]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - arch/ia64/kernel/ptrace.c
[IA64] Synchronize kernel RSE to user-space and back
[mirror_ubuntu-focal-kernel.git] / arch / ia64 / kernel / ptrace.c
CommitLineData
1da177e4
LT
1/*
2 * Kernel support for the ptrace() and syscall tracing interfaces.
3 *
4 * Copyright (C) 1999-2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 *
7 * Derived from the x86 and Alpha versions.
8 */
1da177e4
LT
9#include <linux/kernel.h>
10#include <linux/sched.h>
11#include <linux/slab.h>
12#include <linux/mm.h>
13#include <linux/errno.h>
14#include <linux/ptrace.h>
15#include <linux/smp_lock.h>
16#include <linux/user.h>
17#include <linux/security.h>
18#include <linux/audit.h>
7ed20e1a 19#include <linux/signal.h>
1da177e4
LT
20
21#include <asm/pgtable.h>
22#include <asm/processor.h>
23#include <asm/ptrace_offsets.h>
24#include <asm/rse.h>
25#include <asm/system.h>
26#include <asm/uaccess.h>
27#include <asm/unwind.h>
28#ifdef CONFIG_PERFMON
29#include <asm/perfmon.h>
30#endif
31
32#include "entry.h"
33
34/*
35 * Bits in the PSR that we allow ptrace() to change:
36 * be, up, ac, mfl, mfh (the user mask; five bits total)
37 * db (debug breakpoint fault; one bit)
38 * id (instruction debug fault disable; one bit)
39 * dd (data debug fault disable; one bit)
40 * ri (restart instruction; two bits)
41 * is (instruction set; one bit)
42 */
43#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
44 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
45
46#define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
47#define PFM_MASK MASK(38)
48
49#define PTRACE_DEBUG 0
50
51#if PTRACE_DEBUG
52# define dprintk(format...) printk(format)
53# define inline
54#else
55# define dprintk(format...)
56#endif
57
58/* Return TRUE if PT was created due to kernel-entry via a system-call. */
59
60static inline int
61in_syscall (struct pt_regs *pt)
62{
63 return (long) pt->cr_ifs >= 0;
64}
65
66/*
67 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
68 * bitset where bit i is set iff the NaT bit of register i is set.
69 */
70unsigned long
71ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
72{
73# define GET_BITS(first, last, unat) \
74 ({ \
75 unsigned long bit = ia64_unat_pos(&pt->r##first); \
76 unsigned long nbits = (last - first + 1); \
77 unsigned long mask = MASK(nbits) << first; \
78 unsigned long dist; \
79 if (bit < first) \
80 dist = 64 + bit - first; \
81 else \
82 dist = bit - first; \
83 ia64_rotr(unat, dist) & mask; \
84 })
85 unsigned long val;
86
87 /*
88 * Registers that are stored consecutively in struct pt_regs
89 * can be handled in parallel. If the register order in
90 * struct_pt_regs changes, this code MUST be updated.
91 */
92 val = GET_BITS( 1, 1, scratch_unat);
93 val |= GET_BITS( 2, 3, scratch_unat);
94 val |= GET_BITS(12, 13, scratch_unat);
95 val |= GET_BITS(14, 14, scratch_unat);
96 val |= GET_BITS(15, 15, scratch_unat);
97 val |= GET_BITS( 8, 11, scratch_unat);
98 val |= GET_BITS(16, 31, scratch_unat);
99 return val;
100
101# undef GET_BITS
102}
103
104/*
105 * Set the NaT bits for the scratch registers according to NAT and
106 * return the resulting unat (assuming the scratch registers are
107 * stored in PT).
108 */
109unsigned long
110ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
111{
112# define PUT_BITS(first, last, nat) \
113 ({ \
114 unsigned long bit = ia64_unat_pos(&pt->r##first); \
115 unsigned long nbits = (last - first + 1); \
116 unsigned long mask = MASK(nbits) << first; \
117 long dist; \
118 if (bit < first) \
119 dist = 64 + bit - first; \
120 else \
121 dist = bit - first; \
122 ia64_rotl(nat & mask, dist); \
123 })
124 unsigned long scratch_unat;
125
126 /*
127 * Registers that are stored consecutively in struct pt_regs
128 * can be handled in parallel. If the register order in
129 * struct_pt_regs changes, this code MUST be updated.
130 */
131 scratch_unat = PUT_BITS( 1, 1, nat);
132 scratch_unat |= PUT_BITS( 2, 3, nat);
133 scratch_unat |= PUT_BITS(12, 13, nat);
134 scratch_unat |= PUT_BITS(14, 14, nat);
135 scratch_unat |= PUT_BITS(15, 15, nat);
136 scratch_unat |= PUT_BITS( 8, 11, nat);
137 scratch_unat |= PUT_BITS(16, 31, nat);
138
139 return scratch_unat;
140
141# undef PUT_BITS
142}
143
144#define IA64_MLX_TEMPLATE 0x2
145#define IA64_MOVL_OPCODE 6
146
147void
148ia64_increment_ip (struct pt_regs *regs)
149{
150 unsigned long w0, ri = ia64_psr(regs)->ri + 1;
151
152 if (ri > 2) {
153 ri = 0;
154 regs->cr_iip += 16;
155 } else if (ri == 2) {
156 get_user(w0, (char __user *) regs->cr_iip + 0);
157 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
158 /*
159 * rfi'ing to slot 2 of an MLX bundle causes
160 * an illegal operation fault. We don't want
161 * that to happen...
162 */
163 ri = 0;
164 regs->cr_iip += 16;
165 }
166 }
167 ia64_psr(regs)->ri = ri;
168}
169
170void
171ia64_decrement_ip (struct pt_regs *regs)
172{
173 unsigned long w0, ri = ia64_psr(regs)->ri - 1;
174
175 if (ia64_psr(regs)->ri == 0) {
176 regs->cr_iip -= 16;
177 ri = 2;
178 get_user(w0, (char __user *) regs->cr_iip + 0);
179 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
180 /*
181 * rfi'ing to slot 2 of an MLX bundle causes
182 * an illegal operation fault. We don't want
183 * that to happen...
184 */
185 ri = 1;
186 }
187 }
188 ia64_psr(regs)->ri = ri;
189}
190
191/*
192 * This routine is used to read an rnat bits that are stored on the
193 * kernel backing store. Since, in general, the alignment of the user
194 * and kernel are different, this is not completely trivial. In
195 * essence, we need to construct the user RNAT based on up to two
196 * kernel RNAT values and/or the RNAT value saved in the child's
197 * pt_regs.
198 *
199 * user rbs
200 *
201 * +--------+ <-- lowest address
202 * | slot62 |
203 * +--------+
204 * | rnat | 0x....1f8
205 * +--------+
206 * | slot00 | \
207 * +--------+ |
208 * | slot01 | > child_regs->ar_rnat
209 * +--------+ |
210 * | slot02 | / kernel rbs
211 * +--------+ +--------+
212 * <- child_regs->ar_bspstore | slot61 | <-- krbs
213 * +- - - - + +--------+
214 * | slot62 |
215 * +- - - - + +--------+
216 * | rnat |
217 * +- - - - + +--------+
218 * vrnat | slot00 |
219 * +- - - - + +--------+
220 * = =
221 * +--------+
222 * | slot00 | \
223 * +--------+ |
224 * | slot01 | > child_stack->ar_rnat
225 * +--------+ |
226 * | slot02 | /
227 * +--------+
228 * <--- child_stack->ar_bspstore
229 *
230 * The way to think of this code is as follows: bit 0 in the user rnat
231 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
232 * value. The kernel rnat value holding this bit is stored in
233 * variable rnat0. rnat1 is loaded with the kernel rnat value that
234 * form the upper bits of the user rnat value.
235 *
236 * Boundary cases:
237 *
238 * o when reading the rnat "below" the first rnat slot on the kernel
239 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
240 * merged in from pt->ar_rnat.
241 *
242 * o when reading the rnat "above" the last rnat slot on the kernel
243 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
244 */
245static unsigned long
246get_rnat (struct task_struct *task, struct switch_stack *sw,
247 unsigned long *krbs, unsigned long *urnat_addr,
248 unsigned long *urbs_end)
249{
250 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
251 unsigned long umask = 0, mask, m;
252 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
253 long num_regs, nbits;
254 struct pt_regs *pt;
255
6450578f 256 pt = task_pt_regs(task);
1da177e4
LT
257 kbsp = (unsigned long *) sw->ar_bspstore;
258 ubspstore = (unsigned long *) pt->ar_bspstore;
259
260 if (urbs_end < urnat_addr)
261 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
262 else
263 nbits = 63;
264 mask = MASK(nbits);
265 /*
266 * First, figure out which bit number slot 0 in user-land maps
267 * to in the kernel rnat. Do this by figuring out how many
268 * register slots we're beyond the user's backingstore and
269 * then computing the equivalent address in kernel space.
270 */
271 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
272 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
273 shift = ia64_rse_slot_num(slot0_kaddr);
274 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
275 rnat0_kaddr = rnat1_kaddr - 64;
276
277 if (ubspstore + 63 > urnat_addr) {
278 /* some bits need to be merged in from pt->ar_rnat */
279 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
280 urnat = (pt->ar_rnat & umask);
281 mask &= ~umask;
282 if (!mask)
283 return urnat;
284 }
285
286 m = mask << shift;
287 if (rnat0_kaddr >= kbsp)
288 rnat0 = sw->ar_rnat;
289 else if (rnat0_kaddr > krbs)
290 rnat0 = *rnat0_kaddr;
291 urnat |= (rnat0 & m) >> shift;
292
293 m = mask >> (63 - shift);
294 if (rnat1_kaddr >= kbsp)
295 rnat1 = sw->ar_rnat;
296 else if (rnat1_kaddr > krbs)
297 rnat1 = *rnat1_kaddr;
298 urnat |= (rnat1 & m) << (63 - shift);
299 return urnat;
300}
301
302/*
303 * The reverse of get_rnat.
304 */
305static void
306put_rnat (struct task_struct *task, struct switch_stack *sw,
307 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
308 unsigned long *urbs_end)
309{
310 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
311 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
312 long num_regs, nbits;
313 struct pt_regs *pt;
314 unsigned long cfm, *urbs_kargs;
315
6450578f 316 pt = task_pt_regs(task);
1da177e4
LT
317 kbsp = (unsigned long *) sw->ar_bspstore;
318 ubspstore = (unsigned long *) pt->ar_bspstore;
319
320 urbs_kargs = urbs_end;
321 if (in_syscall(pt)) {
322 /*
323 * If entered via syscall, don't allow user to set rnat bits
324 * for syscall args.
325 */
326 cfm = pt->cr_ifs;
327 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
328 }
329
330 if (urbs_kargs >= urnat_addr)
331 nbits = 63;
332 else {
333 if ((urnat_addr - 63) >= urbs_kargs)
334 return;
335 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
336 }
337 mask = MASK(nbits);
338
339 /*
340 * First, figure out which bit number slot 0 in user-land maps
341 * to in the kernel rnat. Do this by figuring out how many
342 * register slots we're beyond the user's backingstore and
343 * then computing the equivalent address in kernel space.
344 */
345 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
346 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
347 shift = ia64_rse_slot_num(slot0_kaddr);
348 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
349 rnat0_kaddr = rnat1_kaddr - 64;
350
351 if (ubspstore + 63 > urnat_addr) {
352 /* some bits need to be place in pt->ar_rnat: */
353 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
354 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
355 mask &= ~umask;
356 if (!mask)
357 return;
358 }
359 /*
360 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
361 * rnat slot is ignored. so we don't have to clear it here.
362 */
363 rnat0 = (urnat << shift);
364 m = mask << shift;
365 if (rnat0_kaddr >= kbsp)
366 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
367 else if (rnat0_kaddr > krbs)
368 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
369
370 rnat1 = (urnat >> (63 - shift));
371 m = mask >> (63 - shift);
372 if (rnat1_kaddr >= kbsp)
373 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
374 else if (rnat1_kaddr > krbs)
375 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
376}
377
378static inline int
379on_kernel_rbs (unsigned long addr, unsigned long bspstore,
380 unsigned long urbs_end)
381{
382 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
383 urbs_end);
384 return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
385}
386
387/*
388 * Read a word from the user-level backing store of task CHILD. ADDR
389 * is the user-level address to read the word from, VAL a pointer to
390 * the return value, and USER_BSP gives the end of the user-level
391 * backing store (i.e., it's the address that would be in ar.bsp after
392 * the user executed a "cover" instruction).
393 *
394 * This routine takes care of accessing the kernel register backing
395 * store for those registers that got spilled there. It also takes
396 * care of calculating the appropriate RNaT collection words.
397 */
398long
399ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
400 unsigned long user_rbs_end, unsigned long addr, long *val)
401{
402 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
403 struct pt_regs *child_regs;
404 size_t copied;
405 long ret;
406
407 urbs_end = (long *) user_rbs_end;
408 laddr = (unsigned long *) addr;
6450578f 409 child_regs = task_pt_regs(child);
1da177e4
LT
410 bspstore = (unsigned long *) child_regs->ar_bspstore;
411 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
412 if (on_kernel_rbs(addr, (unsigned long) bspstore,
413 (unsigned long) urbs_end))
414 {
415 /*
416 * Attempt to read the RBS in an area that's actually
417 * on the kernel RBS => read the corresponding bits in
418 * the kernel RBS.
419 */
420 rnat_addr = ia64_rse_rnat_addr(laddr);
421 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
422
423 if (laddr == rnat_addr) {
424 /* return NaT collection word itself */
425 *val = ret;
426 return 0;
427 }
428
429 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
430 /*
431 * It is implementation dependent whether the
432 * data portion of a NaT value gets saved on a
433 * st8.spill or RSE spill (e.g., see EAS 2.6,
434 * 4.4.4.6 Register Spill and Fill). To get
435 * consistent behavior across all possible
436 * IA-64 implementations, we return zero in
437 * this case.
438 */
439 *val = 0;
440 return 0;
441 }
442
443 if (laddr < urbs_end) {
444 /*
445 * The desired word is on the kernel RBS and
446 * is not a NaT.
447 */
448 regnum = ia64_rse_num_regs(bspstore, laddr);
449 *val = *ia64_rse_skip_regs(krbs, regnum);
450 return 0;
451 }
452 }
453 copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
454 if (copied != sizeof(ret))
455 return -EIO;
456 *val = ret;
457 return 0;
458}
459
460long
461ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
462 unsigned long user_rbs_end, unsigned long addr, long val)
463{
464 unsigned long *bspstore, *krbs, regnum, *laddr;
465 unsigned long *urbs_end = (long *) user_rbs_end;
466 struct pt_regs *child_regs;
467
468 laddr = (unsigned long *) addr;
6450578f 469 child_regs = task_pt_regs(child);
1da177e4
LT
470 bspstore = (unsigned long *) child_regs->ar_bspstore;
471 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
472 if (on_kernel_rbs(addr, (unsigned long) bspstore,
473 (unsigned long) urbs_end))
474 {
475 /*
476 * Attempt to write the RBS in an area that's actually
477 * on the kernel RBS => write the corresponding bits
478 * in the kernel RBS.
479 */
480 if (ia64_rse_is_rnat_slot(laddr))
481 put_rnat(child, child_stack, krbs, laddr, val,
482 urbs_end);
483 else {
484 if (laddr < urbs_end) {
485 regnum = ia64_rse_num_regs(bspstore, laddr);
486 *ia64_rse_skip_regs(krbs, regnum) = val;
487 }
488 }
489 } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
490 != sizeof(val))
491 return -EIO;
492 return 0;
493}
494
495/*
496 * Calculate the address of the end of the user-level register backing
497 * store. This is the address that would have been stored in ar.bsp
498 * if the user had executed a "cover" instruction right before
499 * entering the kernel. If CFMP is not NULL, it is used to return the
500 * "current frame mask" that was active at the time the kernel was
501 * entered.
502 */
503unsigned long
504ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
505 unsigned long *cfmp)
506{
507 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
508 long ndirty;
509
510 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
511 bspstore = (unsigned long *) pt->ar_bspstore;
512 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
513
514 if (in_syscall(pt))
515 ndirty += (cfm & 0x7f);
516 else
517 cfm &= ~(1UL << 63); /* clear valid bit */
518
519 if (cfmp)
520 *cfmp = cfm;
521 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
522}
523
524/*
525 * Synchronize (i.e, write) the RSE backing store living in kernel
526 * space to the VM of the CHILD task. SW and PT are the pointers to
527 * the switch_stack and pt_regs structures, respectively.
528 * USER_RBS_END is the user-level address at which the backing store
529 * ends.
530 */
531long
532ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
533 unsigned long user_rbs_start, unsigned long user_rbs_end)
534{
535 unsigned long addr, val;
536 long ret;
537
538 /* now copy word for word from kernel rbs to user rbs: */
539 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
540 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
541 if (ret < 0)
542 return ret;
543 if (access_process_vm(child, addr, &val, sizeof(val), 1)
544 != sizeof(val))
545 return -EIO;
546 }
547 return 0;
548}
549
3b2ce0b1
PT
550static long
551ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
552 unsigned long user_rbs_start, unsigned long user_rbs_end)
553{
554 unsigned long addr, val;
555 long ret;
556
557 /* now copy word for word from user rbs to kernel rbs: */
558 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
559 if (access_process_vm(child, addr, &val, sizeof(val), 0)
560 != sizeof(val))
561 return -EIO;
562
563 ret = ia64_poke(child, sw, user_rbs_end, addr, val);
564 if (ret < 0)
565 return ret;
566 }
567 return 0;
568}
569
570typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
571 unsigned long, unsigned long);
572
573static void do_sync_rbs(struct unw_frame_info *info, void *arg)
574{
575 struct pt_regs *pt;
576 unsigned long urbs_end;
577 syncfunc_t fn = arg;
578
579 if (unw_unwind_to_user(info) < 0)
580 return;
581 pt = task_pt_regs(info->task);
582 urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
583
584 fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
585}
586
587/*
588 * when a thread is stopped (ptraced), debugger might change thread's user
589 * stack (change memory directly), and we must avoid the RSE stored in kernel
590 * to override user stack (user space's RSE is newer than kernel's in the
591 * case). To workaround the issue, we copy kernel RSE to user RSE before the
592 * task is stopped, so user RSE has updated data. we then copy user RSE to
593 * kernel after the task is resummed from traced stop and kernel will use the
594 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
595 * synchronize user RSE to kernel.
596 */
597void ia64_ptrace_stop(void)
598{
599 if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
600 return;
601 tsk_set_notify_resume(current);
602 unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
603}
604
605/*
606 * This is called to read back the register backing store.
607 */
608void ia64_sync_krbs(void)
609{
610 clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
611 tsk_clear_notify_resume(current);
612
613 unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
614}
615
1da177e4
LT
616static inline int
617thread_matches (struct task_struct *thread, unsigned long addr)
618{
619 unsigned long thread_rbs_end;
620 struct pt_regs *thread_regs;
621
622 if (ptrace_check_attach(thread, 0) < 0)
623 /*
624 * If the thread is not in an attachable state, we'll
625 * ignore it. The net effect is that if ADDR happens
626 * to overlap with the portion of the thread's
627 * register backing store that is currently residing
628 * on the thread's kernel stack, then ptrace() may end
629 * up accessing a stale value. But if the thread
630 * isn't stopped, that's a problem anyhow, so we're
631 * doing as well as we can...
632 */
633 return 0;
634
6450578f 635 thread_regs = task_pt_regs(thread);
1da177e4
LT
636 thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
637 if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
638 return 0;
639
640 return 1; /* looks like we've got a winner */
641}
642
643/*
644 * GDB apparently wants to be able to read the register-backing store
645 * of any thread when attached to a given process. If we are peeking
646 * or poking an address that happens to reside in the kernel-backing
647 * store of another thread, we need to attach to that thread, because
648 * otherwise we end up accessing stale data.
649 *
650 * task_list_lock must be read-locked before calling this routine!
651 */
652static struct task_struct *
653find_thread_for_addr (struct task_struct *child, unsigned long addr)
654{
0e1f6060 655 struct task_struct *p;
1da177e4 656 struct mm_struct *mm;
4ac0068f 657 struct list_head *this, *next;
1da177e4
LT
658 int mm_users;
659
660 if (!(mm = get_task_mm(child)))
661 return child;
662
663 /* -1 because of our get_task_mm(): */
664 mm_users = atomic_read(&mm->mm_users) - 1;
665 if (mm_users <= 1)
666 goto out; /* not multi-threaded */
667
668 /*
4ac0068f
CW
669 * Traverse the current process' children list. Every task that
670 * one attaches to becomes a child. And it is only attached children
671 * of the debugger that are of interest (ptrace_check_attach checks
672 * for this).
1da177e4 673 */
4ac0068f
CW
674 list_for_each_safe(this, next, &current->children) {
675 p = list_entry(this, struct task_struct, sibling);
87f76d3a 676 if (p->tgid != child->tgid)
1da177e4 677 continue;
1da177e4
LT
678 if (thread_matches(p, addr)) {
679 child = p;
680 goto out;
681 }
4ac0068f
CW
682 }
683
1da177e4
LT
684 out:
685 mmput(mm);
686 return child;
687}
688
689/*
690 * Write f32-f127 back to task->thread.fph if it has been modified.
691 */
692inline void
693ia64_flush_fph (struct task_struct *task)
694{
6450578f 695 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
1da177e4 696
05062d96
PC
697 /*
698 * Prevent migrating this task while
699 * we're fiddling with the FPU state
700 */
701 preempt_disable();
1da177e4
LT
702 if (ia64_is_local_fpu_owner(task) && psr->mfh) {
703 psr->mfh = 0;
704 task->thread.flags |= IA64_THREAD_FPH_VALID;
705 ia64_save_fpu(&task->thread.fph[0]);
706 }
05062d96 707 preempt_enable();
1da177e4
LT
708}
709
710/*
711 * Sync the fph state of the task so that it can be manipulated
712 * through thread.fph. If necessary, f32-f127 are written back to
713 * thread.fph or, if the fph state hasn't been used before, thread.fph
714 * is cleared to zeroes. Also, access to f32-f127 is disabled to
715 * ensure that the task picks up the state from thread.fph when it
716 * executes again.
717 */
718void
719ia64_sync_fph (struct task_struct *task)
720{
6450578f 721 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
1da177e4
LT
722
723 ia64_flush_fph(task);
724 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
725 task->thread.flags |= IA64_THREAD_FPH_VALID;
726 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
727 }
728 ia64_drop_fpu(task);
729 psr->dfh = 1;
730}
731
732static int
733access_fr (struct unw_frame_info *info, int regnum, int hi,
734 unsigned long *data, int write_access)
735{
736 struct ia64_fpreg fpval;
737 int ret;
738
739 ret = unw_get_fr(info, regnum, &fpval);
740 if (ret < 0)
741 return ret;
742
743 if (write_access) {
744 fpval.u.bits[hi] = *data;
745 ret = unw_set_fr(info, regnum, fpval);
746 } else
747 *data = fpval.u.bits[hi];
748 return ret;
749}
750
751/*
752 * Change the machine-state of CHILD such that it will return via the normal
753 * kernel exit-path, rather than the syscall-exit path.
754 */
755static void
756convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
757 unsigned long cfm)
758{
759 struct unw_frame_info info, prev_info;
02a017a9 760 unsigned long ip, sp, pr;
1da177e4
LT
761
762 unw_init_from_blocked_task(&info, child);
763 while (1) {
764 prev_info = info;
765 if (unw_unwind(&info) < 0)
766 return;
02a017a9
DMT
767
768 unw_get_sp(&info, &sp);
769 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
770 < IA64_PT_REGS_SIZE) {
771 dprintk("ptrace.%s: ran off the top of the kernel "
772 "stack\n", __FUNCTION__);
773 return;
774 }
775 if (unw_get_pr (&prev_info, &pr) < 0) {
776 unw_get_rp(&prev_info, &ip);
777 dprintk("ptrace.%s: failed to read "
778 "predicate register (ip=0x%lx)\n",
779 __FUNCTION__, ip);
1da177e4 780 return;
02a017a9
DMT
781 }
782 if (unw_is_intr_frame(&info)
783 && (pr & (1UL << PRED_USER_STACK)))
1da177e4
LT
784 break;
785 }
786
7f9eaedf
DMT
787 /*
788 * Note: at the time of this call, the target task is blocked
789 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
790 * (aka, "pLvSys") we redirect execution from
791 * .work_pending_syscall_end to .work_processed_kernel.
792 */
1da177e4 793 unw_get_pr(&prev_info, &pr);
7f9eaedf 794 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
1da177e4
LT
795 pr |= (1UL << PRED_NON_SYSCALL);
796 unw_set_pr(&prev_info, pr);
797
798 pt->cr_ifs = (1UL << 63) | cfm;
7f9eaedf
DMT
799 /*
800 * Clear the memory that is NOT written on syscall-entry to
801 * ensure we do not leak kernel-state to user when execution
802 * resumes.
803 */
804 pt->r2 = 0;
805 pt->r3 = 0;
806 pt->r14 = 0;
807 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
808 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
809 pt->b7 = 0;
810 pt->ar_ccv = 0;
811 pt->ar_csd = 0;
812 pt->ar_ssd = 0;
1da177e4
LT
813}
814
815static int
816access_nat_bits (struct task_struct *child, struct pt_regs *pt,
817 struct unw_frame_info *info,
818 unsigned long *data, int write_access)
819{
820 unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
821 char nat = 0;
822
823 if (write_access) {
824 nat_bits = *data;
825 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
826 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
827 dprintk("ptrace: failed to set ar.unat\n");
828 return -1;
829 }
830 for (regnum = 4; regnum <= 7; ++regnum) {
831 unw_get_gr(info, regnum, &dummy, &nat);
832 unw_set_gr(info, regnum, dummy,
833 (nat_bits >> regnum) & 1);
834 }
835 } else {
836 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
837 dprintk("ptrace: failed to read ar.unat\n");
838 return -1;
839 }
840 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
841 for (regnum = 4; regnum <= 7; ++regnum) {
842 unw_get_gr(info, regnum, &dummy, &nat);
843 nat_bits |= (nat != 0) << regnum;
844 }
845 *data = nat_bits;
846 }
847 return 0;
848}
849
850static int
851access_uarea (struct task_struct *child, unsigned long addr,
852 unsigned long *data, int write_access)
853{
854 unsigned long *ptr, regnum, urbs_end, rnat_addr, cfm;
855 struct switch_stack *sw;
856 struct pt_regs *pt;
857# define pt_reg_addr(pt, reg) ((void *) \
858 ((unsigned long) (pt) \
859 + offsetof(struct pt_regs, reg)))
860
861
6450578f 862 pt = task_pt_regs(child);
1da177e4
LT
863 sw = (struct switch_stack *) (child->thread.ksp + 16);
864
865 if ((addr & 0x7) != 0) {
866 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
867 return -1;
868 }
869
870 if (addr < PT_F127 + 16) {
871 /* accessing fph */
872 if (write_access)
873 ia64_sync_fph(child);
874 else
875 ia64_flush_fph(child);
876 ptr = (unsigned long *)
877 ((unsigned long) &child->thread.fph + addr);
878 } else if ((addr >= PT_F10) && (addr < PT_F11 + 16)) {
879 /* scratch registers untouched by kernel (saved in pt_regs) */
880 ptr = pt_reg_addr(pt, f10) + (addr - PT_F10);
881 } else if (addr >= PT_F12 && addr < PT_F15 + 16) {
882 /*
883 * Scratch registers untouched by kernel (saved in
884 * switch_stack).
885 */
886 ptr = (unsigned long *) ((long) sw
887 + (addr - PT_NAT_BITS - 32));
888 } else if (addr < PT_AR_LC + 8) {
889 /* preserved state: */
890 struct unw_frame_info info;
891 char nat = 0;
892 int ret;
893
894 unw_init_from_blocked_task(&info, child);
895 if (unw_unwind_to_user(&info) < 0)
896 return -1;
897
898 switch (addr) {
899 case PT_NAT_BITS:
900 return access_nat_bits(child, pt, &info,
901 data, write_access);
902
903 case PT_R4: case PT_R5: case PT_R6: case PT_R7:
904 if (write_access) {
905 /* read NaT bit first: */
906 unsigned long dummy;
907
908 ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4,
909 &dummy, &nat);
910 if (ret < 0)
911 return ret;
912 }
913 return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data,
914 &nat, write_access);
915
916 case PT_B1: case PT_B2: case PT_B3:
917 case PT_B4: case PT_B5:
918 return unw_access_br(&info, (addr - PT_B1)/8 + 1, data,
919 write_access);
920
921 case PT_AR_EC:
922 return unw_access_ar(&info, UNW_AR_EC, data,
923 write_access);
924
925 case PT_AR_LC:
926 return unw_access_ar(&info, UNW_AR_LC, data,
927 write_access);
928
929 default:
930 if (addr >= PT_F2 && addr < PT_F5 + 16)
931 return access_fr(&info, (addr - PT_F2)/16 + 2,
932 (addr & 8) != 0, data,
933 write_access);
934 else if (addr >= PT_F16 && addr < PT_F31 + 16)
935 return access_fr(&info,
936 (addr - PT_F16)/16 + 16,
937 (addr & 8) != 0,
938 data, write_access);
939 else {
940 dprintk("ptrace: rejecting access to register "
941 "address 0x%lx\n", addr);
942 return -1;
943 }
944 }
945 } else if (addr < PT_F9+16) {
946 /* scratch state */
947 switch (addr) {
948 case PT_AR_BSP:
949 /*
950 * By convention, we use PT_AR_BSP to refer to
951 * the end of the user-level backing store.
952 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
953 * to get the real value of ar.bsp at the time
954 * the kernel was entered.
955 *
956 * Furthermore, when changing the contents of
957 * PT_AR_BSP (or PT_CFM) we MUST copy any
958 * users-level stacked registers that are
959 * stored on the kernel stack back to
960 * user-space because otherwise, we might end
961 * up clobbering kernel stacked registers.
962 * Also, if this happens while the task is
963 * blocked in a system call, which convert the
964 * state such that the non-system-call exit
965 * path is used. This ensures that the proper
966 * state will be picked up when resuming
967 * execution. However, it *also* means that
968 * once we write PT_AR_BSP/PT_CFM, it won't be
969 * possible to modify the syscall arguments of
970 * the pending system call any longer. This
971 * shouldn't be an issue because modifying
972 * PT_AR_BSP/PT_CFM generally implies that
973 * we're either abandoning the pending system
974 * call or that we defer it's re-execution
975 * (e.g., due to GDB doing an inferior
976 * function call).
977 */
978 urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
979 if (write_access) {
980 if (*data != urbs_end) {
981 if (ia64_sync_user_rbs(child, sw,
982 pt->ar_bspstore,
983 urbs_end) < 0)
984 return -1;
985 if (in_syscall(pt))
986 convert_to_non_syscall(child,
987 pt,
988 cfm);
989 /*
990 * Simulate user-level write
991 * of ar.bsp:
992 */
993 pt->loadrs = 0;
994 pt->ar_bspstore = *data;
995 }
996 } else
997 *data = urbs_end;
998 return 0;
999
1000 case PT_CFM:
1001 urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
1002 if (write_access) {
1003 if (((cfm ^ *data) & PFM_MASK) != 0) {
1004 if (ia64_sync_user_rbs(child, sw,
1005 pt->ar_bspstore,
1006 urbs_end) < 0)
1007 return -1;
1008 if (in_syscall(pt))
1009 convert_to_non_syscall(child,
1010 pt,
1011 cfm);
1012 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1013 | (*data & PFM_MASK));
1014 }
1015 } else
1016 *data = cfm;
1017 return 0;
1018
1019 case PT_CR_IPSR:
b09e789c
SL
1020 if (write_access) {
1021 unsigned long tmp = *data;
1022 /* psr.ri==3 is a reserved value: SDM 2:25 */
1023 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1024 tmp &= ~IA64_PSR_RI;
1025 pt->cr_ipsr = ((tmp & IPSR_MASK)
1da177e4 1026 | (pt->cr_ipsr & ~IPSR_MASK));
b09e789c 1027 } else
1da177e4
LT
1028 *data = (pt->cr_ipsr & IPSR_MASK);
1029 return 0;
1030
4ea78729
MC
1031 case PT_AR_RSC:
1032 if (write_access)
1033 pt->ar_rsc = *data | (3 << 2); /* force PL3 */
1034 else
1035 *data = pt->ar_rsc;
1036 return 0;
1037
1da177e4
LT
1038 case PT_AR_RNAT:
1039 urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
1040 rnat_addr = (long) ia64_rse_rnat_addr((long *)
1041 urbs_end);
1042 if (write_access)
1043 return ia64_poke(child, sw, urbs_end,
1044 rnat_addr, *data);
1045 else
1046 return ia64_peek(child, sw, urbs_end,
1047 rnat_addr, data);
1048
1049 case PT_R1:
1050 ptr = pt_reg_addr(pt, r1);
1051 break;
1052 case PT_R2: case PT_R3:
1053 ptr = pt_reg_addr(pt, r2) + (addr - PT_R2);
1054 break;
1055 case PT_R8: case PT_R9: case PT_R10: case PT_R11:
1056 ptr = pt_reg_addr(pt, r8) + (addr - PT_R8);
1057 break;
1058 case PT_R12: case PT_R13:
1059 ptr = pt_reg_addr(pt, r12) + (addr - PT_R12);
1060 break;
1061 case PT_R14:
1062 ptr = pt_reg_addr(pt, r14);
1063 break;
1064 case PT_R15:
1065 ptr = pt_reg_addr(pt, r15);
1066 break;
1067 case PT_R16: case PT_R17: case PT_R18: case PT_R19:
1068 case PT_R20: case PT_R21: case PT_R22: case PT_R23:
1069 case PT_R24: case PT_R25: case PT_R26: case PT_R27:
1070 case PT_R28: case PT_R29: case PT_R30: case PT_R31:
1071 ptr = pt_reg_addr(pt, r16) + (addr - PT_R16);
1072 break;
1073 case PT_B0:
1074 ptr = pt_reg_addr(pt, b0);
1075 break;
1076 case PT_B6:
1077 ptr = pt_reg_addr(pt, b6);
1078 break;
1079 case PT_B7:
1080 ptr = pt_reg_addr(pt, b7);
1081 break;
1082 case PT_F6: case PT_F6+8: case PT_F7: case PT_F7+8:
1083 case PT_F8: case PT_F8+8: case PT_F9: case PT_F9+8:
1084 ptr = pt_reg_addr(pt, f6) + (addr - PT_F6);
1085 break;
1086 case PT_AR_BSPSTORE:
1087 ptr = pt_reg_addr(pt, ar_bspstore);
1088 break;
1da177e4
LT
1089 case PT_AR_UNAT:
1090 ptr = pt_reg_addr(pt, ar_unat);
1091 break;
1092 case PT_AR_PFS:
1093 ptr = pt_reg_addr(pt, ar_pfs);
1094 break;
1095 case PT_AR_CCV:
1096 ptr = pt_reg_addr(pt, ar_ccv);
1097 break;
1098 case PT_AR_FPSR:
1099 ptr = pt_reg_addr(pt, ar_fpsr);
1100 break;
1101 case PT_CR_IIP:
1102 ptr = pt_reg_addr(pt, cr_iip);
1103 break;
1104 case PT_PR:
1105 ptr = pt_reg_addr(pt, pr);
1106 break;
1107 /* scratch register */
1108
1109 default:
1110 /* disallow accessing anything else... */
1111 dprintk("ptrace: rejecting access to register "
1112 "address 0x%lx\n", addr);
1113 return -1;
1114 }
1115 } else if (addr <= PT_AR_SSD) {
1116 ptr = pt_reg_addr(pt, ar_csd) + (addr - PT_AR_CSD);
1117 } else {
1118 /* access debug registers */
1119
1120 if (addr >= PT_IBR) {
1121 regnum = (addr - PT_IBR) >> 3;
1122 ptr = &child->thread.ibr[0];
1123 } else {
1124 regnum = (addr - PT_DBR) >> 3;
1125 ptr = &child->thread.dbr[0];
1126 }
1127
1128 if (regnum >= 8) {
1129 dprintk("ptrace: rejecting access to register "
1130 "address 0x%lx\n", addr);
1131 return -1;
1132 }
1133#ifdef CONFIG_PERFMON
1134 /*
1135 * Check if debug registers are used by perfmon. This
1136 * test must be done once we know that we can do the
1137 * operation, i.e. the arguments are all valid, but
1138 * before we start modifying the state.
1139 *
1140 * Perfmon needs to keep a count of how many processes
1141 * are trying to modify the debug registers for system
1142 * wide monitoring sessions.
1143 *
1144 * We also include read access here, because they may
1145 * cause the PMU-installed debug register state
1146 * (dbr[], ibr[]) to be reset. The two arrays are also
1147 * used by perfmon, but we do not use
1148 * IA64_THREAD_DBG_VALID. The registers are restored
1149 * by the PMU context switch code.
1150 */
1151 if (pfm_use_debug_registers(child)) return -1;
1152#endif
1153
1154 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
1155 child->thread.flags |= IA64_THREAD_DBG_VALID;
1156 memset(child->thread.dbr, 0,
1157 sizeof(child->thread.dbr));
1158 memset(child->thread.ibr, 0,
1159 sizeof(child->thread.ibr));
1160 }
1161
1162 ptr += regnum;
1163
1164 if ((regnum & 1) && write_access) {
1165 /* don't let the user set kernel-level breakpoints: */
1166 *ptr = *data & ~(7UL << 56);
1167 return 0;
1168 }
1169 }
1170 if (write_access)
1171 *ptr = *data;
1172 else
1173 *data = *ptr;
1174 return 0;
1175}
1176
1177static long
1178ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
1179{
1180 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
1181 struct unw_frame_info info;
1182 struct ia64_fpreg fpval;
1183 struct switch_stack *sw;
1184 struct pt_regs *pt;
1185 long ret, retval = 0;
1186 char nat = 0;
1187 int i;
1188
1189 if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
1190 return -EIO;
1191
6450578f 1192 pt = task_pt_regs(child);
1da177e4
LT
1193 sw = (struct switch_stack *) (child->thread.ksp + 16);
1194 unw_init_from_blocked_task(&info, child);
1195 if (unw_unwind_to_user(&info) < 0) {
1196 return -EIO;
1197 }
1198
1199 if (((unsigned long) ppr & 0x7) != 0) {
1200 dprintk("ptrace:unaligned register address %p\n", ppr);
1201 return -EIO;
1202 }
1203
1204 if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
1205 || access_uarea(child, PT_AR_EC, &ec, 0) < 0
1206 || access_uarea(child, PT_AR_LC, &lc, 0) < 0
1207 || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
1208 || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
1209 || access_uarea(child, PT_CFM, &cfm, 0)
1210 || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
1211 return -EIO;
1212
1213 /* control regs */
1214
1215 retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
1216 retval |= __put_user(psr, &ppr->cr_ipsr);
1217
1218 /* app regs */
1219
1220 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1221 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
1222 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1223 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1224 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1225 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1226
1227 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
1228 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
1229 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1230 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
1231 retval |= __put_user(cfm, &ppr->cfm);
1232
1233 /* gr1-gr3 */
1234
1235 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
1236 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
1237
1238 /* gr4-gr7 */
1239
1240 for (i = 4; i < 8; i++) {
1241 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
1242 return -EIO;
1243 retval |= __put_user(val, &ppr->gr[i]);
1244 }
1245
1246 /* gr8-gr11 */
1247
1248 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
1249
1250 /* gr12-gr15 */
1251
1252 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
1253 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
1254 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
1255
1256 /* gr16-gr31 */
1257
1258 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
1259
1260 /* b0 */
1261
1262 retval |= __put_user(pt->b0, &ppr->br[0]);
1263
1264 /* b1-b5 */
1265
1266 for (i = 1; i < 6; i++) {
1267 if (unw_access_br(&info, i, &val, 0) < 0)
1268 return -EIO;
1269 __put_user(val, &ppr->br[i]);
1270 }
1271
1272 /* b6-b7 */
1273
1274 retval |= __put_user(pt->b6, &ppr->br[6]);
1275 retval |= __put_user(pt->b7, &ppr->br[7]);
1276
1277 /* fr2-fr5 */
1278
1279 for (i = 2; i < 6; i++) {
1280 if (unw_get_fr(&info, i, &fpval) < 0)
1281 return -EIO;
1282 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
1283 }
1284
1285 /* fr6-fr11 */
1286
1287 retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
1288 sizeof(struct ia64_fpreg) * 6);
1289
1290 /* fp scratch regs(12-15) */
1291
1292 retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
1293 sizeof(struct ia64_fpreg) * 4);
1294
1295 /* fr16-fr31 */
1296
1297 for (i = 16; i < 32; i++) {
1298 if (unw_get_fr(&info, i, &fpval) < 0)
1299 return -EIO;
1300 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
1301 }
1302
1303 /* fph */
1304
1305 ia64_flush_fph(child);
1306 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
1307 sizeof(ppr->fr[32]) * 96);
1308
1309 /* preds */
1310
1311 retval |= __put_user(pt->pr, &ppr->pr);
1312
1313 /* nat bits */
1314
1315 retval |= __put_user(nat_bits, &ppr->nat);
1316
1317 ret = retval ? -EIO : 0;
1318 return ret;
1319}
1320
1321static long
1322ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
1323{
4ea78729 1324 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
1da177e4
LT
1325 struct unw_frame_info info;
1326 struct switch_stack *sw;
1327 struct ia64_fpreg fpval;
1328 struct pt_regs *pt;
1329 long ret, retval = 0;
1330 int i;
1331
1332 memset(&fpval, 0, sizeof(fpval));
1333
1334 if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
1335 return -EIO;
1336
6450578f 1337 pt = task_pt_regs(child);
1da177e4
LT
1338 sw = (struct switch_stack *) (child->thread.ksp + 16);
1339 unw_init_from_blocked_task(&info, child);
1340 if (unw_unwind_to_user(&info) < 0) {
1341 return -EIO;
1342 }
1343
1344 if (((unsigned long) ppr & 0x7) != 0) {
1345 dprintk("ptrace:unaligned register address %p\n", ppr);
1346 return -EIO;
1347 }
1348
1349 /* control regs */
1350
1351 retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1352 retval |= __get_user(psr, &ppr->cr_ipsr);
1353
1354 /* app regs */
1355
1356 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
4ea78729 1357 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1da177e4
LT
1358 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1359 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1360 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1361 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1362
1363 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1364 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1365 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1366 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1367 retval |= __get_user(cfm, &ppr->cfm);
1368
1369 /* gr1-gr3 */
1370
1371 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1372 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1373
1374 /* gr4-gr7 */
1375
1376 for (i = 4; i < 8; i++) {
1377 retval |= __get_user(val, &ppr->gr[i]);
1378 /* NaT bit will be set via PT_NAT_BITS: */
1379 if (unw_set_gr(&info, i, val, 0) < 0)
1380 return -EIO;
1381 }
1382
1383 /* gr8-gr11 */
1384
1385 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1386
1387 /* gr12-gr15 */
1388
1389 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1390 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1391 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1392
1393 /* gr16-gr31 */
1394
1395 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1396
1397 /* b0 */
1398
1399 retval |= __get_user(pt->b0, &ppr->br[0]);
1400
1401 /* b1-b5 */
1402
1403 for (i = 1; i < 6; i++) {
1404 retval |= __get_user(val, &ppr->br[i]);
1405 unw_set_br(&info, i, val);
1406 }
1407
1408 /* b6-b7 */
1409
1410 retval |= __get_user(pt->b6, &ppr->br[6]);
1411 retval |= __get_user(pt->b7, &ppr->br[7]);
1412
1413 /* fr2-fr5 */
1414
1415 for (i = 2; i < 6; i++) {
1416 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1417 if (unw_set_fr(&info, i, fpval) < 0)
1418 return -EIO;
1419 }
1420
1421 /* fr6-fr11 */
1422
1423 retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1424 sizeof(ppr->fr[6]) * 6);
1425
1426 /* fp scratch regs(12-15) */
1427
1428 retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1429 sizeof(ppr->fr[12]) * 4);
1430
1431 /* fr16-fr31 */
1432
1433 for (i = 16; i < 32; i++) {
1434 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1435 sizeof(fpval));
1436 if (unw_set_fr(&info, i, fpval) < 0)
1437 return -EIO;
1438 }
1439
1440 /* fph */
1441
1442 ia64_sync_fph(child);
1443 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1444 sizeof(ppr->fr[32]) * 96);
1445
1446 /* preds */
1447
1448 retval |= __get_user(pt->pr, &ppr->pr);
1449
1450 /* nat bits */
1451
1452 retval |= __get_user(nat_bits, &ppr->nat);
1453
1454 retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
4ea78729 1455 retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1da177e4
LT
1456 retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1457 retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1458 retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1459 retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1460 retval |= access_uarea(child, PT_CFM, &cfm, 1);
1461 retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1462
1463 ret = retval ? -EIO : 0;
1464 return ret;
1465}
1466
1467/*
1468 * Called by kernel/ptrace.c when detaching..
1469 *
1470 * Make sure the single step bit is not set.
1471 */
1472void
1473ptrace_disable (struct task_struct *child)
1474{
6450578f 1475 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1da177e4
LT
1476
1477 /* make sure the single step/taken-branch trap bits are not set: */
90f9d70a 1478 clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1da177e4
LT
1479 child_psr->ss = 0;
1480 child_psr->tb = 0;
1481}
1482
1483asmlinkage long
1484sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data)
1485{
1486 struct pt_regs *pt;
1487 unsigned long urbs_end, peek_or_poke;
1488 struct task_struct *child;
1489 struct switch_stack *sw;
1490 long ret;
3b2ce0b1 1491 struct unw_frame_info info;
1da177e4
LT
1492
1493 lock_kernel();
1494 ret = -EPERM;
1495 if (request == PTRACE_TRACEME) {
6b9c7ed8 1496 ret = ptrace_traceme();
1da177e4
LT
1497 goto out;
1498 }
1499
1500 peek_or_poke = (request == PTRACE_PEEKTEXT
1501 || request == PTRACE_PEEKDATA
1502 || request == PTRACE_POKETEXT
1503 || request == PTRACE_POKEDATA);
1504 ret = -ESRCH;
1505 read_lock(&tasklist_lock);
1506 {
1507 child = find_task_by_pid(pid);
1508 if (child) {
1509 if (peek_or_poke)
1510 child = find_thread_for_addr(child, addr);
1511 get_task_struct(child);
1512 }
1513 }
1514 read_unlock(&tasklist_lock);
1515 if (!child)
1516 goto out;
1517 ret = -EPERM;
1518 if (pid == 1) /* no messing around with init! */
1519 goto out_tsk;
1520
1521 if (request == PTRACE_ATTACH) {
1522 ret = ptrace_attach(child);
3b2ce0b1
PT
1523 if (!ret)
1524 arch_ptrace_attach(child);
1da177e4
LT
1525 goto out_tsk;
1526 }
1527
1528 ret = ptrace_check_attach(child, request == PTRACE_KILL);
1529 if (ret < 0)
1530 goto out_tsk;
1531
6450578f 1532 pt = task_pt_regs(child);
1da177e4
LT
1533 sw = (struct switch_stack *) (child->thread.ksp + 16);
1534
1535 switch (request) {
1536 case PTRACE_PEEKTEXT:
1537 case PTRACE_PEEKDATA:
1538 /* read word at location addr */
1539 urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
1540 ret = ia64_peek(child, sw, urbs_end, addr, &data);
1541 if (ret == 0) {
1542 ret = data;
1543 /* ensure "ret" is not mistaken as an error code: */
1544 force_successful_syscall_return();
1545 }
1546 goto out_tsk;
1547
1548 case PTRACE_POKETEXT:
1549 case PTRACE_POKEDATA:
1550 /* write the word at location addr */
1551 urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
1552 ret = ia64_poke(child, sw, urbs_end, addr, data);
3b2ce0b1
PT
1553
1554 /* Make sure user RBS has the latest data */
1555 unw_init_from_blocked_task(&info, child);
1556 do_sync_rbs(&info, ia64_sync_user_rbs);
1557
1da177e4
LT
1558 goto out_tsk;
1559
1560 case PTRACE_PEEKUSR:
1561 /* read the word at addr in the USER area */
1562 if (access_uarea(child, addr, &data, 0) < 0) {
1563 ret = -EIO;
1564 goto out_tsk;
1565 }
1566 ret = data;
1567 /* ensure "ret" is not mistaken as an error code */
1568 force_successful_syscall_return();
1569 goto out_tsk;
1570
1571 case PTRACE_POKEUSR:
1572 /* write the word at addr in the USER area */
1573 if (access_uarea(child, addr, &data, 1) < 0) {
1574 ret = -EIO;
1575 goto out_tsk;
1576 }
1577 ret = 0;
1578 goto out_tsk;
1579
1580 case PTRACE_OLD_GETSIGINFO:
1581 /* for backwards-compatibility */
1582 ret = ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1583 goto out_tsk;
1584
1585 case PTRACE_OLD_SETSIGINFO:
1586 /* for backwards-compatibility */
1587 ret = ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1588 goto out_tsk;
1589
1590 case PTRACE_SYSCALL:
1591 /* continue and stop at next (return from) syscall */
1592 case PTRACE_CONT:
1593 /* restart after signal. */
1594 ret = -EIO;
7ed20e1a 1595 if (!valid_signal(data))
1da177e4
LT
1596 goto out_tsk;
1597 if (request == PTRACE_SYSCALL)
1598 set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1599 else
1600 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1601 child->exit_code = data;
1602
1603 /*
1604 * Make sure the single step/taken-branch trap bits
1605 * are not set:
1606 */
90f9d70a 1607 clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1da177e4
LT
1608 ia64_psr(pt)->ss = 0;
1609 ia64_psr(pt)->tb = 0;
1610
1611 wake_up_process(child);
1612 ret = 0;
1613 goto out_tsk;
1614
1615 case PTRACE_KILL:
1616 /*
1617 * Make the child exit. Best I can do is send it a
1618 * sigkill. Perhaps it should be put in the status
1619 * that it wants to exit.
1620 */
1621 if (child->exit_state == EXIT_ZOMBIE)
1622 /* already dead */
1623 goto out_tsk;
1624 child->exit_code = SIGKILL;
1625
1626 ptrace_disable(child);
1627 wake_up_process(child);
1628 ret = 0;
1629 goto out_tsk;
1630
1631 case PTRACE_SINGLESTEP:
1632 /* let child execute for one instruction */
1633 case PTRACE_SINGLEBLOCK:
1634 ret = -EIO;
7ed20e1a 1635 if (!valid_signal(data))
1da177e4
LT
1636 goto out_tsk;
1637
1638 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
90f9d70a 1639 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1da177e4
LT
1640 if (request == PTRACE_SINGLESTEP) {
1641 ia64_psr(pt)->ss = 1;
1642 } else {
1643 ia64_psr(pt)->tb = 1;
1644 }
1645 child->exit_code = data;
1646
1647 /* give it a chance to run. */
1648 wake_up_process(child);
1649 ret = 0;
1650 goto out_tsk;
1651
1652 case PTRACE_DETACH:
1653 /* detach a process that was attached. */
1654 ret = ptrace_detach(child, data);
1655 goto out_tsk;
1656
1657 case PTRACE_GETREGS:
1658 ret = ptrace_getregs(child,
1659 (struct pt_all_user_regs __user *) data);
1660 goto out_tsk;
1661
1662 case PTRACE_SETREGS:
1663 ret = ptrace_setregs(child,
1664 (struct pt_all_user_regs __user *) data);
1665 goto out_tsk;
1666
1667 default:
1668 ret = ptrace_request(child, request, addr, data);
1669 goto out_tsk;
1670 }
1671 out_tsk:
1672 put_task_struct(child);
1673 out:
1674 unlock_kernel();
1675 return ret;
1676}
1677
1678
90f9d70a 1679static void
1da177e4
LT
1680syscall_trace (void)
1681{
1da177e4
LT
1682 /*
1683 * The 0x80 provides a way for the tracing parent to
1684 * distinguish between a syscall stop and SIGTRAP delivery.
1685 */
1686 ptrace_notify(SIGTRAP
1687 | ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0));
1688
1689 /*
1690 * This isn't the same as continuing with a signal, but it
1691 * will do for normal use. strace only continues with a
1692 * signal if the stopping signal is not SIGTRAP. -brl
1693 */
1694 if (current->exit_code) {
1695 send_sig(current->exit_code, current, 1);
1696 current->exit_code = 0;
1697 }
1698}
1699
1700/* "asmlinkage" so the input arguments are preserved... */
1701
1702asmlinkage void
1703syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1704 long arg4, long arg5, long arg6, long arg7,
1705 struct pt_regs regs)
1706{
2fd6f58b
DW
1707 if (test_thread_flag(TIF_SYSCALL_TRACE)
1708 && (current->ptrace & PT_PTRACED))
1709 syscall_trace();
1da177e4 1710
3b2ce0b1
PT
1711 /* copy user rbs to kernel rbs */
1712 if (test_thread_flag(TIF_RESTORE_RSE))
1713 ia64_sync_krbs();
1714
1da177e4 1715 if (unlikely(current->audit_context)) {
2fd6f58b
DW
1716 long syscall;
1717 int arch;
1718
1719 if (IS_IA32_PROCESS(&regs)) {
1da177e4 1720 syscall = regs.r1;
2fd6f58b
DW
1721 arch = AUDIT_ARCH_I386;
1722 } else {
1da177e4 1723 syscall = regs.r15;
2fd6f58b
DW
1724 arch = AUDIT_ARCH_IA64;
1725 }
1da177e4 1726
5411be59 1727 audit_syscall_entry(arch, syscall, arg0, arg1, arg2, arg3);
1da177e4
LT
1728 }
1729
1da177e4
LT
1730}
1731
1732/* "asmlinkage" so the input arguments are preserved... */
1733
1734asmlinkage void
1735syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1736 long arg4, long arg5, long arg6, long arg7,
1737 struct pt_regs regs)
1738{
ee436dc4
DW
1739 if (unlikely(current->audit_context)) {
1740 int success = AUDITSC_RESULT(regs.r10);
1741 long result = regs.r8;
1742
1743 if (success != AUDITSC_SUCCESS)
1744 result = -result;
5411be59 1745 audit_syscall_exit(success, result);
ee436dc4 1746 }
1da177e4 1747
90f9d70a 1748 if ((test_thread_flag(TIF_SYSCALL_TRACE)
1749 || test_thread_flag(TIF_SINGLESTEP))
1da177e4
LT
1750 && (current->ptrace & PT_PTRACED))
1751 syscall_trace();
3b2ce0b1
PT
1752
1753 /* copy user rbs to kernel rbs */
1754 if (test_thread_flag(TIF_RESTORE_RSE))
1755 ia64_sync_krbs();
1da177e4 1756}