]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/ia64/kernel/ptrace.c
Merge with linus
[mirror_ubuntu-jammy-kernel.git] / arch / ia64 / kernel / ptrace.c
CommitLineData
1da177e4
LT
1/*
2 * Kernel support for the ptrace() and syscall tracing interfaces.
3 *
4 * Copyright (C) 1999-2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 *
7 * Derived from the x86 and Alpha versions.
8 */
9#include <linux/config.h>
10#include <linux/kernel.h>
11#include <linux/sched.h>
12#include <linux/slab.h>
13#include <linux/mm.h>
14#include <linux/errno.h>
15#include <linux/ptrace.h>
16#include <linux/smp_lock.h>
17#include <linux/user.h>
18#include <linux/security.h>
19#include <linux/audit.h>
7ed20e1a 20#include <linux/signal.h>
1da177e4
LT
21
22#include <asm/pgtable.h>
23#include <asm/processor.h>
24#include <asm/ptrace_offsets.h>
25#include <asm/rse.h>
26#include <asm/system.h>
27#include <asm/uaccess.h>
28#include <asm/unwind.h>
29#ifdef CONFIG_PERFMON
30#include <asm/perfmon.h>
31#endif
32
33#include "entry.h"
34
35/*
36 * Bits in the PSR that we allow ptrace() to change:
37 * be, up, ac, mfl, mfh (the user mask; five bits total)
38 * db (debug breakpoint fault; one bit)
39 * id (instruction debug fault disable; one bit)
40 * dd (data debug fault disable; one bit)
41 * ri (restart instruction; two bits)
42 * is (instruction set; one bit)
43 */
44#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
45 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
46
47#define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
48#define PFM_MASK MASK(38)
49
50#define PTRACE_DEBUG 0
51
52#if PTRACE_DEBUG
53# define dprintk(format...) printk(format)
54# define inline
55#else
56# define dprintk(format...)
57#endif
58
59/* Return TRUE if PT was created due to kernel-entry via a system-call. */
60
61static inline int
62in_syscall (struct pt_regs *pt)
63{
64 return (long) pt->cr_ifs >= 0;
65}
66
67/*
68 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
69 * bitset where bit i is set iff the NaT bit of register i is set.
70 */
71unsigned long
72ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
73{
74# define GET_BITS(first, last, unat) \
75 ({ \
76 unsigned long bit = ia64_unat_pos(&pt->r##first); \
77 unsigned long nbits = (last - first + 1); \
78 unsigned long mask = MASK(nbits) << first; \
79 unsigned long dist; \
80 if (bit < first) \
81 dist = 64 + bit - first; \
82 else \
83 dist = bit - first; \
84 ia64_rotr(unat, dist) & mask; \
85 })
86 unsigned long val;
87
88 /*
89 * Registers that are stored consecutively in struct pt_regs
90 * can be handled in parallel. If the register order in
91 * struct_pt_regs changes, this code MUST be updated.
92 */
93 val = GET_BITS( 1, 1, scratch_unat);
94 val |= GET_BITS( 2, 3, scratch_unat);
95 val |= GET_BITS(12, 13, scratch_unat);
96 val |= GET_BITS(14, 14, scratch_unat);
97 val |= GET_BITS(15, 15, scratch_unat);
98 val |= GET_BITS( 8, 11, scratch_unat);
99 val |= GET_BITS(16, 31, scratch_unat);
100 return val;
101
102# undef GET_BITS
103}
104
105/*
106 * Set the NaT bits for the scratch registers according to NAT and
107 * return the resulting unat (assuming the scratch registers are
108 * stored in PT).
109 */
110unsigned long
111ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
112{
113# define PUT_BITS(first, last, nat) \
114 ({ \
115 unsigned long bit = ia64_unat_pos(&pt->r##first); \
116 unsigned long nbits = (last - first + 1); \
117 unsigned long mask = MASK(nbits) << first; \
118 long dist; \
119 if (bit < first) \
120 dist = 64 + bit - first; \
121 else \
122 dist = bit - first; \
123 ia64_rotl(nat & mask, dist); \
124 })
125 unsigned long scratch_unat;
126
127 /*
128 * Registers that are stored consecutively in struct pt_regs
129 * can be handled in parallel. If the register order in
130 * struct_pt_regs changes, this code MUST be updated.
131 */
132 scratch_unat = PUT_BITS( 1, 1, nat);
133 scratch_unat |= PUT_BITS( 2, 3, nat);
134 scratch_unat |= PUT_BITS(12, 13, nat);
135 scratch_unat |= PUT_BITS(14, 14, nat);
136 scratch_unat |= PUT_BITS(15, 15, nat);
137 scratch_unat |= PUT_BITS( 8, 11, nat);
138 scratch_unat |= PUT_BITS(16, 31, nat);
139
140 return scratch_unat;
141
142# undef PUT_BITS
143}
144
145#define IA64_MLX_TEMPLATE 0x2
146#define IA64_MOVL_OPCODE 6
147
148void
149ia64_increment_ip (struct pt_regs *regs)
150{
151 unsigned long w0, ri = ia64_psr(regs)->ri + 1;
152
153 if (ri > 2) {
154 ri = 0;
155 regs->cr_iip += 16;
156 } else if (ri == 2) {
157 get_user(w0, (char __user *) regs->cr_iip + 0);
158 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
159 /*
160 * rfi'ing to slot 2 of an MLX bundle causes
161 * an illegal operation fault. We don't want
162 * that to happen...
163 */
164 ri = 0;
165 regs->cr_iip += 16;
166 }
167 }
168 ia64_psr(regs)->ri = ri;
169}
170
171void
172ia64_decrement_ip (struct pt_regs *regs)
173{
174 unsigned long w0, ri = ia64_psr(regs)->ri - 1;
175
176 if (ia64_psr(regs)->ri == 0) {
177 regs->cr_iip -= 16;
178 ri = 2;
179 get_user(w0, (char __user *) regs->cr_iip + 0);
180 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
181 /*
182 * rfi'ing to slot 2 of an MLX bundle causes
183 * an illegal operation fault. We don't want
184 * that to happen...
185 */
186 ri = 1;
187 }
188 }
189 ia64_psr(regs)->ri = ri;
190}
191
192/*
193 * This routine is used to read an rnat bits that are stored on the
194 * kernel backing store. Since, in general, the alignment of the user
195 * and kernel are different, this is not completely trivial. In
196 * essence, we need to construct the user RNAT based on up to two
197 * kernel RNAT values and/or the RNAT value saved in the child's
198 * pt_regs.
199 *
200 * user rbs
201 *
202 * +--------+ <-- lowest address
203 * | slot62 |
204 * +--------+
205 * | rnat | 0x....1f8
206 * +--------+
207 * | slot00 | \
208 * +--------+ |
209 * | slot01 | > child_regs->ar_rnat
210 * +--------+ |
211 * | slot02 | / kernel rbs
212 * +--------+ +--------+
213 * <- child_regs->ar_bspstore | slot61 | <-- krbs
214 * +- - - - + +--------+
215 * | slot62 |
216 * +- - - - + +--------+
217 * | rnat |
218 * +- - - - + +--------+
219 * vrnat | slot00 |
220 * +- - - - + +--------+
221 * = =
222 * +--------+
223 * | slot00 | \
224 * +--------+ |
225 * | slot01 | > child_stack->ar_rnat
226 * +--------+ |
227 * | slot02 | /
228 * +--------+
229 * <--- child_stack->ar_bspstore
230 *
231 * The way to think of this code is as follows: bit 0 in the user rnat
232 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
233 * value. The kernel rnat value holding this bit is stored in
234 * variable rnat0. rnat1 is loaded with the kernel rnat value that
235 * form the upper bits of the user rnat value.
236 *
237 * Boundary cases:
238 *
239 * o when reading the rnat "below" the first rnat slot on the kernel
240 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
241 * merged in from pt->ar_rnat.
242 *
243 * o when reading the rnat "above" the last rnat slot on the kernel
244 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
245 */
246static unsigned long
247get_rnat (struct task_struct *task, struct switch_stack *sw,
248 unsigned long *krbs, unsigned long *urnat_addr,
249 unsigned long *urbs_end)
250{
251 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
252 unsigned long umask = 0, mask, m;
253 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
254 long num_regs, nbits;
255 struct pt_regs *pt;
256
257 pt = ia64_task_regs(task);
258 kbsp = (unsigned long *) sw->ar_bspstore;
259 ubspstore = (unsigned long *) pt->ar_bspstore;
260
261 if (urbs_end < urnat_addr)
262 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
263 else
264 nbits = 63;
265 mask = MASK(nbits);
266 /*
267 * First, figure out which bit number slot 0 in user-land maps
268 * to in the kernel rnat. Do this by figuring out how many
269 * register slots we're beyond the user's backingstore and
270 * then computing the equivalent address in kernel space.
271 */
272 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
273 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
274 shift = ia64_rse_slot_num(slot0_kaddr);
275 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
276 rnat0_kaddr = rnat1_kaddr - 64;
277
278 if (ubspstore + 63 > urnat_addr) {
279 /* some bits need to be merged in from pt->ar_rnat */
280 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
281 urnat = (pt->ar_rnat & umask);
282 mask &= ~umask;
283 if (!mask)
284 return urnat;
285 }
286
287 m = mask << shift;
288 if (rnat0_kaddr >= kbsp)
289 rnat0 = sw->ar_rnat;
290 else if (rnat0_kaddr > krbs)
291 rnat0 = *rnat0_kaddr;
292 urnat |= (rnat0 & m) >> shift;
293
294 m = mask >> (63 - shift);
295 if (rnat1_kaddr >= kbsp)
296 rnat1 = sw->ar_rnat;
297 else if (rnat1_kaddr > krbs)
298 rnat1 = *rnat1_kaddr;
299 urnat |= (rnat1 & m) << (63 - shift);
300 return urnat;
301}
302
303/*
304 * The reverse of get_rnat.
305 */
306static void
307put_rnat (struct task_struct *task, struct switch_stack *sw,
308 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
309 unsigned long *urbs_end)
310{
311 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
312 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
313 long num_regs, nbits;
314 struct pt_regs *pt;
315 unsigned long cfm, *urbs_kargs;
316
317 pt = ia64_task_regs(task);
318 kbsp = (unsigned long *) sw->ar_bspstore;
319 ubspstore = (unsigned long *) pt->ar_bspstore;
320
321 urbs_kargs = urbs_end;
322 if (in_syscall(pt)) {
323 /*
324 * If entered via syscall, don't allow user to set rnat bits
325 * for syscall args.
326 */
327 cfm = pt->cr_ifs;
328 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
329 }
330
331 if (urbs_kargs >= urnat_addr)
332 nbits = 63;
333 else {
334 if ((urnat_addr - 63) >= urbs_kargs)
335 return;
336 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
337 }
338 mask = MASK(nbits);
339
340 /*
341 * First, figure out which bit number slot 0 in user-land maps
342 * to in the kernel rnat. Do this by figuring out how many
343 * register slots we're beyond the user's backingstore and
344 * then computing the equivalent address in kernel space.
345 */
346 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
347 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
348 shift = ia64_rse_slot_num(slot0_kaddr);
349 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
350 rnat0_kaddr = rnat1_kaddr - 64;
351
352 if (ubspstore + 63 > urnat_addr) {
353 /* some bits need to be place in pt->ar_rnat: */
354 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
355 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
356 mask &= ~umask;
357 if (!mask)
358 return;
359 }
360 /*
361 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
362 * rnat slot is ignored. so we don't have to clear it here.
363 */
364 rnat0 = (urnat << shift);
365 m = mask << shift;
366 if (rnat0_kaddr >= kbsp)
367 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
368 else if (rnat0_kaddr > krbs)
369 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
370
371 rnat1 = (urnat >> (63 - shift));
372 m = mask >> (63 - shift);
373 if (rnat1_kaddr >= kbsp)
374 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
375 else if (rnat1_kaddr > krbs)
376 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
377}
378
379static inline int
380on_kernel_rbs (unsigned long addr, unsigned long bspstore,
381 unsigned long urbs_end)
382{
383 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
384 urbs_end);
385 return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
386}
387
388/*
389 * Read a word from the user-level backing store of task CHILD. ADDR
390 * is the user-level address to read the word from, VAL a pointer to
391 * the return value, and USER_BSP gives the end of the user-level
392 * backing store (i.e., it's the address that would be in ar.bsp after
393 * the user executed a "cover" instruction).
394 *
395 * This routine takes care of accessing the kernel register backing
396 * store for those registers that got spilled there. It also takes
397 * care of calculating the appropriate RNaT collection words.
398 */
399long
400ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
401 unsigned long user_rbs_end, unsigned long addr, long *val)
402{
403 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
404 struct pt_regs *child_regs;
405 size_t copied;
406 long ret;
407
408 urbs_end = (long *) user_rbs_end;
409 laddr = (unsigned long *) addr;
410 child_regs = ia64_task_regs(child);
411 bspstore = (unsigned long *) child_regs->ar_bspstore;
412 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
413 if (on_kernel_rbs(addr, (unsigned long) bspstore,
414 (unsigned long) urbs_end))
415 {
416 /*
417 * Attempt to read the RBS in an area that's actually
418 * on the kernel RBS => read the corresponding bits in
419 * the kernel RBS.
420 */
421 rnat_addr = ia64_rse_rnat_addr(laddr);
422 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
423
424 if (laddr == rnat_addr) {
425 /* return NaT collection word itself */
426 *val = ret;
427 return 0;
428 }
429
430 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
431 /*
432 * It is implementation dependent whether the
433 * data portion of a NaT value gets saved on a
434 * st8.spill or RSE spill (e.g., see EAS 2.6,
435 * 4.4.4.6 Register Spill and Fill). To get
436 * consistent behavior across all possible
437 * IA-64 implementations, we return zero in
438 * this case.
439 */
440 *val = 0;
441 return 0;
442 }
443
444 if (laddr < urbs_end) {
445 /*
446 * The desired word is on the kernel RBS and
447 * is not a NaT.
448 */
449 regnum = ia64_rse_num_regs(bspstore, laddr);
450 *val = *ia64_rse_skip_regs(krbs, regnum);
451 return 0;
452 }
453 }
454 copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
455 if (copied != sizeof(ret))
456 return -EIO;
457 *val = ret;
458 return 0;
459}
460
461long
462ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
463 unsigned long user_rbs_end, unsigned long addr, long val)
464{
465 unsigned long *bspstore, *krbs, regnum, *laddr;
466 unsigned long *urbs_end = (long *) user_rbs_end;
467 struct pt_regs *child_regs;
468
469 laddr = (unsigned long *) addr;
470 child_regs = ia64_task_regs(child);
471 bspstore = (unsigned long *) child_regs->ar_bspstore;
472 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
473 if (on_kernel_rbs(addr, (unsigned long) bspstore,
474 (unsigned long) urbs_end))
475 {
476 /*
477 * Attempt to write the RBS in an area that's actually
478 * on the kernel RBS => write the corresponding bits
479 * in the kernel RBS.
480 */
481 if (ia64_rse_is_rnat_slot(laddr))
482 put_rnat(child, child_stack, krbs, laddr, val,
483 urbs_end);
484 else {
485 if (laddr < urbs_end) {
486 regnum = ia64_rse_num_regs(bspstore, laddr);
487 *ia64_rse_skip_regs(krbs, regnum) = val;
488 }
489 }
490 } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
491 != sizeof(val))
492 return -EIO;
493 return 0;
494}
495
496/*
497 * Calculate the address of the end of the user-level register backing
498 * store. This is the address that would have been stored in ar.bsp
499 * if the user had executed a "cover" instruction right before
500 * entering the kernel. If CFMP is not NULL, it is used to return the
501 * "current frame mask" that was active at the time the kernel was
502 * entered.
503 */
504unsigned long
505ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
506 unsigned long *cfmp)
507{
508 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
509 long ndirty;
510
511 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
512 bspstore = (unsigned long *) pt->ar_bspstore;
513 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
514
515 if (in_syscall(pt))
516 ndirty += (cfm & 0x7f);
517 else
518 cfm &= ~(1UL << 63); /* clear valid bit */
519
520 if (cfmp)
521 *cfmp = cfm;
522 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
523}
524
525/*
526 * Synchronize (i.e, write) the RSE backing store living in kernel
527 * space to the VM of the CHILD task. SW and PT are the pointers to
528 * the switch_stack and pt_regs structures, respectively.
529 * USER_RBS_END is the user-level address at which the backing store
530 * ends.
531 */
532long
533ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
534 unsigned long user_rbs_start, unsigned long user_rbs_end)
535{
536 unsigned long addr, val;
537 long ret;
538
539 /* now copy word for word from kernel rbs to user rbs: */
540 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
541 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
542 if (ret < 0)
543 return ret;
544 if (access_process_vm(child, addr, &val, sizeof(val), 1)
545 != sizeof(val))
546 return -EIO;
547 }
548 return 0;
549}
550
551static inline int
552thread_matches (struct task_struct *thread, unsigned long addr)
553{
554 unsigned long thread_rbs_end;
555 struct pt_regs *thread_regs;
556
557 if (ptrace_check_attach(thread, 0) < 0)
558 /*
559 * If the thread is not in an attachable state, we'll
560 * ignore it. The net effect is that if ADDR happens
561 * to overlap with the portion of the thread's
562 * register backing store that is currently residing
563 * on the thread's kernel stack, then ptrace() may end
564 * up accessing a stale value. But if the thread
565 * isn't stopped, that's a problem anyhow, so we're
566 * doing as well as we can...
567 */
568 return 0;
569
570 thread_regs = ia64_task_regs(thread);
571 thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
572 if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
573 return 0;
574
575 return 1; /* looks like we've got a winner */
576}
577
578/*
579 * GDB apparently wants to be able to read the register-backing store
580 * of any thread when attached to a given process. If we are peeking
581 * or poking an address that happens to reside in the kernel-backing
582 * store of another thread, we need to attach to that thread, because
583 * otherwise we end up accessing stale data.
584 *
585 * task_list_lock must be read-locked before calling this routine!
586 */
587static struct task_struct *
588find_thread_for_addr (struct task_struct *child, unsigned long addr)
589{
590 struct task_struct *g, *p;
591 struct mm_struct *mm;
592 int mm_users;
593
594 if (!(mm = get_task_mm(child)))
595 return child;
596
597 /* -1 because of our get_task_mm(): */
598 mm_users = atomic_read(&mm->mm_users) - 1;
599 if (mm_users <= 1)
600 goto out; /* not multi-threaded */
601
602 /*
603 * First, traverse the child's thread-list. Good for scalability with
604 * NPTL-threads.
605 */
606 p = child;
607 do {
608 if (thread_matches(p, addr)) {
609 child = p;
610 goto out;
611 }
612 if (mm_users-- <= 1)
613 goto out;
614 } while ((p = next_thread(p)) != child);
615
616 do_each_thread(g, p) {
617 if (child->mm != mm)
618 continue;
619
620 if (thread_matches(p, addr)) {
621 child = p;
622 goto out;
623 }
624 } while_each_thread(g, p);
625 out:
626 mmput(mm);
627 return child;
628}
629
630/*
631 * Write f32-f127 back to task->thread.fph if it has been modified.
632 */
633inline void
634ia64_flush_fph (struct task_struct *task)
635{
636 struct ia64_psr *psr = ia64_psr(ia64_task_regs(task));
637
638 if (ia64_is_local_fpu_owner(task) && psr->mfh) {
639 psr->mfh = 0;
640 task->thread.flags |= IA64_THREAD_FPH_VALID;
641 ia64_save_fpu(&task->thread.fph[0]);
642 }
643}
644
645/*
646 * Sync the fph state of the task so that it can be manipulated
647 * through thread.fph. If necessary, f32-f127 are written back to
648 * thread.fph or, if the fph state hasn't been used before, thread.fph
649 * is cleared to zeroes. Also, access to f32-f127 is disabled to
650 * ensure that the task picks up the state from thread.fph when it
651 * executes again.
652 */
653void
654ia64_sync_fph (struct task_struct *task)
655{
656 struct ia64_psr *psr = ia64_psr(ia64_task_regs(task));
657
658 ia64_flush_fph(task);
659 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
660 task->thread.flags |= IA64_THREAD_FPH_VALID;
661 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
662 }
663 ia64_drop_fpu(task);
664 psr->dfh = 1;
665}
666
667static int
668access_fr (struct unw_frame_info *info, int regnum, int hi,
669 unsigned long *data, int write_access)
670{
671 struct ia64_fpreg fpval;
672 int ret;
673
674 ret = unw_get_fr(info, regnum, &fpval);
675 if (ret < 0)
676 return ret;
677
678 if (write_access) {
679 fpval.u.bits[hi] = *data;
680 ret = unw_set_fr(info, regnum, fpval);
681 } else
682 *data = fpval.u.bits[hi];
683 return ret;
684}
685
686/*
687 * Change the machine-state of CHILD such that it will return via the normal
688 * kernel exit-path, rather than the syscall-exit path.
689 */
690static void
691convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
692 unsigned long cfm)
693{
694 struct unw_frame_info info, prev_info;
695 unsigned long ip, pr;
696
697 unw_init_from_blocked_task(&info, child);
698 while (1) {
699 prev_info = info;
700 if (unw_unwind(&info) < 0)
701 return;
702 if (unw_get_rp(&info, &ip) < 0)
703 return;
704 if (ip < FIXADDR_USER_END)
705 break;
706 }
707
708 unw_get_pr(&prev_info, &pr);
709 pr &= ~(1UL << PRED_SYSCALL);
710 pr |= (1UL << PRED_NON_SYSCALL);
711 unw_set_pr(&prev_info, pr);
712
713 pt->cr_ifs = (1UL << 63) | cfm;
714}
715
716static int
717access_nat_bits (struct task_struct *child, struct pt_regs *pt,
718 struct unw_frame_info *info,
719 unsigned long *data, int write_access)
720{
721 unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
722 char nat = 0;
723
724 if (write_access) {
725 nat_bits = *data;
726 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
727 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
728 dprintk("ptrace: failed to set ar.unat\n");
729 return -1;
730 }
731 for (regnum = 4; regnum <= 7; ++regnum) {
732 unw_get_gr(info, regnum, &dummy, &nat);
733 unw_set_gr(info, regnum, dummy,
734 (nat_bits >> regnum) & 1);
735 }
736 } else {
737 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
738 dprintk("ptrace: failed to read ar.unat\n");
739 return -1;
740 }
741 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
742 for (regnum = 4; regnum <= 7; ++regnum) {
743 unw_get_gr(info, regnum, &dummy, &nat);
744 nat_bits |= (nat != 0) << regnum;
745 }
746 *data = nat_bits;
747 }
748 return 0;
749}
750
751static int
752access_uarea (struct task_struct *child, unsigned long addr,
753 unsigned long *data, int write_access)
754{
755 unsigned long *ptr, regnum, urbs_end, rnat_addr, cfm;
756 struct switch_stack *sw;
757 struct pt_regs *pt;
758# define pt_reg_addr(pt, reg) ((void *) \
759 ((unsigned long) (pt) \
760 + offsetof(struct pt_regs, reg)))
761
762
763 pt = ia64_task_regs(child);
764 sw = (struct switch_stack *) (child->thread.ksp + 16);
765
766 if ((addr & 0x7) != 0) {
767 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
768 return -1;
769 }
770
771 if (addr < PT_F127 + 16) {
772 /* accessing fph */
773 if (write_access)
774 ia64_sync_fph(child);
775 else
776 ia64_flush_fph(child);
777 ptr = (unsigned long *)
778 ((unsigned long) &child->thread.fph + addr);
779 } else if ((addr >= PT_F10) && (addr < PT_F11 + 16)) {
780 /* scratch registers untouched by kernel (saved in pt_regs) */
781 ptr = pt_reg_addr(pt, f10) + (addr - PT_F10);
782 } else if (addr >= PT_F12 && addr < PT_F15 + 16) {
783 /*
784 * Scratch registers untouched by kernel (saved in
785 * switch_stack).
786 */
787 ptr = (unsigned long *) ((long) sw
788 + (addr - PT_NAT_BITS - 32));
789 } else if (addr < PT_AR_LC + 8) {
790 /* preserved state: */
791 struct unw_frame_info info;
792 char nat = 0;
793 int ret;
794
795 unw_init_from_blocked_task(&info, child);
796 if (unw_unwind_to_user(&info) < 0)
797 return -1;
798
799 switch (addr) {
800 case PT_NAT_BITS:
801 return access_nat_bits(child, pt, &info,
802 data, write_access);
803
804 case PT_R4: case PT_R5: case PT_R6: case PT_R7:
805 if (write_access) {
806 /* read NaT bit first: */
807 unsigned long dummy;
808
809 ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4,
810 &dummy, &nat);
811 if (ret < 0)
812 return ret;
813 }
814 return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data,
815 &nat, write_access);
816
817 case PT_B1: case PT_B2: case PT_B3:
818 case PT_B4: case PT_B5:
819 return unw_access_br(&info, (addr - PT_B1)/8 + 1, data,
820 write_access);
821
822 case PT_AR_EC:
823 return unw_access_ar(&info, UNW_AR_EC, data,
824 write_access);
825
826 case PT_AR_LC:
827 return unw_access_ar(&info, UNW_AR_LC, data,
828 write_access);
829
830 default:
831 if (addr >= PT_F2 && addr < PT_F5 + 16)
832 return access_fr(&info, (addr - PT_F2)/16 + 2,
833 (addr & 8) != 0, data,
834 write_access);
835 else if (addr >= PT_F16 && addr < PT_F31 + 16)
836 return access_fr(&info,
837 (addr - PT_F16)/16 + 16,
838 (addr & 8) != 0,
839 data, write_access);
840 else {
841 dprintk("ptrace: rejecting access to register "
842 "address 0x%lx\n", addr);
843 return -1;
844 }
845 }
846 } else if (addr < PT_F9+16) {
847 /* scratch state */
848 switch (addr) {
849 case PT_AR_BSP:
850 /*
851 * By convention, we use PT_AR_BSP to refer to
852 * the end of the user-level backing store.
853 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
854 * to get the real value of ar.bsp at the time
855 * the kernel was entered.
856 *
857 * Furthermore, when changing the contents of
858 * PT_AR_BSP (or PT_CFM) we MUST copy any
859 * users-level stacked registers that are
860 * stored on the kernel stack back to
861 * user-space because otherwise, we might end
862 * up clobbering kernel stacked registers.
863 * Also, if this happens while the task is
864 * blocked in a system call, which convert the
865 * state such that the non-system-call exit
866 * path is used. This ensures that the proper
867 * state will be picked up when resuming
868 * execution. However, it *also* means that
869 * once we write PT_AR_BSP/PT_CFM, it won't be
870 * possible to modify the syscall arguments of
871 * the pending system call any longer. This
872 * shouldn't be an issue because modifying
873 * PT_AR_BSP/PT_CFM generally implies that
874 * we're either abandoning the pending system
875 * call or that we defer it's re-execution
876 * (e.g., due to GDB doing an inferior
877 * function call).
878 */
879 urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
880 if (write_access) {
881 if (*data != urbs_end) {
882 if (ia64_sync_user_rbs(child, sw,
883 pt->ar_bspstore,
884 urbs_end) < 0)
885 return -1;
886 if (in_syscall(pt))
887 convert_to_non_syscall(child,
888 pt,
889 cfm);
890 /*
891 * Simulate user-level write
892 * of ar.bsp:
893 */
894 pt->loadrs = 0;
895 pt->ar_bspstore = *data;
896 }
897 } else
898 *data = urbs_end;
899 return 0;
900
901 case PT_CFM:
902 urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
903 if (write_access) {
904 if (((cfm ^ *data) & PFM_MASK) != 0) {
905 if (ia64_sync_user_rbs(child, sw,
906 pt->ar_bspstore,
907 urbs_end) < 0)
908 return -1;
909 if (in_syscall(pt))
910 convert_to_non_syscall(child,
911 pt,
912 cfm);
913 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
914 | (*data & PFM_MASK));
915 }
916 } else
917 *data = cfm;
918 return 0;
919
920 case PT_CR_IPSR:
921 if (write_access)
922 pt->cr_ipsr = ((*data & IPSR_MASK)
923 | (pt->cr_ipsr & ~IPSR_MASK));
924 else
925 *data = (pt->cr_ipsr & IPSR_MASK);
926 return 0;
927
928 case PT_AR_RNAT:
929 urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
930 rnat_addr = (long) ia64_rse_rnat_addr((long *)
931 urbs_end);
932 if (write_access)
933 return ia64_poke(child, sw, urbs_end,
934 rnat_addr, *data);
935 else
936 return ia64_peek(child, sw, urbs_end,
937 rnat_addr, data);
938
939 case PT_R1:
940 ptr = pt_reg_addr(pt, r1);
941 break;
942 case PT_R2: case PT_R3:
943 ptr = pt_reg_addr(pt, r2) + (addr - PT_R2);
944 break;
945 case PT_R8: case PT_R9: case PT_R10: case PT_R11:
946 ptr = pt_reg_addr(pt, r8) + (addr - PT_R8);
947 break;
948 case PT_R12: case PT_R13:
949 ptr = pt_reg_addr(pt, r12) + (addr - PT_R12);
950 break;
951 case PT_R14:
952 ptr = pt_reg_addr(pt, r14);
953 break;
954 case PT_R15:
955 ptr = pt_reg_addr(pt, r15);
956 break;
957 case PT_R16: case PT_R17: case PT_R18: case PT_R19:
958 case PT_R20: case PT_R21: case PT_R22: case PT_R23:
959 case PT_R24: case PT_R25: case PT_R26: case PT_R27:
960 case PT_R28: case PT_R29: case PT_R30: case PT_R31:
961 ptr = pt_reg_addr(pt, r16) + (addr - PT_R16);
962 break;
963 case PT_B0:
964 ptr = pt_reg_addr(pt, b0);
965 break;
966 case PT_B6:
967 ptr = pt_reg_addr(pt, b6);
968 break;
969 case PT_B7:
970 ptr = pt_reg_addr(pt, b7);
971 break;
972 case PT_F6: case PT_F6+8: case PT_F7: case PT_F7+8:
973 case PT_F8: case PT_F8+8: case PT_F9: case PT_F9+8:
974 ptr = pt_reg_addr(pt, f6) + (addr - PT_F6);
975 break;
976 case PT_AR_BSPSTORE:
977 ptr = pt_reg_addr(pt, ar_bspstore);
978 break;
979 case PT_AR_RSC:
980 ptr = pt_reg_addr(pt, ar_rsc);
981 break;
982 case PT_AR_UNAT:
983 ptr = pt_reg_addr(pt, ar_unat);
984 break;
985 case PT_AR_PFS:
986 ptr = pt_reg_addr(pt, ar_pfs);
987 break;
988 case PT_AR_CCV:
989 ptr = pt_reg_addr(pt, ar_ccv);
990 break;
991 case PT_AR_FPSR:
992 ptr = pt_reg_addr(pt, ar_fpsr);
993 break;
994 case PT_CR_IIP:
995 ptr = pt_reg_addr(pt, cr_iip);
996 break;
997 case PT_PR:
998 ptr = pt_reg_addr(pt, pr);
999 break;
1000 /* scratch register */
1001
1002 default:
1003 /* disallow accessing anything else... */
1004 dprintk("ptrace: rejecting access to register "
1005 "address 0x%lx\n", addr);
1006 return -1;
1007 }
1008 } else if (addr <= PT_AR_SSD) {
1009 ptr = pt_reg_addr(pt, ar_csd) + (addr - PT_AR_CSD);
1010 } else {
1011 /* access debug registers */
1012
1013 if (addr >= PT_IBR) {
1014 regnum = (addr - PT_IBR) >> 3;
1015 ptr = &child->thread.ibr[0];
1016 } else {
1017 regnum = (addr - PT_DBR) >> 3;
1018 ptr = &child->thread.dbr[0];
1019 }
1020
1021 if (regnum >= 8) {
1022 dprintk("ptrace: rejecting access to register "
1023 "address 0x%lx\n", addr);
1024 return -1;
1025 }
1026#ifdef CONFIG_PERFMON
1027 /*
1028 * Check if debug registers are used by perfmon. This
1029 * test must be done once we know that we can do the
1030 * operation, i.e. the arguments are all valid, but
1031 * before we start modifying the state.
1032 *
1033 * Perfmon needs to keep a count of how many processes
1034 * are trying to modify the debug registers for system
1035 * wide monitoring sessions.
1036 *
1037 * We also include read access here, because they may
1038 * cause the PMU-installed debug register state
1039 * (dbr[], ibr[]) to be reset. The two arrays are also
1040 * used by perfmon, but we do not use
1041 * IA64_THREAD_DBG_VALID. The registers are restored
1042 * by the PMU context switch code.
1043 */
1044 if (pfm_use_debug_registers(child)) return -1;
1045#endif
1046
1047 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
1048 child->thread.flags |= IA64_THREAD_DBG_VALID;
1049 memset(child->thread.dbr, 0,
1050 sizeof(child->thread.dbr));
1051 memset(child->thread.ibr, 0,
1052 sizeof(child->thread.ibr));
1053 }
1054
1055 ptr += regnum;
1056
1057 if ((regnum & 1) && write_access) {
1058 /* don't let the user set kernel-level breakpoints: */
1059 *ptr = *data & ~(7UL << 56);
1060 return 0;
1061 }
1062 }
1063 if (write_access)
1064 *ptr = *data;
1065 else
1066 *data = *ptr;
1067 return 0;
1068}
1069
1070static long
1071ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
1072{
1073 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
1074 struct unw_frame_info info;
1075 struct ia64_fpreg fpval;
1076 struct switch_stack *sw;
1077 struct pt_regs *pt;
1078 long ret, retval = 0;
1079 char nat = 0;
1080 int i;
1081
1082 if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
1083 return -EIO;
1084
1085 pt = ia64_task_regs(child);
1086 sw = (struct switch_stack *) (child->thread.ksp + 16);
1087 unw_init_from_blocked_task(&info, child);
1088 if (unw_unwind_to_user(&info) < 0) {
1089 return -EIO;
1090 }
1091
1092 if (((unsigned long) ppr & 0x7) != 0) {
1093 dprintk("ptrace:unaligned register address %p\n", ppr);
1094 return -EIO;
1095 }
1096
1097 if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
1098 || access_uarea(child, PT_AR_EC, &ec, 0) < 0
1099 || access_uarea(child, PT_AR_LC, &lc, 0) < 0
1100 || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
1101 || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
1102 || access_uarea(child, PT_CFM, &cfm, 0)
1103 || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
1104 return -EIO;
1105
1106 /* control regs */
1107
1108 retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
1109 retval |= __put_user(psr, &ppr->cr_ipsr);
1110
1111 /* app regs */
1112
1113 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1114 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
1115 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1116 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1117 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1118 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1119
1120 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
1121 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
1122 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1123 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
1124 retval |= __put_user(cfm, &ppr->cfm);
1125
1126 /* gr1-gr3 */
1127
1128 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
1129 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
1130
1131 /* gr4-gr7 */
1132
1133 for (i = 4; i < 8; i++) {
1134 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
1135 return -EIO;
1136 retval |= __put_user(val, &ppr->gr[i]);
1137 }
1138
1139 /* gr8-gr11 */
1140
1141 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
1142
1143 /* gr12-gr15 */
1144
1145 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
1146 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
1147 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
1148
1149 /* gr16-gr31 */
1150
1151 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
1152
1153 /* b0 */
1154
1155 retval |= __put_user(pt->b0, &ppr->br[0]);
1156
1157 /* b1-b5 */
1158
1159 for (i = 1; i < 6; i++) {
1160 if (unw_access_br(&info, i, &val, 0) < 0)
1161 return -EIO;
1162 __put_user(val, &ppr->br[i]);
1163 }
1164
1165 /* b6-b7 */
1166
1167 retval |= __put_user(pt->b6, &ppr->br[6]);
1168 retval |= __put_user(pt->b7, &ppr->br[7]);
1169
1170 /* fr2-fr5 */
1171
1172 for (i = 2; i < 6; i++) {
1173 if (unw_get_fr(&info, i, &fpval) < 0)
1174 return -EIO;
1175 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
1176 }
1177
1178 /* fr6-fr11 */
1179
1180 retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
1181 sizeof(struct ia64_fpreg) * 6);
1182
1183 /* fp scratch regs(12-15) */
1184
1185 retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
1186 sizeof(struct ia64_fpreg) * 4);
1187
1188 /* fr16-fr31 */
1189
1190 for (i = 16; i < 32; i++) {
1191 if (unw_get_fr(&info, i, &fpval) < 0)
1192 return -EIO;
1193 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
1194 }
1195
1196 /* fph */
1197
1198 ia64_flush_fph(child);
1199 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
1200 sizeof(ppr->fr[32]) * 96);
1201
1202 /* preds */
1203
1204 retval |= __put_user(pt->pr, &ppr->pr);
1205
1206 /* nat bits */
1207
1208 retval |= __put_user(nat_bits, &ppr->nat);
1209
1210 ret = retval ? -EIO : 0;
1211 return ret;
1212}
1213
1214static long
1215ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
1216{
1217 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
1218 struct unw_frame_info info;
1219 struct switch_stack *sw;
1220 struct ia64_fpreg fpval;
1221 struct pt_regs *pt;
1222 long ret, retval = 0;
1223 int i;
1224
1225 memset(&fpval, 0, sizeof(fpval));
1226
1227 if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
1228 return -EIO;
1229
1230 pt = ia64_task_regs(child);
1231 sw = (struct switch_stack *) (child->thread.ksp + 16);
1232 unw_init_from_blocked_task(&info, child);
1233 if (unw_unwind_to_user(&info) < 0) {
1234 return -EIO;
1235 }
1236
1237 if (((unsigned long) ppr & 0x7) != 0) {
1238 dprintk("ptrace:unaligned register address %p\n", ppr);
1239 return -EIO;
1240 }
1241
1242 /* control regs */
1243
1244 retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1245 retval |= __get_user(psr, &ppr->cr_ipsr);
1246
1247 /* app regs */
1248
1249 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1250 retval |= __get_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
1251 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1252 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1253 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1254 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1255
1256 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1257 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1258 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1259 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1260 retval |= __get_user(cfm, &ppr->cfm);
1261
1262 /* gr1-gr3 */
1263
1264 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1265 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1266
1267 /* gr4-gr7 */
1268
1269 for (i = 4; i < 8; i++) {
1270 retval |= __get_user(val, &ppr->gr[i]);
1271 /* NaT bit will be set via PT_NAT_BITS: */
1272 if (unw_set_gr(&info, i, val, 0) < 0)
1273 return -EIO;
1274 }
1275
1276 /* gr8-gr11 */
1277
1278 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1279
1280 /* gr12-gr15 */
1281
1282 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1283 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1284 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1285
1286 /* gr16-gr31 */
1287
1288 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1289
1290 /* b0 */
1291
1292 retval |= __get_user(pt->b0, &ppr->br[0]);
1293
1294 /* b1-b5 */
1295
1296 for (i = 1; i < 6; i++) {
1297 retval |= __get_user(val, &ppr->br[i]);
1298 unw_set_br(&info, i, val);
1299 }
1300
1301 /* b6-b7 */
1302
1303 retval |= __get_user(pt->b6, &ppr->br[6]);
1304 retval |= __get_user(pt->b7, &ppr->br[7]);
1305
1306 /* fr2-fr5 */
1307
1308 for (i = 2; i < 6; i++) {
1309 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1310 if (unw_set_fr(&info, i, fpval) < 0)
1311 return -EIO;
1312 }
1313
1314 /* fr6-fr11 */
1315
1316 retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1317 sizeof(ppr->fr[6]) * 6);
1318
1319 /* fp scratch regs(12-15) */
1320
1321 retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1322 sizeof(ppr->fr[12]) * 4);
1323
1324 /* fr16-fr31 */
1325
1326 for (i = 16; i < 32; i++) {
1327 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1328 sizeof(fpval));
1329 if (unw_set_fr(&info, i, fpval) < 0)
1330 return -EIO;
1331 }
1332
1333 /* fph */
1334
1335 ia64_sync_fph(child);
1336 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1337 sizeof(ppr->fr[32]) * 96);
1338
1339 /* preds */
1340
1341 retval |= __get_user(pt->pr, &ppr->pr);
1342
1343 /* nat bits */
1344
1345 retval |= __get_user(nat_bits, &ppr->nat);
1346
1347 retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1348 retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1349 retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1350 retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1351 retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1352 retval |= access_uarea(child, PT_CFM, &cfm, 1);
1353 retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1354
1355 ret = retval ? -EIO : 0;
1356 return ret;
1357}
1358
1359/*
1360 * Called by kernel/ptrace.c when detaching..
1361 *
1362 * Make sure the single step bit is not set.
1363 */
1364void
1365ptrace_disable (struct task_struct *child)
1366{
1367 struct ia64_psr *child_psr = ia64_psr(ia64_task_regs(child));
1368
1369 /* make sure the single step/taken-branch trap bits are not set: */
1370 child_psr->ss = 0;
1371 child_psr->tb = 0;
1372}
1373
1374asmlinkage long
1375sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data)
1376{
1377 struct pt_regs *pt;
1378 unsigned long urbs_end, peek_or_poke;
1379 struct task_struct *child;
1380 struct switch_stack *sw;
1381 long ret;
1382
1383 lock_kernel();
1384 ret = -EPERM;
1385 if (request == PTRACE_TRACEME) {
1386 /* are we already being traced? */
1387 if (current->ptrace & PT_PTRACED)
1388 goto out;
1389 ret = security_ptrace(current->parent, current);
1390 if (ret)
1391 goto out;
1392 current->ptrace |= PT_PTRACED;
1393 ret = 0;
1394 goto out;
1395 }
1396
1397 peek_or_poke = (request == PTRACE_PEEKTEXT
1398 || request == PTRACE_PEEKDATA
1399 || request == PTRACE_POKETEXT
1400 || request == PTRACE_POKEDATA);
1401 ret = -ESRCH;
1402 read_lock(&tasklist_lock);
1403 {
1404 child = find_task_by_pid(pid);
1405 if (child) {
1406 if (peek_or_poke)
1407 child = find_thread_for_addr(child, addr);
1408 get_task_struct(child);
1409 }
1410 }
1411 read_unlock(&tasklist_lock);
1412 if (!child)
1413 goto out;
1414 ret = -EPERM;
1415 if (pid == 1) /* no messing around with init! */
1416 goto out_tsk;
1417
1418 if (request == PTRACE_ATTACH) {
1419 ret = ptrace_attach(child);
1420 goto out_tsk;
1421 }
1422
1423 ret = ptrace_check_attach(child, request == PTRACE_KILL);
1424 if (ret < 0)
1425 goto out_tsk;
1426
1427 pt = ia64_task_regs(child);
1428 sw = (struct switch_stack *) (child->thread.ksp + 16);
1429
1430 switch (request) {
1431 case PTRACE_PEEKTEXT:
1432 case PTRACE_PEEKDATA:
1433 /* read word at location addr */
1434 urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
1435 ret = ia64_peek(child, sw, urbs_end, addr, &data);
1436 if (ret == 0) {
1437 ret = data;
1438 /* ensure "ret" is not mistaken as an error code: */
1439 force_successful_syscall_return();
1440 }
1441 goto out_tsk;
1442
1443 case PTRACE_POKETEXT:
1444 case PTRACE_POKEDATA:
1445 /* write the word at location addr */
1446 urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
1447 ret = ia64_poke(child, sw, urbs_end, addr, data);
1448 goto out_tsk;
1449
1450 case PTRACE_PEEKUSR:
1451 /* read the word at addr in the USER area */
1452 if (access_uarea(child, addr, &data, 0) < 0) {
1453 ret = -EIO;
1454 goto out_tsk;
1455 }
1456 ret = data;
1457 /* ensure "ret" is not mistaken as an error code */
1458 force_successful_syscall_return();
1459 goto out_tsk;
1460
1461 case PTRACE_POKEUSR:
1462 /* write the word at addr in the USER area */
1463 if (access_uarea(child, addr, &data, 1) < 0) {
1464 ret = -EIO;
1465 goto out_tsk;
1466 }
1467 ret = 0;
1468 goto out_tsk;
1469
1470 case PTRACE_OLD_GETSIGINFO:
1471 /* for backwards-compatibility */
1472 ret = ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1473 goto out_tsk;
1474
1475 case PTRACE_OLD_SETSIGINFO:
1476 /* for backwards-compatibility */
1477 ret = ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1478 goto out_tsk;
1479
1480 case PTRACE_SYSCALL:
1481 /* continue and stop at next (return from) syscall */
1482 case PTRACE_CONT:
1483 /* restart after signal. */
1484 ret = -EIO;
7ed20e1a 1485 if (!valid_signal(data))
1da177e4
LT
1486 goto out_tsk;
1487 if (request == PTRACE_SYSCALL)
1488 set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1489 else
1490 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1491 child->exit_code = data;
1492
1493 /*
1494 * Make sure the single step/taken-branch trap bits
1495 * are not set:
1496 */
1497 ia64_psr(pt)->ss = 0;
1498 ia64_psr(pt)->tb = 0;
1499
1500 wake_up_process(child);
1501 ret = 0;
1502 goto out_tsk;
1503
1504 case PTRACE_KILL:
1505 /*
1506 * Make the child exit. Best I can do is send it a
1507 * sigkill. Perhaps it should be put in the status
1508 * that it wants to exit.
1509 */
1510 if (child->exit_state == EXIT_ZOMBIE)
1511 /* already dead */
1512 goto out_tsk;
1513 child->exit_code = SIGKILL;
1514
1515 ptrace_disable(child);
1516 wake_up_process(child);
1517 ret = 0;
1518 goto out_tsk;
1519
1520 case PTRACE_SINGLESTEP:
1521 /* let child execute for one instruction */
1522 case PTRACE_SINGLEBLOCK:
1523 ret = -EIO;
7ed20e1a 1524 if (!valid_signal(data))
1da177e4
LT
1525 goto out_tsk;
1526
1527 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1528 if (request == PTRACE_SINGLESTEP) {
1529 ia64_psr(pt)->ss = 1;
1530 } else {
1531 ia64_psr(pt)->tb = 1;
1532 }
1533 child->exit_code = data;
1534
1535 /* give it a chance to run. */
1536 wake_up_process(child);
1537 ret = 0;
1538 goto out_tsk;
1539
1540 case PTRACE_DETACH:
1541 /* detach a process that was attached. */
1542 ret = ptrace_detach(child, data);
1543 goto out_tsk;
1544
1545 case PTRACE_GETREGS:
1546 ret = ptrace_getregs(child,
1547 (struct pt_all_user_regs __user *) data);
1548 goto out_tsk;
1549
1550 case PTRACE_SETREGS:
1551 ret = ptrace_setregs(child,
1552 (struct pt_all_user_regs __user *) data);
1553 goto out_tsk;
1554
1555 default:
1556 ret = ptrace_request(child, request, addr, data);
1557 goto out_tsk;
1558 }
1559 out_tsk:
1560 put_task_struct(child);
1561 out:
1562 unlock_kernel();
1563 return ret;
1564}
1565
1566
1567void
1568syscall_trace (void)
1569{
1570 if (!test_thread_flag(TIF_SYSCALL_TRACE))
1571 return;
1572 if (!(current->ptrace & PT_PTRACED))
1573 return;
1574 /*
1575 * The 0x80 provides a way for the tracing parent to
1576 * distinguish between a syscall stop and SIGTRAP delivery.
1577 */
1578 ptrace_notify(SIGTRAP
1579 | ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0));
1580
1581 /*
1582 * This isn't the same as continuing with a signal, but it
1583 * will do for normal use. strace only continues with a
1584 * signal if the stopping signal is not SIGTRAP. -brl
1585 */
1586 if (current->exit_code) {
1587 send_sig(current->exit_code, current, 1);
1588 current->exit_code = 0;
1589 }
1590}
1591
1592/* "asmlinkage" so the input arguments are preserved... */
1593
1594asmlinkage void
1595syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1596 long arg4, long arg5, long arg6, long arg7,
1597 struct pt_regs regs)
1598{
2fd6f58b
DW
1599 if (test_thread_flag(TIF_SYSCALL_TRACE)
1600 && (current->ptrace & PT_PTRACED))
1601 syscall_trace();
1da177e4
LT
1602
1603 if (unlikely(current->audit_context)) {
2fd6f58b
DW
1604 long syscall;
1605 int arch;
1606
1607 if (IS_IA32_PROCESS(&regs)) {
1da177e4 1608 syscall = regs.r1;
2fd6f58b
DW
1609 arch = AUDIT_ARCH_I386;
1610 } else {
1da177e4 1611 syscall = regs.r15;
2fd6f58b
DW
1612 arch = AUDIT_ARCH_IA64;
1613 }
1da177e4 1614
2fd6f58b 1615 audit_syscall_entry(current, arch, syscall, arg0, arg1, arg2, arg3);
1da177e4
LT
1616 }
1617
1da177e4
LT
1618}
1619
1620/* "asmlinkage" so the input arguments are preserved... */
1621
1622asmlinkage void
1623syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1624 long arg4, long arg5, long arg6, long arg7,
1625 struct pt_regs regs)
1626{
1627 if (unlikely(current->audit_context))
2fd6f58b 1628 audit_syscall_exit(current, AUDITSC_RESULT(regs.r10), regs.r8);
1da177e4
LT
1629
1630 if (test_thread_flag(TIF_SYSCALL_TRACE)
1631 && (current->ptrace & PT_PTRACED))
1632 syscall_trace();
1633}