
5155 }
5156
5157 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5158 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5159 msg->pfm_ovfl_msg.msg_active_set = 0;
5160 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5161 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5162 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5163 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5164 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5165 }
5166
5167 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5168 msg,
5169 ctx->ctx_fl_no_msg,
5170 ctx->ctx_fd,
5171 ovfl_pmds));
5172
5173 return pfm_notify_user(ctx, msg);
5174}
5175
5176static int
5177pfm_end_notify_user(pfm_context_t *ctx)
5178{
5179 pfm_msg_t *msg;
5180
5181 msg = pfm_get_new_msg(ctx);
5182 if (msg == NULL) {
5183 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5184 return -1;
5185 }
5186 /* no leak */
5187 memset(msg, 0, sizeof(*msg));
5188
5189 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5190 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5191 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5192
5193 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5194 msg,
5195 ctx->ctx_fl_no_msg,
5196 ctx->ctx_fd));
5197
5198 return pfm_notify_user(ctx, msg);
5199}
5200
5201/*
5202 * main overflow processing routine.
72fdbdce 5203 * it can be called from the interrupt path or explicitly during the context switch code
1da177e4
LT
5204 */
5205static void
5206pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
5207{
5208 pfm_ovfl_arg_t *ovfl_arg;
5209 unsigned long mask;
5210 unsigned long old_val, ovfl_val, new_val;
5211 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5212 unsigned long tstamp;
5213 pfm_ovfl_ctrl_t ovfl_ctrl;
5214 unsigned int i, has_smpl;
5215 int must_notify = 0;
5216
5217 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5218
5219 /*
5220 * sanity test. Should never happen
5221 */
5222 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5223
5224 tstamp = ia64_get_itc();
5225 mask = pmc0 >> PMU_FIRST_COUNTER;
5226 ovfl_val = pmu_conf->ovfl_val;
5227 has_smpl = CTX_HAS_SMPL(ctx);
5228
5229 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5230 "used_pmds=0x%lx\n",
5231 pmc0,
19c5870c 5232 task ? task_pid_nr(task): -1,
1da177e4
LT
5233 (regs ? regs->cr_iip : 0),
5234 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5235 ctx->ctx_used_pmds[0]));
5236
5237
5238 /*
5239 * first we update the virtual counters
5240 * assume there was a prior ia64_srlz_d() issued
5241 */
5242 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5243
5244 /* skip pmd which did not overflow */
5245 if ((mask & 0x1) == 0) continue;
5246
5247 /*
5248 * Note that the pmd is not necessarily 0 at this point as qualified events
5249 * may have happened before the PMU was frozen. The residual count is not
5250 * taken into consideration here but will be with any read of the pmd via
5251 * pfm_read_pmds().
5252 */
5253 old_val = new_val = ctx->ctx_pmds[i].val;
5254 new_val += 1 + ovfl_val;
5255 ctx->ctx_pmds[i].val = new_val;
5256
5257 /*
5258 * check for overflow condition
5259 */
5260 if (likely(old_val > new_val)) {
5261 ovfl_pmds |= 1UL << i;
5262 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5263 }
5264
5265 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5266 i,
5267 new_val,
5268 old_val,
5269 ia64_get_pmd(i) & ovfl_val,
5270 ovfl_pmds,
5271 ovfl_notify));
5272 }
5273
5274 /*
5275 * there was no 64-bit overflow, nothing else to do
5276 */
5277 if (ovfl_pmds == 0UL) return;
5278
5279 /*
5280 * reset all control bits
5281 */
5282 ovfl_ctrl.val = 0;
5283 reset_pmds = 0UL;
5284
5285 /*
5286 * if a sampling format module exists, then we "cache" the overflow by
5287 * calling the module's handler() routine.
5288 */
5289 if (has_smpl) {
5290 unsigned long start_cycles, end_cycles;
5291 unsigned long pmd_mask;
5292 int j, k, ret = 0;
5293 int this_cpu = smp_processor_id();
5294
5295 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5296 ovfl_arg = &ctx->ctx_ovfl_arg;
5297
5298 prefetch(ctx->ctx_smpl_hdr);
5299
5300 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5301
5302 mask = 1UL << i;
5303
5304 if ((pmd_mask & 0x1) == 0) continue;
5305
5306 ovfl_arg->ovfl_pmd = (unsigned char )i;
5307 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5308 ovfl_arg->active_set = 0;
5309 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5310 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5311
5312 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5313 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5314 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5315
5316 /*
5317 * copy values of pmds of interest. Sampling format may copy them
5318 * into sampling buffer.
5319 */
5320 if (smpl_pmds) {
5321 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5322 if ((smpl_pmds & 0x1) == 0) continue;
5323 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5324 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5325 }
5326 }
5327
5328 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5329
5330 start_cycles = ia64_get_itc();
5331
5332 /*
5333 * call custom buffer format record (handler) routine
5334 */
5335 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5336
5337 end_cycles = ia64_get_itc();
5338
5339 /*
5340 * For those controls, we take the union because they have
5341 * an all or nothing behavior.
5342 */
5343 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5344 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5345 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5346 /*
5347 * build the bitmask of pmds to reset now
5348 */
5349 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5350
5351 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5352 }
5353 /*
5354 * when the module cannot handle the rest of the overflows, we abort right here
5355 */
5356 if (ret && pmd_mask) {
5357 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5358 pmd_mask<<PMU_FIRST_COUNTER));
5359 }
5360 /*
5361 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5362 */
5363 ovfl_pmds &= ~reset_pmds;
5364 } else {
5365 /*
5366 * when no sampling module is used, then the default
5367 * is to notify on overflow if requested by user
5368 */
5369 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5370 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5371 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5372 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5373 /*
5374 * if needed, we reset all overflowed pmds
5375 */
5376 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5377 }
5378
5379 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5380
5381 /*
5382 * reset the requested PMD registers using the short reset values
5383 */
5384 if (reset_pmds) {
5385 unsigned long bm = reset_pmds;
5386 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5387 }
5388
5389 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5390 /*
5391 * keep track of what to reset when unblocking
5392 */
5393 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5394
5395 /*
5396 * check for blocking context
5397 */
5398 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5399
5400 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5401
5402 /*
5403 * set the perfmon specific checking pending work for the task
5404 */
5405 PFM_SET_WORK_PENDING(task, 1);
5406
5407 /*
5408 * when coming from ctxsw, current still points to the
5409 * previous task, therefore we must work with task and not current.
5410 */
f14488cc 5411 set_notify_resume(task);
1da177e4
LT
5412 }
5413 /*
5414 * defer until state is changed (shorten spin window). the context is locked
5415 * anyway, so the signal receiver would come spin for nothing.
5416 */
5417 must_notify = 1;
5418 }
5419
5420 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
19c5870c 5421 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
1da177e4
LT
5422 PFM_GET_WORK_PENDING(task),
5423 ctx->ctx_fl_trap_reason,
5424 ovfl_pmds,
5425 ovfl_notify,
5426 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5427 /*
5428 * in case monitoring must be stopped, we toggle the psr bits
5429 */
5430 if (ovfl_ctrl.bits.mask_monitoring) {
5431 pfm_mask_monitoring(task);
5432 ctx->ctx_state = PFM_CTX_MASKED;
5433 ctx->ctx_fl_can_restart = 1;
5434 }
5435
5436 /*
5437 * send notification now
5438 */
5439 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5440
5441 return;
5442
5443sanity_check:
5444 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5445 smp_processor_id(),
19c5870c 5446 task ? task_pid_nr(task) : -1,
1da177e4
LT
5447 pmc0);
5448 return;
5449
5450stop_monitoring:
5451 /*
5452 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5453 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5454 * come here as zombie only if the task is the current task. In which case, we
5455 * can access the PMU hardware directly.
5456 *
5457 * Note that zombies do have PM_VALID set. So here we do the minimal.
5458 *
5459 * In case the context was zombified it could not be reclaimed at the time
5460 * the monitoring program exited. At this point, the PMU reservation has been
5461 * returned, the sampiing buffer has been freed. We must convert this call
5462 * into a spurious interrupt. However, we must also avoid infinite overflows
5463 * by stopping monitoring for this task. We can only come here for a per-task
5464 * context. All we need to do is to stop monitoring using the psr bits which
5465 * are always task private. By re-enabling secure montioring, we ensure that
5466 * the monitored task will not be able to re-activate monitoring.
5467 * The task will eventually be context switched out, at which point the context
5468 * will be reclaimed (that includes releasing ownership of the PMU).
5469 *
5470 * So there might be a window of time where the number of per-task session is zero
5471 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5472 * context. This is safe because if a per-task session comes in, it will push this one
5473 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5474 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5475 * also push our zombie context out.
5476 *
5477 * Overall pretty hairy stuff....
5478 */
19c5870c 5479 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
1da177e4
LT
5480 pfm_clear_psr_up();
5481 ia64_psr(regs)->up = 0;
5482 ia64_psr(regs)->sp = 1;
5483 return;
5484}
5485
5486static int
9010eff0 5487pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
1da177e4
LT
5488{
5489 struct task_struct *task;
5490 pfm_context_t *ctx;
5491 unsigned long flags;
5492 u64 pmc0;
5493 int this_cpu = smp_processor_id();
5494 int retval = 0;
5495
5496 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5497
5498 /*
5499 * srlz.d done before arriving here
5500 */
5501 pmc0 = ia64_get_pmc(0);
5502
5503 task = GET_PMU_OWNER();
5504 ctx = GET_PMU_CTX();
5505
5506 /*
5507 * if we have some pending bits set
5508 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5509 */
5510 if (PMC0_HAS_OVFL(pmc0) && task) {
5511 /*
5512 * we assume that pmc0.fr is always set here
5513 */
5514
5515 /* sanity check */
5516 if (!ctx) goto report_spurious1;
5517
5518 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5519 goto report_spurious2;
5520
5521 PROTECT_CTX_NOPRINT(ctx, flags);
5522
5523 pfm_overflow_handler(task, ctx, pmc0, regs);
5524
5525 UNPROTECT_CTX_NOPRINT(ctx, flags);
5526
5527 } else {
5528 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5529 retval = -1;
5530 }
5531 /*
5532 * keep it unfrozen at all times
5533 */
5534 pfm_unfreeze_pmu();
5535
5536 return retval;
5537
5538report_spurious1:
5539 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
19c5870c 5540 this_cpu, task_pid_nr(task));
1da177e4
LT
5541 pfm_unfreeze_pmu();
5542 return -1;
5543report_spurious2:
5544 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5545 this_cpu,
19c5870c 5546 task_pid_nr(task));
1da177e4
LT
5547 pfm_unfreeze_pmu();
5548 return -1;
5549}
5550
5551static irqreturn_t
3bbe486b 5552pfm_interrupt_handler(int irq, void *arg)
1da177e4
LT
5553{
5554 unsigned long start_cycles, total_cycles;
5555 unsigned long min, max;
5556 int this_cpu;
5557 int ret;
3bbe486b 5558 struct pt_regs *regs = get_irq_regs();
1da177e4
LT
5559
5560 this_cpu = get_cpu();
a1ecf7f6
TL
5561 if (likely(!pfm_alt_intr_handler)) {
5562 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5563 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
1da177e4 5564
a1ecf7f6 5565 start_cycles = ia64_get_itc();
1da177e4 5566
9010eff0 5567 ret = pfm_do_interrupt_handler(arg, regs);
1da177e4 5568
a1ecf7f6 5569 total_cycles = ia64_get_itc();
1da177e4 5570
a1ecf7f6
TL
5571 /*
5572 * don't measure spurious interrupts
5573 */
5574 if (likely(ret == 0)) {
5575 total_cycles -= start_cycles;
1da177e4 5576
a1ecf7f6
TL
5577 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5578 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
1da177e4 5579
a1ecf7f6
TL
5580 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5581 }
5582 }
5583 else {
5584 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
1da177e4 5585 }
a1ecf7f6 5586
1da177e4
LT
5587 put_cpu_no_resched();
5588 return IRQ_HANDLED;
5589}
5590
5591/*
5592 * /proc/perfmon interface, for debug only
5593 */
5594
5595#define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5596
5597static void *
5598pfm_proc_start(struct seq_file *m, loff_t *pos)
5599{
5600 if (*pos == 0) {
5601 return PFM_PROC_SHOW_HEADER;
5602 }
5603
5604 while (*pos <= NR_CPUS) {
5605 if (cpu_online(*pos - 1)) {
5606 return (void *)*pos;
5607 }
5608 ++*pos;
5609 }
5610 return NULL;
5611}
5612
5613static void *
5614pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5615{
5616 ++*pos;
5617 return pfm_proc_start(m, pos);
5618}
5619
5620static void
5621pfm_proc_stop(struct seq_file *m, void *v)
5622{
5623}
5624
5625static void
5626pfm_proc_show_header(struct seq_file *m)
5627{
5628 struct list_head * pos;
5629 pfm_buffer_fmt_t * entry;
5630 unsigned long flags;
5631
5632 seq_printf(m,
5633 "perfmon version : %u.%u\n"
5634 "model : %s\n"
5635 "fastctxsw : %s\n"
5636 "expert mode : %s\n"
5637 "ovfl_mask : 0x%lx\n"
5638 "PMU flags : 0x%x\n",
5639 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5640 pmu_conf->pmu_name,
5641 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5642 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5643 pmu_conf->ovfl_val,
5644 pmu_conf->flags);
5645
5646 LOCK_PFS(flags);
5647
5648 seq_printf(m,
5649 "proc_sessions : %u\n"
5650 "sys_sessions : %u\n"
5651 "sys_use_dbregs : %u\n"
5652 "ptrace_use_dbregs : %u\n",
5653 pfm_sessions.pfs_task_sessions,
5654 pfm_sessions.pfs_sys_sessions,
5655 pfm_sessions.pfs_sys_use_dbregs,
5656 pfm_sessions.pfs_ptrace_use_dbregs);
5657
5658 UNLOCK_PFS(flags);
5659
5660 spin_lock(&pfm_buffer_fmt_lock);
5661
5662 list_for_each(pos, &pfm_buffer_fmt_list) {
5663 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5664 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5665 entry->fmt_uuid[0],
5666 entry->fmt_uuid[1],
5667 entry->fmt_uuid[2],
5668 entry->fmt_uuid[3],
5669 entry->fmt_uuid[4],
5670 entry->fmt_uuid[5],
5671 entry->fmt_uuid[6],
5672 entry->fmt_uuid[7],
5673 entry->fmt_uuid[8],
5674 entry->fmt_uuid[9],
5675 entry->fmt_uuid[10],
5676 entry->fmt_uuid[11],
5677 entry->fmt_uuid[12],
5678 entry->fmt_uuid[13],
5679 entry->fmt_uuid[14],
5680 entry->fmt_uuid[15],
5681 entry->fmt_name);
5682 }
5683 spin_unlock(&pfm_buffer_fmt_lock);
5684
5685}
5686
5687static int
5688pfm_proc_show(struct seq_file *m, void *v)
5689{
5690 unsigned long psr;
5691 unsigned int i;
5692 int cpu;
5693
5694 if (v == PFM_PROC_SHOW_HEADER) {
5695 pfm_proc_show_header(m);
5696 return 0;
5697 }
5698
5699 /* show info for CPU (v - 1) */
5700
5701 cpu = (long)v - 1;
5702 seq_printf(m,
5703 "CPU%-2d overflow intrs : %lu\n"
5704 "CPU%-2d overflow cycles : %lu\n"
5705 "CPU%-2d overflow min : %lu\n"
5706 "CPU%-2d overflow max : %lu\n"
5707 "CPU%-2d smpl handler calls : %lu\n"
5708 "CPU%-2d smpl handler cycles : %lu\n"
5709 "CPU%-2d spurious intrs : %lu\n"
5710 "CPU%-2d replay intrs : %lu\n"
5711 "CPU%-2d syst_wide : %d\n"
5712 "CPU%-2d dcr_pp : %d\n"
5713 "CPU%-2d exclude idle : %d\n"
5714 "CPU%-2d owner : %d\n"
5715 "CPU%-2d context : %p\n"
5716 "CPU%-2d activations : %lu\n",
5717 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5718 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5719 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5720 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5721 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5722 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5723 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5724 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5725 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5726 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5727 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5728 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5729 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5730 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5731
5732 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5733
5734 psr = pfm_get_psr();
5735
5736 ia64_srlz_d();
5737
5738 seq_printf(m,
5739 "CPU%-2d psr : 0x%lx\n"
5740 "CPU%-2d pmc0 : 0x%lx\n",
5741 cpu, psr,
5742 cpu, ia64_get_pmc(0));
5743
5744 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5745 if (PMC_IS_COUNTING(i) == 0) continue;
5746 seq_printf(m,
5747 "CPU%-2d pmc%u : 0x%lx\n"
5748 "CPU%-2d pmd%u : 0x%lx\n",
5749 cpu, i, ia64_get_pmc(i),
5750 cpu, i, ia64_get_pmd(i));
5751 }
5752 }
5753 return 0;
5754}
5755
a23fe55e 5756const struct seq_operations pfm_seq_ops = {
1da177e4
LT
5757 .start = pfm_proc_start,
5758 .next = pfm_proc_next,
5759 .stop = pfm_proc_stop,
5760 .show = pfm_proc_show
5761};
5762
5763static int
5764pfm_proc_open(struct inode *inode, struct file *file)
5765{
5766 return seq_open(file, &pfm_seq_ops);
5767}
5768
5769
5770/*
5771 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5772 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5773 * is active or inactive based on mode. We must rely on the value in
5774 * local_cpu_data->pfm_syst_info
5775 */
5776void
5777pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5778{
5779 struct pt_regs *regs;
5780 unsigned long dcr;
5781 unsigned long dcr_pp;
5782
5783 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5784
5785 /*
5786 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5787 * on every CPU, so we can rely on the pid to identify the idle task.
5788 */
5789 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
6450578f 5790 regs = task_pt_regs(task);
1da177e4
LT
5791 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5792 return;
5793 }
5794 /*
5795 * if monitoring has started
5796 */
5797 if (dcr_pp) {
5798 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5799 /*
5800 * context switching in?
5801 */
5802 if (is_ctxswin) {
5803 /* mask monitoring for the idle task */
5804 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5805 pfm_clear_psr_pp();
5806 ia64_srlz_i();
5807 return;
5808 }
5809 /*
5810 * context switching out
5811 * restore monitoring for next task
5812 *
5813 * Due to inlining this odd if-then-else construction generates
5814 * better code.
5815 */
5816 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5817 pfm_set_psr_pp();
5818 ia64_srlz_i();
5819 }
5820}
5821
5822#ifdef CONFIG_SMP
5823
5824static void
5825pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5826{
5827 struct task_struct *task = ctx->ctx_task;
5828
5829 ia64_psr(regs)->up = 0;
5830 ia64_psr(regs)->sp = 1;
5831
5832 if (GET_PMU_OWNER() == task) {
19c5870c
AD
5833 DPRINT(("cleared ownership for [%d]\n",
5834 task_pid_nr(ctx->ctx_task)));
1da177e4
LT
5835 SET_PMU_OWNER(NULL, NULL);
5836 }
5837
5838 /*
5839 * disconnect the task from the context and vice-versa
5840 */
5841 PFM_SET_WORK_PENDING(task, 0);
5842
5843 task->thread.pfm_context = NULL;
5844 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5845
19c5870c 5846 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task)));
1da177e4
LT
5847}
5848
5849
5850/*
5851 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5852 */
5853void
5854pfm_save_regs(struct task_struct *task)
5855{
5856 pfm_context_t *ctx;
1da177e4
LT
5857 unsigned long flags;
5858 u64 psr;
5859
5860
5861 ctx = PFM_GET_CTX(task);
5862 if (ctx == NULL) return;
1da177e4
LT
5863
5864 /*
5865 * we always come here with interrupts ALREADY disabled by
5866 * the scheduler. So we simply need to protect against concurrent
5867 * access, not CPU concurrency.
5868 */
5869 flags = pfm_protect_ctx_ctxsw(ctx);
5870
5871 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
6450578f 5872 struct pt_regs *regs = task_pt_regs(task);
1da177e4
LT
5873
5874 pfm_clear_psr_up();
5875
5876 pfm_force_cleanup(ctx, regs);
5877
5878 BUG_ON(ctx->ctx_smpl_hdr);
5879
5880 pfm_unprotect_ctx_ctxsw(ctx, flags);
5881
5882 pfm_context_free(ctx);
5883 return;
5884 }
5885
5886 /*
5887 * save current PSR: needed because we modify it
5888 */
5889 ia64_srlz_d();
5890 psr = pfm_get_psr();
5891
5892 BUG_ON(psr & (IA64_PSR_I));
5893
5894 /*
5895 * stop monitoring:
5896 * This is the last instruction which may generate an overflow
5897 *
5898 * We do not need to set psr.sp because, it is irrelevant in kernel.
5899 * It will be restored from ipsr when going back to user level
5900 */
5901 pfm_clear_psr_up();
5902
5903 /*
5904 * keep a copy of psr.up (for reload)
5905 */
5906 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5907
5908 /*
5909 * release ownership of this PMU.
5910 * PM interrupts are masked, so nothing
5911 * can happen.
5912 */
5913 SET_PMU_OWNER(NULL, NULL);
5914
5915 /*
5916 * we systematically save the PMD as we have no
5917 * guarantee we will be schedule at that same
5918 * CPU again.
5919 */
35589a8f 5920 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
1da177e4
LT
5921
5922 /*
5923 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5924 * we will need it on the restore path to check
5925 * for pending overflow.
5926 */
35589a8f 5927 ctx->th_pmcs[0] = ia64_get_pmc(0);
1da177e4
LT
5928
5929 /*
5930 * unfreeze PMU if had pending overflows
5931 */
35589a8f 5932 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
1da177e4
LT
5933
5934 /*
5935 * finally, allow context access.
5936 * interrupts will still be masked after this call.
5937 */
5938 pfm_unprotect_ctx_ctxsw(ctx, flags);
5939}
5940
5941#else /* !CONFIG_SMP */
5942void
5943pfm_save_regs(struct task_struct *task)
5944{
5945 pfm_context_t *ctx;
5946 u64 psr;
5947
5948 ctx = PFM_GET_CTX(task);
5949 if (ctx == NULL) return;
5950
5951 /*
5952 * save current PSR: needed because we modify it
5953 */
5954 psr = pfm_get_psr();
5955
5956 BUG_ON(psr & (IA64_PSR_I));
5957
5958 /*
5959 * stop monitoring:
5960 * This is the last instruction which may generate an overflow
5961 *
5962 * We do not need to set psr.sp because, it is irrelevant in kernel.
5963 * It will be restored from ipsr when going back to user level
5964 */
5965 pfm_clear_psr_up();
5966
5967 /*
5968 * keep a copy of psr.up (for reload)
5969 */
5970 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5971}
5972
5973static void
5974pfm_lazy_save_regs (struct task_struct *task)
5975{
5976 pfm_context_t *ctx;
1da177e4
LT
5977 unsigned long flags;
5978
5979 { u64 psr = pfm_get_psr();
5980 BUG_ON(psr & IA64_PSR_UP);
5981 }
5982
5983 ctx = PFM_GET_CTX(task);
1da177e4
LT
5984
5985 /*
5986 * we need to mask PMU overflow here to
5987 * make sure that we maintain pmc0 until
5988 * we save it. overflow interrupts are
5989 * treated as spurious if there is no
5990 * owner.
5991 *
5992 * XXX: I don't think this is necessary
5993 */
5994 PROTECT_CTX(ctx,flags);
5995
5996 /*
5997 * release ownership of this PMU.
5998 * must be done before we save the registers.
5999 *
6000 * after this call any PMU interrupt is treated
6001 * as spurious.
6002 */
6003 SET_PMU_OWNER(NULL, NULL);
6004
6005 /*
6006 * save all the pmds we use
6007 */
35589a8f 6008 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
1da177e4
LT
6009
6010 /*
6011 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6012 * it is needed to check for pended overflow
6013 * on the restore path
6014 */
35589a8f 6015 ctx->th_pmcs[0] = ia64_get_pmc(0);
1da177e4
LT
6016
6017 /*
6018 * unfreeze PMU if had pending overflows
6019 */
35589a8f 6020 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
1da177e4
LT
6021
6022 /*
6023 * now get can unmask PMU interrupts, they will
6024 * be treated as purely spurious and we will not
6025 * lose any information
6026 */
6027 UNPROTECT_CTX(ctx,flags);
6028}
6029#endif /* CONFIG_SMP */
6030
6031#ifdef CONFIG_SMP
6032/*
6033 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6034 */
6035void
6036pfm_load_regs (struct task_struct *task)
6037{
6038 pfm_context_t *ctx;
1da177e4
LT
6039 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6040 unsigned long flags;
6041 u64 psr, psr_up;
6042 int need_irq_resend;
6043
6044 ctx = PFM_GET_CTX(task);
6045 if (unlikely(ctx == NULL)) return;
6046
6047 BUG_ON(GET_PMU_OWNER());
6048
1da177e4
LT
6049 /*
6050 * possible on unload
6051 */
35589a8f 6052 if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
1da177e4
LT
6053
6054 /*
6055 * we always come here with interrupts ALREADY disabled by
6056 * the scheduler. So we simply need to protect against concurrent
6057 * access, not CPU concurrency.
6058 */
6059 flags = pfm_protect_ctx_ctxsw(ctx);
6060 psr = pfm_get_psr();
6061
6062 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6063
6064 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6065 BUG_ON(psr & IA64_PSR_I);
6066
6067 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6450578f 6068 struct pt_regs *regs = task_pt_regs(task);
1da177e4
LT
6069
6070 BUG_ON(ctx->ctx_smpl_hdr);
6071
6072 pfm_force_cleanup(ctx, regs);
6073
6074 pfm_unprotect_ctx_ctxsw(ctx, flags);
6075
6076 /*
6077 * this one (kmalloc'ed) is fine with interrupts disabled
6078 */
6079 pfm_context_free(ctx);
6080
6081 return;
6082 }
6083
6084 /*
6085 * we restore ALL the debug registers to avoid picking up
6086 * stale state.
6087 */
6088 if (ctx->ctx_fl_using_dbreg) {
6089 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6090 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6091 }
6092 /*
6093 * retrieve saved psr.up
6094 */
6095 psr_up = ctx->ctx_saved_psr_up;
6096
6097 /*
6098 * if we were the last user of the PMU on that CPU,
6099 * then nothing to do except restore psr
6100 */
6101 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6102
6103 /*
6104 * retrieve partial reload masks (due to user modifications)
6105 */
6106 pmc_mask = ctx->ctx_reload_pmcs[0];
6107 pmd_mask = ctx->ctx_reload_pmds[0];
6108
6109 } else {
6110 /*
6111 * To avoid leaking information to the user level when psr.sp=0,
6112 * we must reload ALL implemented pmds (even the ones we don't use).
6113 * In the kernel we only allow PFM_READ_PMDS on registers which
6114 * we initialized or requested (sampling) so there is no risk there.
6115 */
6116 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6117
6118 /*
6119 * ALL accessible PMCs are systematically reloaded, unused registers
6120 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6121 * up stale configuration.
6122 *
6123 * PMC0 is never in the mask. It is always restored separately.
6124 */
6125 pmc_mask = ctx->ctx_all_pmcs[0];
6126 }
6127 /*
6128 * when context is MASKED, we will restore PMC with plm=0
6129 * and PMD with stale information, but that's ok, nothing
6130 * will be captured.
6131 *
6132 * XXX: optimize here
6133 */
35589a8f
KA
6134 if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6135 if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
1da177e4
LT
6136
6137 /*
6138 * check for pending overflow at the time the state
6139 * was saved.
6140 */
35589a8f 6141 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
1da177e4
LT
6142 /*
6143 * reload pmc0 with the overflow information
6144 * On McKinley PMU, this will trigger a PMU interrupt
6145 */
35589a8f 6146 ia64_set_pmc(0, ctx->th_pmcs[0]);
1da177e4 6147 ia64_srlz_d();
35589a8f 6148 ctx->th_pmcs[0] = 0UL;
1da177e4
LT
6149
6150 /*
6151 * will replay the PMU interrupt
6152 */
c0ad90a3 6153 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
1da177e4
LT
6154
6155 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6156 }
6157
6158 /*
6159 * we just did a reload, so we reset the partial reload fields
6160 */
6161 ctx->ctx_reload_pmcs[0] = 0UL;
6162 ctx->ctx_reload_pmds[0] = 0UL;
6163
6164 SET_LAST_CPU(ctx, smp_processor_id());
6165
6166 /*
6167 * dump activation value for this PMU
6168 */
6169 INC_ACTIVATION();
6170 /*
6171 * record current activation for this context
6172 */
6173 SET_ACTIVATION(ctx);
6174
6175 /*
6176 * establish new ownership.
6177 */
6178 SET_PMU_OWNER(task, ctx);
6179
6180 /*
6181 * restore the psr.up bit. measurement
6182 * is active again.
6183 * no PMU interrupt can happen at this point
6184 * because we still have interrupts disabled.
6185 */
6186 if (likely(psr_up)) pfm_set_psr_up();
6187
6188 /*
6189 * allow concurrent access to context
6190 */
6191 pfm_unprotect_ctx_ctxsw(ctx, flags);
6192}
6193#else /* !CONFIG_SMP */
6194/*
6195 * reload PMU state for UP kernels
6196 * in 2.5 we come here with interrupts disabled
6197 */
6198void
6199pfm_load_regs (struct task_struct *task)
6200{
1da177e4
LT
6201 pfm_context_t *ctx;
6202 struct task_struct *owner;
6203 unsigned long pmd_mask, pmc_mask;
6204 u64 psr, psr_up;
6205 int need_irq_resend;
6206
6207 owner = GET_PMU_OWNER();
6208 ctx = PFM_GET_CTX(task);
1da177e4
LT
6209 psr = pfm_get_psr();
6210
6211 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6212 BUG_ON(psr & IA64_PSR_I);
6213
6214 /*
6215 * we restore ALL the debug registers to avoid picking up
6216 * stale state.
6217 *
6218 * This must be done even when the task is still the owner
6219 * as the registers may have been modified via ptrace()
6220 * (not perfmon) by the previous task.
6221 */
6222 if (ctx->ctx_fl_using_dbreg) {
6223 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6224 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6225 }
6226
6227 /*
6228 * retrieved saved psr.up
6229 */
6230 psr_up = ctx->ctx_saved_psr_up;
6231 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6232
6233 /*
6234 * short path, our state is still there, just
6235 * need to restore psr and we go
6236 *
6237 * we do not touch either PMC nor PMD. the psr is not touched
6238 * by the overflow_handler. So we are safe w.r.t. to interrupt
6239 * concurrency even without interrupt masking.
6240 */
6241 if (likely(owner == task)) {
6242 if (likely(psr_up)) pfm_set_psr_up();
6243 return;
6244 }
6245
6246 /*
6247 * someone else is still using the PMU, first push it out and
6248 * then we'll be able to install our stuff !
6249 *
6250 * Upon return, there will be no owner for the current PMU
6251 */
6252 if (owner) pfm_lazy_save_regs(owner);
6253
6254 /*
6255 * To avoid leaking information to the user level when psr.sp=0,
6256 * we must reload ALL implemented pmds (even the ones we don't use).
6257 * In the kernel we only allow PFM_READ_PMDS on registers which
6258 * we initialized or requested (sampling) so there is no risk there.
6259 */
6260 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6261
6262 /*
6263 * ALL accessible PMCs are systematically reloaded, unused registers
6264 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6265 * up stale configuration.
6266 *
6267 * PMC0 is never in the mask. It is always restored separately
6268 */
6269 pmc_mask = ctx->ctx_all_pmcs[0];
6270
35589a8f
KA
6271 pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6272 pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
1da177e4
LT
6273
6274 /*
6275 * check for pending overflow at the time the state
6276 * was saved.
6277 */
35589a8f 6278 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
1da177e4
LT
6279 /*
6280 * reload pmc0 with the overflow information
6281 * On McKinley PMU, this will trigger a PMU interrupt
6282 */
35589a8f 6283 ia64_set_pmc(0, ctx->th_pmcs[0]);
1da177e4
LT
6284 ia64_srlz_d();
6285
35589a8f 6286 ctx->th_pmcs[0] = 0UL;
1da177e4
LT
6287
6288 /*
6289 * will replay the PMU interrupt
6290 */
c0ad90a3 6291 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
1da177e4
LT
6292
6293 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6294 }
6295
6296 /*
6297 * establish new ownership.
6298 */
6299 SET_PMU_OWNER(task, ctx);
6300
6301 /*
6302 * restore the psr.up bit. measurement
6303 * is active again.
6304 * no PMU interrupt can happen at this point
6305 * because we still have interrupts disabled.
6306 */
6307 if (likely(psr_up)) pfm_set_psr_up();
6308}
6309#endif /* CONFIG_SMP */
6310
6311/*
6312 * this function assumes monitoring is stopped
6313 */
6314static void
6315pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6316{
6317 u64 pmc0;
6318 unsigned long mask2, val, pmd_val, ovfl_val;
6319 int i, can_access_pmu = 0;
6320 int is_self;
6321
6322 /*
6323 * is the caller the task being monitored (or which initiated the
6324 * session for system wide measurements)
6325 */
6326 is_self = ctx->ctx_task == task ? 1 : 0;
6327
6328 /*
6329 * can access PMU is task is the owner of the PMU state on the current CPU
6330 * or if we are running on the CPU bound to the context in system-wide mode
6331 * (that is not necessarily the task the context is attached to in this mode).
6332 * In system-wide we always have can_access_pmu true because a task running on an
6333 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6334 */
6335 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6336 if (can_access_pmu) {
6337 /*
6338 * Mark the PMU as not owned
6339 * This will cause the interrupt handler to do nothing in case an overflow
6340 * interrupt was in-flight
6341 * This also guarantees that pmc0 will contain the final state
6342 * It virtually gives us full control on overflow processing from that point
6343 * on.
6344 */
6345 SET_PMU_OWNER(NULL, NULL);
6346 DPRINT(("releasing ownership\n"));
6347
6348 /*
6349 * read current overflow status:
6350 *
6351 * we are guaranteed to read the final stable state
6352 */
6353 ia64_srlz_d();
6354 pmc0 = ia64_get_pmc(0); /* slow */
6355
6356 /*
6357 * reset freeze bit, overflow status information destroyed
6358 */
6359 pfm_unfreeze_pmu();
6360 } else {
35589a8f 6361 pmc0 = ctx->th_pmcs[0];
1da177e4
LT
6362 /*
6363 * clear whatever overflow status bits there were
6364 */
35589a8f 6365 ctx->th_pmcs[0] = 0;
1da177e4
LT
6366 }
6367 ovfl_val = pmu_conf->ovfl_val;
6368 /*
6369 * we save all the used pmds
6370 * we take care of overflows for counting PMDs
6371 *
6372 * XXX: sampling situation is not taken into account here
6373 */
6374 mask2 = ctx->ctx_used_pmds[0];
6375
6376 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6377
6378 for (i = 0; mask2; i++, mask2>>=1) {
6379
6380 /* skip non used pmds */
6381 if ((mask2 & 0x1) == 0) continue;
6382
6383 /*
6384 * can access PMU always true in system wide mode
6385 */
35589a8f 6386 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
1da177e4
LT
6387
6388 if (PMD_IS_COUNTING(i)) {
6389 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
19c5870c 6390 task_pid_nr(task),
1da177e4
LT
6391 i,
6392 ctx->ctx_pmds[i].val,
6393 val & ovfl_val));
6394
6395 /*
6396 * we rebuild the full 64 bit value of the counter
6397 */
6398 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6399
6400 /*
6401 * now everything is in ctx_pmds[] and we need
6402 * to clear the saved context from save_regs() such that
6403 * pfm_read_pmds() gets the correct value
6404 */
6405 pmd_val = 0UL;
6406
6407 /*
6408 * take care of overflow inline
6409 */
6410 if (pmc0 & (1UL << i)) {
6411 val += 1 + ovfl_val;
19c5870c 6412 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
1da177e4
LT
6413 }
6414 }
6415
19c5870c 6416 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
1da177e4 6417
35589a8f 6418 if (is_self) ctx->th_pmds[i] = pmd_val;
1da177e4
LT
6419
6420 ctx->ctx_pmds[i].val = val;
6421 }
6422}
6423
6424static struct irqaction perfmon_irqaction = {
6425 .handler = pfm_interrupt_handler,
121a4226 6426 .flags = IRQF_DISABLED,
1da177e4
LT
6427 .name = "perfmon"
6428};
6429
a1ecf7f6
TL
6430static void
6431pfm_alt_save_pmu_state(void *data)
6432{
6433 struct pt_regs *regs;
6434
6450578f 6435 regs = task_pt_regs(current);
a1ecf7f6
TL
6436
6437 DPRINT(("called\n"));
6438
6439 /*
6440 * should not be necessary but
6441 * let's take not risk
6442 */
6443 pfm_clear_psr_up();
6444 pfm_clear_psr_pp();
6445 ia64_psr(regs)->pp = 0;
6446
6447 /*
6448 * This call is required
6449 * May cause a spurious interrupt on some processors
6450 */
6451 pfm_freeze_pmu();
6452
6453 ia64_srlz_d();
6454}
6455
6456void
6457pfm_alt_restore_pmu_state(void *data)
6458{
6459 struct pt_regs *regs;
6460
6450578f 6461 regs = task_pt_regs(current);
a1ecf7f6
TL
6462
6463 DPRINT(("called\n"));
6464
6465 /*
6466 * put PMU back in state expected
6467 * by perfmon
6468 */
6469 pfm_clear_psr_up();
6470 pfm_clear_psr_pp();
6471 ia64_psr(regs)->pp = 0;
6472
6473 /*
6474 * perfmon runs with PMU unfrozen at all times
6475 */
6476 pfm_unfreeze_pmu();
6477
6478 ia64_srlz_d();
6479}
6480
6481int
6482pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6483{
6484 int ret, i;
6485 int reserve_cpu;
6486
6487 /* some sanity checks */
6488 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6489
6490 /* do the easy test first */
6491 if (pfm_alt_intr_handler) return -EBUSY;
6492
6493 /* one at a time in the install or remove, just fail the others */
6494 if (!spin_trylock(&pfm_alt_install_check)) {
6495 return -EBUSY;
6496 }
6497
6498 /* reserve our session */
6499 for_each_online_cpu(reserve_cpu) {
6500 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6501 if (ret) goto cleanup_reserve;
6502 }
6503
6504 /* save the current system wide pmu states */
15c8b6c1 6505 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
a1ecf7f6
TL
6506 if (ret) {
6507 DPRINT(("on_each_cpu() failed: %d\n", ret));
6508 goto cleanup_reserve;
6509 }
6510
6511 /* officially change to the alternate interrupt handler */
6512 pfm_alt_intr_handler = hdl;
6513
6514 spin_unlock(&pfm_alt_install_check);
6515
6516 return 0;
6517
6518cleanup_reserve:
6519 for_each_online_cpu(i) {
6520 /* don't unreserve more than we reserved */
6521 if (i >= reserve_cpu) break;
6522
6523 pfm_unreserve_session(NULL, 1, i);
6524 }
6525
6526 spin_unlock(&pfm_alt_install_check);
6527
6528 return ret;
6529}
6530EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6531
6532int
6533pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6534{
6535 int i;
6536 int ret;
6537
6538 if (hdl == NULL) return -EINVAL;
6539
6540 /* cannot remove someone else's handler! */
6541 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6542
6543 /* one at a time in the install or remove, just fail the others */
6544 if (!spin_trylock(&pfm_alt_install_check)) {
6545 return -EBUSY;
6546 }
6547
6548 pfm_alt_intr_handler = NULL;
6549
15c8b6c1 6550 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
a1ecf7f6
TL
6551 if (ret) {
6552 DPRINT(("on_each_cpu() failed: %d\n", ret));
6553 }
6554
6555 for_each_online_cpu(i) {
6556 pfm_unreserve_session(NULL, 1, i);
6557 }
6558
6559 spin_unlock(&pfm_alt_install_check);
6560
6561 return 0;
6562}
6563EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6564
1da177e4
LT
6565/*
6566 * perfmon initialization routine, called from the initcall() table
6567 */
6568static int init_pfm_fs(void);
6569
6570static int __init
6571pfm_probe_pmu(void)
6572{
6573 pmu_config_t **p;
6574 int family;
6575
6576 family = local_cpu_data->family;
6577 p = pmu_confs;
6578
6579 while(*p) {
6580 if ((*p)->probe) {
6581 if ((*p)->probe() == 0) goto found;
6582 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6583 goto found;
6584 }
6585 p++;
6586 }
6587 return -1;
6588found:
6589 pmu_conf = *p;
6590 return 0;
6591}
6592
5dfe4c96 6593static const struct file_operations pfm_proc_fops = {
1da177e4
LT
6594 .open = pfm_proc_open,
6595 .read = seq_read,
6596 .llseek = seq_lseek,
6597 .release = seq_release,
6598};
6599
6600int __init
6601pfm_init(void)
6602{
6603 unsigned int n, n_counters, i;
6604
6605 printk("perfmon: version %u.%u IRQ %u\n",
6606 PFM_VERSION_MAJ,
6607 PFM_VERSION_MIN,
6608 IA64_PERFMON_VECTOR);
6609
6610 if (pfm_probe_pmu()) {
6611 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6612 local_cpu_data->family);
6613 return -ENODEV;
6614 }
6615
6616 /*
6617 * compute the number of implemented PMD/PMC from the
6618 * description tables
6619 */
6620 n = 0;
6621 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6622 if (PMC_IS_IMPL(i) == 0) continue;
6623 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6624 n++;
6625 }
6626 pmu_conf->num_pmcs = n;
6627
6628 n = 0; n_counters = 0;
6629 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6630 if (PMD_IS_IMPL(i) == 0) continue;
6631 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6632 n++;
6633 if (PMD_IS_COUNTING(i)) n_counters++;
6634 }
6635 pmu_conf->num_pmds = n;
6636 pmu_conf->num_counters = n_counters;
6637
6638 /*
6639 * sanity checks on the number of debug registers
6640 */
6641 if (pmu_conf->use_rr_dbregs) {
6642 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6643 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6644 pmu_conf = NULL;
6645 return -1;
6646 }
6647 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6648 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6649 pmu_conf = NULL;
6650 return -1;
6651 }
6652 }
6653
6654 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6655 pmu_conf->pmu_name,
6656 pmu_conf->num_pmcs,
6657 pmu_conf->num_pmds,
6658 pmu_conf->num_counters,
6659 ffz(pmu_conf->ovfl_val));
6660
6661 /* sanity check */
35589a8f 6662 if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
1da177e4
LT
6663 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6664 pmu_conf = NULL;
6665 return -1;
6666 }
6667
6668 /*
6669 * create /proc/perfmon (mostly for debugging purposes)
6670 */
e2363768 6671 perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
1da177e4
LT
6672 if (perfmon_dir == NULL) {
6673 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6674 pmu_conf = NULL;
6675 return -1;
6676 }
1da177e4
LT
6677
6678 /*
6679 * create /proc/sys/kernel/perfmon (for debugging purposes)
6680 */
0b4d4147 6681 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
1da177e4
LT
6682
6683 /*
6684 * initialize all our spinlocks
6685 */
6686 spin_lock_init(&pfm_sessions.pfs_lock);
6687 spin_lock_init(&pfm_buffer_fmt_lock);
6688
6689 init_pfm_fs();
6690
6691 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6692
6693 return 0;
6694}
6695
6696__initcall(pfm_init);
6697
6698/*
6699 * this function is called before pfm_init()
6700 */
6701void
6702pfm_init_percpu (void)
6703{
ff741906 6704 static int first_time=1;
1da177e4
LT
6705 /*
6706 * make sure no measurement is active
6707 * (may inherit programmed PMCs from EFI).
6708 */
6709 pfm_clear_psr_pp();
6710 pfm_clear_psr_up();
6711
6712 /*
6713 * we run with the PMU not frozen at all times
6714 */
6715 pfm_unfreeze_pmu();
6716
ff741906 6717 if (first_time) {
1da177e4 6718 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
ff741906
AR
6719 first_time=0;
6720 }
1da177e4
LT
6721
6722 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6723 ia64_srlz_d();
6724}
6725
6726/*
6727 * used for debug purposes only
6728 */
6729void
6730dump_pmu_state(const char *from)
6731{
6732 struct task_struct *task;
1da177e4
LT
6733 struct pt_regs *regs;
6734 pfm_context_t *ctx;
6735 unsigned long psr, dcr, info, flags;
6736 int i, this_cpu;
6737
6738 local_irq_save(flags);
6739
6740 this_cpu = smp_processor_id();
6450578f 6741 regs = task_pt_regs(current);
1da177e4
LT
6742 info = PFM_CPUINFO_GET();
6743 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6744
6745 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6746 local_irq_restore(flags);
6747 return;
6748 }
6749
6750 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6751 this_cpu,
6752 from,
19c5870c 6753 task_pid_nr(current),
1da177e4
LT
6754 regs->cr_iip,
6755 current->comm);
6756
6757 task = GET_PMU_OWNER();
6758 ctx = GET_PMU_CTX();
6759
19c5870c 6760 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
1da177e4
LT
6761
6762 psr = pfm_get_psr();
6763
6764 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6765 this_cpu,
6766 ia64_get_pmc(0),
6767 psr & IA64_PSR_PP ? 1 : 0,
6768 psr & IA64_PSR_UP ? 1 : 0,
6769 dcr & IA64_DCR_PP ? 1 : 0,
6770 info,
6771 ia64_psr(regs)->up,
6772 ia64_psr(regs)->pp);
6773
6774 ia64_psr(regs)->up = 0;
6775 ia64_psr(regs)->pp = 0;
6776
1da177e4
LT
6777 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6778 if (PMC_IS_IMPL(i) == 0) continue;
35589a8f 6779 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
1da177e4
LT
6780 }
6781
6782 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6783 if (PMD_IS_IMPL(i) == 0) continue;
35589a8f 6784 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
1da177e4
LT
6785 }
6786
6787 if (ctx) {
6788 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6789 this_cpu,
6790 ctx->ctx_state,
6791 ctx->ctx_smpl_vaddr,
6792 ctx->ctx_smpl_hdr,
6793 ctx->ctx_msgq_head,
6794 ctx->ctx_msgq_tail,
6795 ctx->ctx_saved_psr_up);
6796 }
6797 local_irq_restore(flags);
6798}
6799
6800/*
6801 * called from process.c:copy_thread(). task is new child.
6802 */
6803void
6804pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6805{
6806 struct thread_struct *thread;
6807
19c5870c 6808 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
1da177e4
LT
6809
6810 thread = &task->thread;
6811
6812 /*
6813 * cut links inherited from parent (current)
6814 */
6815 thread->pfm_context = NULL;
6816
6817 PFM_SET_WORK_PENDING(task, 0);
6818
6819 /*
6820 * the psr bits are already set properly in copy_threads()
6821 */
6822}
6823#else /* !CONFIG_PERFMON */
6824asmlinkage long
6825sys_perfmonctl (int fd, int cmd, void *arg, int count)
6826{
6827 return -ENOSYS;
6828}
6829#endif /* CONFIG_PERFMON */