]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/ia64/kernel/smpboot.c
[IA64] Speed up boot - skip unnecessary clock calibration
[mirror_ubuntu-artful-kernel.git] / arch / ia64 / kernel / smpboot.c
CommitLineData
1da177e4
LT
1/*
2 * SMP boot-related support
3 *
82975115 4 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
1da177e4 5 * David Mosberger-Tang <davidm@hpl.hp.com>
e927ecb0
SS
6 * Copyright (C) 2001, 2004-2005 Intel Corp
7 * Rohit Seth <rohit.seth@intel.com>
8 * Suresh Siddha <suresh.b.siddha@intel.com>
9 * Gordon Jin <gordon.jin@intel.com>
10 * Ashok Raj <ashok.raj@intel.com>
1da177e4
LT
11 *
12 * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here.
13 * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
14 * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
15 * smp_boot_cpus()/smp_commence() is replaced by
16 * smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
b8d8b883 17 * 04/06/21 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
e927ecb0
SS
18 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
19 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
20 * Add multi-threading and multi-core detection
21 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
22 * Setup cpu_sibling_map and cpu_core_map
1da177e4 23 */
1da177e4
LT
24
25#include <linux/module.h>
26#include <linux/acpi.h>
27#include <linux/bootmem.h>
28#include <linux/cpu.h>
29#include <linux/delay.h>
30#include <linux/init.h>
31#include <linux/interrupt.h>
32#include <linux/irq.h>
33#include <linux/kernel.h>
34#include <linux/kernel_stat.h>
35#include <linux/mm.h>
36#include <linux/notifier.h>
37#include <linux/smp.h>
38#include <linux/smp_lock.h>
39#include <linux/spinlock.h>
40#include <linux/efi.h>
41#include <linux/percpu.h>
42#include <linux/bitops.h>
43
44#include <asm/atomic.h>
45#include <asm/cache.h>
46#include <asm/current.h>
47#include <asm/delay.h>
48#include <asm/ia32.h>
49#include <asm/io.h>
50#include <asm/irq.h>
51#include <asm/machvec.h>
52#include <asm/mca.h>
53#include <asm/page.h>
54#include <asm/pgalloc.h>
55#include <asm/pgtable.h>
56#include <asm/processor.h>
57#include <asm/ptrace.h>
58#include <asm/sal.h>
59#include <asm/system.h>
60#include <asm/tlbflush.h>
61#include <asm/unistd.h>
62
63#define SMP_DEBUG 0
64
65#if SMP_DEBUG
66#define Dprintk(x...) printk(x)
67#else
68#define Dprintk(x...)
69#endif
70
b8d8b883 71#ifdef CONFIG_HOTPLUG_CPU
ff741906
AR
72#ifdef CONFIG_PERMIT_BSP_REMOVE
73#define bsp_remove_ok 1
74#else
75#define bsp_remove_ok 0
76#endif
77
b8d8b883
AR
78/*
79 * Store all idle threads, this can be reused instead of creating
80 * a new thread. Also avoids complicated thread destroy functionality
81 * for idle threads.
82 */
83struct task_struct *idle_thread_array[NR_CPUS];
84
85/*
86 * Global array allocated for NR_CPUS at boot time
87 */
88struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
89
90/*
91 * start_ap in head.S uses this to store current booting cpu
92 * info.
93 */
94struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
95
96#define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
97
98#define get_idle_for_cpu(x) (idle_thread_array[(x)])
99#define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
100
101#else
102
103#define get_idle_for_cpu(x) (NULL)
104#define set_idle_for_cpu(x,p)
105#define set_brendez_area(x)
106#endif
107
1da177e4
LT
108
109/*
110 * ITC synchronization related stuff:
111 */
ff741906 112#define MASTER (0)
1da177e4
LT
113#define SLAVE (SMP_CACHE_BYTES/8)
114
115#define NUM_ROUNDS 64 /* magic value */
116#define NUM_ITERS 5 /* likewise */
117
118static DEFINE_SPINLOCK(itc_sync_lock);
119static volatile unsigned long go[SLAVE + 1];
120
121#define DEBUG_ITC_SYNC 0
122
123extern void __devinit calibrate_delay (void);
124extern void start_ap (void);
125extern unsigned long ia64_iobase;
126
36c8b586 127struct task_struct *task_for_booting_cpu;
1da177e4
LT
128
129/*
130 * State for each CPU
131 */
132DEFINE_PER_CPU(int, cpu_state);
133
134/* Bitmasks of currently online, and possible CPUs */
135cpumask_t cpu_online_map;
136EXPORT_SYMBOL(cpu_online_map);
69aa234b 137cpumask_t cpu_possible_map = CPU_MASK_NONE;
1da177e4
LT
138EXPORT_SYMBOL(cpu_possible_map);
139
e927ecb0
SS
140cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
141cpumask_t cpu_sibling_map[NR_CPUS] __cacheline_aligned;
142int smp_num_siblings = 1;
143int smp_num_cpucores = 1;
144
1da177e4
LT
145/* which logical CPU number maps to which CPU (physical APIC ID) */
146volatile int ia64_cpu_to_sapicid[NR_CPUS];
147EXPORT_SYMBOL(ia64_cpu_to_sapicid);
148
149static volatile cpumask_t cpu_callin_map;
150
151struct smp_boot_data smp_boot_data __initdata;
152
153unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
154
155char __initdata no_int_routing;
156
157unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
158
ff741906
AR
159#ifdef CONFIG_FORCE_CPEI_RETARGET
160#define CPEI_OVERRIDE_DEFAULT (1)
161#else
162#define CPEI_OVERRIDE_DEFAULT (0)
163#endif
164
165unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
166
167static int __init
168cmdl_force_cpei(char *str)
169{
170 int value=0;
171
172 get_option (&str, &value);
173 force_cpei_retarget = value;
174
175 return 1;
176}
177
178__setup("force_cpei=", cmdl_force_cpei);
179
1da177e4
LT
180static int __init
181nointroute (char *str)
182{
183 no_int_routing = 1;
184 printk ("no_int_routing on\n");
185 return 1;
186}
187
188__setup("nointroute", nointroute);
189
ff741906
AR
190static void fix_b0_for_bsp(void)
191{
192#ifdef CONFIG_HOTPLUG_CPU
193 int cpuid;
194 static int fix_bsp_b0 = 1;
195
196 cpuid = smp_processor_id();
197
198 /*
199 * Cache the b0 value on the first AP that comes up
200 */
201 if (!(fix_bsp_b0 && cpuid))
202 return;
203
204 sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
205 printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
206
207 fix_bsp_b0 = 0;
208#endif
209}
210
1da177e4
LT
211void
212sync_master (void *arg)
213{
214 unsigned long flags, i;
215
216 go[MASTER] = 0;
217
218 local_irq_save(flags);
219 {
220 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
82975115
DMT
221 while (!go[MASTER])
222 cpu_relax();
1da177e4
LT
223 go[MASTER] = 0;
224 go[SLAVE] = ia64_get_itc();
225 }
226 }
227 local_irq_restore(flags);
228}
229
230/*
231 * Return the number of cycles by which our itc differs from the itc on the master
232 * (time-keeper) CPU. A positive number indicates our itc is ahead of the master,
233 * negative that it is behind.
234 */
235static inline long
236get_delta (long *rt, long *master)
237{
238 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
239 unsigned long tcenter, t0, t1, tm;
240 long i;
241
242 for (i = 0; i < NUM_ITERS; ++i) {
243 t0 = ia64_get_itc();
244 go[MASTER] = 1;
82975115
DMT
245 while (!(tm = go[SLAVE]))
246 cpu_relax();
1da177e4
LT
247 go[SLAVE] = 0;
248 t1 = ia64_get_itc();
249
250 if (t1 - t0 < best_t1 - best_t0)
251 best_t0 = t0, best_t1 = t1, best_tm = tm;
252 }
253
254 *rt = best_t1 - best_t0;
255 *master = best_tm - best_t0;
256
257 /* average best_t0 and best_t1 without overflow: */
258 tcenter = (best_t0/2 + best_t1/2);
259 if (best_t0 % 2 + best_t1 % 2 == 2)
260 ++tcenter;
261 return tcenter - best_tm;
262}
263
264/*
265 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
266 * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of
267 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
268 * step). The basic idea is for the slave to ask the master what itc value it has and to
269 * read its own itc before and after the master responds. Each iteration gives us three
270 * timestamps:
271 *
272 * slave master
273 *
274 * t0 ---\
275 * ---\
276 * --->
277 * tm
278 * /---
279 * /---
280 * t1 <---
281 *
282 *
283 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
284 * and t1. If we achieve this, the clocks are synchronized provided the interconnect
285 * between the slave and the master is symmetric. Even if the interconnect were
286 * asymmetric, we would still know that the synchronization error is smaller than the
287 * roundtrip latency (t0 - t1).
288 *
289 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
290 * within one or two cycles. However, we can only *guarantee* that the synchronization is
291 * accurate to within a round-trip time, which is typically in the range of several
292 * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually
293 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
294 * than half a micro second or so.
295 */
296void
297ia64_sync_itc (unsigned int master)
298{
299 long i, delta, adj, adjust_latency = 0, done = 0;
300 unsigned long flags, rt, master_time_stamp, bound;
301#if DEBUG_ITC_SYNC
302 struct {
303 long rt; /* roundtrip time */
304 long master; /* master's timestamp */
305 long diff; /* difference between midpoint and master's timestamp */
306 long lat; /* estimate of itc adjustment latency */
307 } t[NUM_ROUNDS];
308#endif
309
310 /*
311 * Make sure local timer ticks are disabled while we sync. If
312 * they were enabled, we'd have to worry about nasty issues
313 * like setting the ITC ahead of (or a long time before) the
314 * next scheduled tick.
315 */
316 BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
317
318 go[MASTER] = 1;
319
320 if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) {
321 printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
322 return;
323 }
324
82975115
DMT
325 while (go[MASTER])
326 cpu_relax(); /* wait for master to be ready */
1da177e4
LT
327
328 spin_lock_irqsave(&itc_sync_lock, flags);
329 {
330 for (i = 0; i < NUM_ROUNDS; ++i) {
331 delta = get_delta(&rt, &master_time_stamp);
332 if (delta == 0) {
333 done = 1; /* let's lock on to this... */
334 bound = rt;
335 }
336
337 if (!done) {
338 if (i > 0) {
339 adjust_latency += -delta;
340 adj = -delta + adjust_latency/4;
341 } else
342 adj = -delta;
343
344 ia64_set_itc(ia64_get_itc() + adj);
345 }
346#if DEBUG_ITC_SYNC
347 t[i].rt = rt;
348 t[i].master = master_time_stamp;
349 t[i].diff = delta;
350 t[i].lat = adjust_latency/4;
351#endif
352 }
353 }
354 spin_unlock_irqrestore(&itc_sync_lock, flags);
355
356#if DEBUG_ITC_SYNC
357 for (i = 0; i < NUM_ROUNDS; ++i)
358 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
359 t[i].rt, t[i].master, t[i].diff, t[i].lat);
360#endif
361
362 printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
363 "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
364}
365
366/*
367 * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
368 */
369static inline void __devinit
370smp_setup_percpu_timer (void)
371{
372}
373
374static void __devinit
375smp_callin (void)
376{
ff741906 377 int cpuid, phys_id, itc_master;
ead6caae 378 struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
1da177e4 379 extern void ia64_init_itm(void);
ff741906 380 extern volatile int time_keeper_id;
1da177e4
LT
381
382#ifdef CONFIG_PERFMON
383 extern void pfm_init_percpu(void);
384#endif
385
386 cpuid = smp_processor_id();
387 phys_id = hard_smp_processor_id();
ff741906 388 itc_master = time_keeper_id;
1da177e4
LT
389
390 if (cpu_online(cpuid)) {
391 printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
392 phys_id, cpuid);
393 BUG();
394 }
395
ff741906
AR
396 fix_b0_for_bsp();
397
1da177e4
LT
398 lock_ipi_calllock();
399 cpu_set(cpuid, cpu_online_map);
400 unlock_ipi_calllock();
a9fa06c2 401 per_cpu(cpu_state, cpuid) = CPU_ONLINE;
1da177e4
LT
402
403 smp_setup_percpu_timer();
404
405 ia64_mca_cmc_vector_setup(); /* Setup vector on AP */
406
407#ifdef CONFIG_PERFMON
408 pfm_init_percpu();
409#endif
410
411 local_irq_enable();
412
413 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
414 /*
415 * Synchronize the ITC with the BP. Need to do this after irqs are
416 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
417 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
418 * local_bh_enable(), which bugs out if irqs are not enabled...
419 */
ff741906
AR
420 Dprintk("Going to syncup ITC with ITC Master.\n");
421 ia64_sync_itc(itc_master);
1da177e4
LT
422 }
423
424 /*
425 * Get our bogomips.
426 */
427 ia64_init_itm();
ead6caae
JS
428
429 /*
430 * Delay calibration can be skipped if new processor is identical to the
431 * previous processor.
432 */
433 last_cpuinfo = cpu_data(cpuid - 1);
434 this_cpuinfo = local_cpu_data;
435 if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
436 last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
437 last_cpuinfo->features != this_cpuinfo->features ||
438 last_cpuinfo->revision != this_cpuinfo->revision ||
439 last_cpuinfo->family != this_cpuinfo->family ||
440 last_cpuinfo->archrev != this_cpuinfo->archrev ||
441 last_cpuinfo->model != this_cpuinfo->model)
442 calibrate_delay();
1da177e4
LT
443 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
444
445#ifdef CONFIG_IA32_SUPPORT
446 ia32_gdt_init();
447#endif
448
449 /*
450 * Allow the master to continue.
451 */
452 cpu_set(cpuid, cpu_callin_map);
453 Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
454}
455
456
457/*
458 * Activate a secondary processor. head.S calls this.
459 */
460int __devinit
461start_secondary (void *unused)
462{
463 /* Early console may use I/O ports */
464 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
1da177e4
LT
465 Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
466 efi_map_pal_code();
467 cpu_init();
5bfb5d69 468 preempt_disable();
1da177e4
LT
469 smp_callin();
470
471 cpu_idle();
472 return 0;
473}
474
475struct pt_regs * __devinit idle_regs(struct pt_regs *regs)
476{
477 return NULL;
478}
479
480struct create_idle {
6d5aefb8 481 struct work_struct work;
1da177e4
LT
482 struct task_struct *idle;
483 struct completion done;
484 int cpu;
485};
486
487void
6d5aefb8 488do_fork_idle(struct work_struct *work)
1da177e4 489{
6d5aefb8
DH
490 struct create_idle *c_idle =
491 container_of(work, struct create_idle, work);
1da177e4
LT
492
493 c_idle->idle = fork_idle(c_idle->cpu);
494 complete(&c_idle->done);
495}
496
497static int __devinit
498do_boot_cpu (int sapicid, int cpu)
499{
500 int timeout;
501 struct create_idle c_idle = {
6d5aefb8 502 .work = __WORK_INITIALIZER(c_idle.work, do_fork_idle),
1da177e4
LT
503 .cpu = cpu,
504 .done = COMPLETION_INITIALIZER(c_idle.done),
505 };
b8d8b883
AR
506
507 c_idle.idle = get_idle_for_cpu(cpu);
508 if (c_idle.idle) {
509 init_idle(c_idle.idle, cpu);
510 goto do_rest;
511 }
512
1da177e4
LT
513 /*
514 * We can't use kernel_thread since we must avoid to reschedule the child.
515 */
516 if (!keventd_up() || current_is_keventd())
6d5aefb8 517 c_idle.work.func(&c_idle.work);
1da177e4 518 else {
6d5aefb8 519 schedule_work(&c_idle.work);
1da177e4
LT
520 wait_for_completion(&c_idle.done);
521 }
522
523 if (IS_ERR(c_idle.idle))
524 panic("failed fork for CPU %d", cpu);
b8d8b883
AR
525
526 set_idle_for_cpu(cpu, c_idle.idle);
527
528do_rest:
1da177e4
LT
529 task_for_booting_cpu = c_idle.idle;
530
531 Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
532
b8d8b883 533 set_brendez_area(cpu);
1da177e4
LT
534 platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
535
536 /*
537 * Wait 10s total for the AP to start
538 */
539 Dprintk("Waiting on callin_map ...");
540 for (timeout = 0; timeout < 100000; timeout++) {
541 if (cpu_isset(cpu, cpu_callin_map))
542 break; /* It has booted */
543 udelay(100);
544 }
545 Dprintk("\n");
546
547 if (!cpu_isset(cpu, cpu_callin_map)) {
548 printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
549 ia64_cpu_to_sapicid[cpu] = -1;
550 cpu_clear(cpu, cpu_online_map); /* was set in smp_callin() */
551 return -EINVAL;
552 }
553 return 0;
554}
555
556static int __init
557decay (char *str)
558{
559 int ticks;
560 get_option (&str, &ticks);
561 return 1;
562}
563
564__setup("decay=", decay);
565
566/*
567 * Initialize the logical CPU number to SAPICID mapping
568 */
569void __init
570smp_build_cpu_map (void)
571{
572 int sapicid, cpu, i;
573 int boot_cpu_id = hard_smp_processor_id();
574
575 for (cpu = 0; cpu < NR_CPUS; cpu++) {
576 ia64_cpu_to_sapicid[cpu] = -1;
1da177e4
LT
577 }
578
579 ia64_cpu_to_sapicid[0] = boot_cpu_id;
580 cpus_clear(cpu_present_map);
581 cpu_set(0, cpu_present_map);
582 cpu_set(0, cpu_possible_map);
583 for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
584 sapicid = smp_boot_data.cpu_phys_id[i];
585 if (sapicid == boot_cpu_id)
586 continue;
587 cpu_set(cpu, cpu_present_map);
588 cpu_set(cpu, cpu_possible_map);
589 ia64_cpu_to_sapicid[cpu] = sapicid;
590 cpu++;
591 }
592}
593
1da177e4
LT
594/*
595 * Cycle through the APs sending Wakeup IPIs to boot each.
596 */
597void __init
598smp_prepare_cpus (unsigned int max_cpus)
599{
600 int boot_cpu_id = hard_smp_processor_id();
601
602 /*
603 * Initialize the per-CPU profiling counter/multiplier
604 */
605
606 smp_setup_percpu_timer();
607
608 /*
609 * We have the boot CPU online for sure.
610 */
611 cpu_set(0, cpu_online_map);
612 cpu_set(0, cpu_callin_map);
613
614 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
615 ia64_cpu_to_sapicid[0] = boot_cpu_id;
616
617 printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
618
619 current_thread_info()->cpu = 0;
620
621 /*
622 * If SMP should be disabled, then really disable it!
623 */
624 if (!max_cpus) {
625 printk(KERN_INFO "SMP mode deactivated.\n");
626 cpus_clear(cpu_online_map);
627 cpus_clear(cpu_present_map);
628 cpus_clear(cpu_possible_map);
629 cpu_set(0, cpu_online_map);
630 cpu_set(0, cpu_present_map);
631 cpu_set(0, cpu_possible_map);
632 return;
633 }
634}
635
636void __devinit smp_prepare_boot_cpu(void)
637{
638 cpu_set(smp_processor_id(), cpu_online_map);
639 cpu_set(smp_processor_id(), cpu_callin_map);
a9fa06c2 640 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
1da177e4
LT
641}
642
643#ifdef CONFIG_HOTPLUG_CPU
e927ecb0
SS
644static inline void
645clear_cpu_sibling_map(int cpu)
646{
647 int i;
648
649 for_each_cpu_mask(i, cpu_sibling_map[cpu])
650 cpu_clear(cpu, cpu_sibling_map[i]);
651 for_each_cpu_mask(i, cpu_core_map[cpu])
652 cpu_clear(cpu, cpu_core_map[i]);
653
654 cpu_sibling_map[cpu] = cpu_core_map[cpu] = CPU_MASK_NONE;
655}
656
657static void
658remove_siblinginfo(int cpu)
659{
660 int last = 0;
661
662 if (cpu_data(cpu)->threads_per_core == 1 &&
663 cpu_data(cpu)->cores_per_socket == 1) {
664 cpu_clear(cpu, cpu_core_map[cpu]);
665 cpu_clear(cpu, cpu_sibling_map[cpu]);
666 return;
667 }
668
669 last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0);
670
671 /* remove it from all sibling map's */
672 clear_cpu_sibling_map(cpu);
e927ecb0
SS
673}
674
1da177e4 675extern void fixup_irqs(void);
ff741906
AR
676
677int migrate_platform_irqs(unsigned int cpu)
678{
679 int new_cpei_cpu;
680 irq_desc_t *desc = NULL;
681 cpumask_t mask;
682 int retval = 0;
683
684 /*
685 * dont permit CPEI target to removed.
686 */
687 if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
688 printk ("CPU (%d) is CPEI Target\n", cpu);
689 if (can_cpei_retarget()) {
690 /*
691 * Now re-target the CPEI to a different processor
692 */
693 new_cpei_cpu = any_online_cpu(cpu_online_map);
694 mask = cpumask_of_cpu(new_cpei_cpu);
695 set_cpei_target_cpu(new_cpei_cpu);
a8553acd 696 desc = irq_desc + ia64_cpe_irq;
ff741906
AR
697 /*
698 * Switch for now, immediatly, we need to do fake intr
699 * as other interrupts, but need to study CPEI behaviour with
700 * polling before making changes.
701 */
702 if (desc) {
d1bef4ed
IM
703 desc->chip->disable(ia64_cpe_irq);
704 desc->chip->set_affinity(ia64_cpe_irq, mask);
705 desc->chip->enable(ia64_cpe_irq);
ff741906
AR
706 printk ("Re-targetting CPEI to cpu %d\n", new_cpei_cpu);
707 }
708 }
709 if (!desc) {
710 printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
711 retval = -EBUSY;
712 }
713 }
714 return retval;
715}
716
1da177e4 717/* must be called with cpucontrol mutex held */
1da177e4
LT
718int __cpu_disable(void)
719{
720 int cpu = smp_processor_id();
721
722 /*
723 * dont permit boot processor for now
724 */
ff741906
AR
725 if (cpu == 0 && !bsp_remove_ok) {
726 printk ("Your platform does not support removal of BSP\n");
727 return (-EBUSY);
728 }
729
730 cpu_clear(cpu, cpu_online_map);
731
732 if (migrate_platform_irqs(cpu)) {
733 cpu_set(cpu, cpu_online_map);
734 return (-EBUSY);
735 }
1da177e4 736
e927ecb0 737 remove_siblinginfo(cpu);
f3705136 738 cpu_clear(cpu, cpu_online_map);
1da177e4
LT
739 fixup_irqs();
740 local_flush_tlb_all();
b8d8b883 741 cpu_clear(cpu, cpu_callin_map);
1da177e4
LT
742 return 0;
743}
744
745void __cpu_die(unsigned int cpu)
746{
747 unsigned int i;
748
749 for (i = 0; i < 100; i++) {
750 /* They ack this in play_dead by setting CPU_DEAD */
751 if (per_cpu(cpu_state, cpu) == CPU_DEAD)
752 {
b8d8b883 753 printk ("CPU %d is now offline\n", cpu);
1da177e4
LT
754 return;
755 }
756 msleep(100);
757 }
758 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
759}
760#else /* !CONFIG_HOTPLUG_CPU */
1da177e4
LT
761int __cpu_disable(void)
762{
763 return -ENOSYS;
764}
765
766void __cpu_die(unsigned int cpu)
767{
768 /* We said "no" in __cpu_disable */
769 BUG();
770}
771#endif /* CONFIG_HOTPLUG_CPU */
772
773void
774smp_cpus_done (unsigned int dummy)
775{
776 int cpu;
777 unsigned long bogosum = 0;
778
779 /*
780 * Allow the user to impress friends.
781 */
782
dc565b52 783 for_each_online_cpu(cpu) {
784 bogosum += cpu_data(cpu)->loops_per_jiffy;
785 }
1da177e4
LT
786
787 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
788 (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
789}
790
e927ecb0
SS
791static inline void __devinit
792set_cpu_sibling_map(int cpu)
793{
794 int i;
795
796 for_each_online_cpu(i) {
797 if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
798 cpu_set(i, cpu_core_map[cpu]);
799 cpu_set(cpu, cpu_core_map[i]);
800 if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
801 cpu_set(i, cpu_sibling_map[cpu]);
802 cpu_set(cpu, cpu_sibling_map[i]);
803 }
804 }
805 }
806}
807
1da177e4
LT
808int __devinit
809__cpu_up (unsigned int cpu)
810{
811 int ret;
812 int sapicid;
813
814 sapicid = ia64_cpu_to_sapicid[cpu];
815 if (sapicid == -1)
816 return -EINVAL;
817
818 /*
b8d8b883
AR
819 * Already booted cpu? not valid anymore since we dont
820 * do idle loop tightspin anymore.
1da177e4
LT
821 */
822 if (cpu_isset(cpu, cpu_callin_map))
b8d8b883
AR
823 return -EINVAL;
824
a9fa06c2 825 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1da177e4
LT
826 /* Processor goes to start_secondary(), sets online flag */
827 ret = do_boot_cpu(sapicid, cpu);
828 if (ret < 0)
829 return ret;
830
e927ecb0
SS
831 if (cpu_data(cpu)->threads_per_core == 1 &&
832 cpu_data(cpu)->cores_per_socket == 1) {
833 cpu_set(cpu, cpu_sibling_map[cpu]);
834 cpu_set(cpu, cpu_core_map[cpu]);
835 return 0;
836 }
837
838 set_cpu_sibling_map(cpu);
839
1da177e4
LT
840 return 0;
841}
842
843/*
844 * Assume that CPU's have been discovered by some platform-dependent interface. For
845 * SoftSDV/Lion, that would be ACPI.
846 *
847 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
848 */
849void __init
850init_smp_config(void)
851{
852 struct fptr {
853 unsigned long fp;
854 unsigned long gp;
855 } *ap_startup;
856 long sal_ret;
857
858 /* Tell SAL where to drop the AP's. */
859 ap_startup = (struct fptr *) start_ap;
860 sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
861 ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
862 if (sal_ret < 0)
863 printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
864 ia64_sal_strerror(sal_ret));
865}
866
e927ecb0
SS
867/*
868 * identify_siblings(cpu) gets called from identify_cpu. This populates the
869 * information related to logical execution units in per_cpu_data structure.
870 */
871void __devinit
872identify_siblings(struct cpuinfo_ia64 *c)
873{
874 s64 status;
875 u16 pltid;
e927ecb0
SS
876 pal_logical_to_physical_t info;
877
878 if (smp_num_cpucores == 1 && smp_num_siblings == 1)
879 return;
880
4129a953 881 if ((status = ia64_pal_logical_to_phys(-1, &info)) != PAL_STATUS_SUCCESS) {
e927ecb0
SS
882 printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
883 status);
884 return;
885 }
886 if ((status = ia64_sal_physical_id_info(&pltid)) != PAL_STATUS_SUCCESS) {
887 printk(KERN_ERR "ia64_sal_pltid failed with %ld\n", status);
888 return;
889 }
e927ecb0
SS
890
891 c->socket_id = (pltid << 8) | info.overview_ppid;
892 c->cores_per_socket = info.overview_cpp;
893 c->threads_per_core = info.overview_tpc;
4129a953 894 c->num_log = info.overview_num_log;
e927ecb0 895
4129a953
FY
896 c->core_id = info.log1_cid;
897 c->thread_id = info.log1_tid;
e927ecb0 898}
dd562c05
SE
899
900/*
901 * returns non zero, if multi-threading is enabled
902 * on at least one physical package. Due to hotplug cpu
903 * and (maxcpus=), all threads may not necessarily be enabled
904 * even though the processor supports multi-threading.
905 */
906int is_multithreading_enabled(void)
907{
908 int i, j;
909
910 for_each_present_cpu(i) {
911 for_each_present_cpu(j) {
912 if (j == i)
913 continue;
914 if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
915 if (cpu_data(j)->core_id == cpu_data(i)->core_id)
916 return 1;
917 }
918 }
919 }
920 return 0;
921}
922EXPORT_SYMBOL_GPL(is_multithreading_enabled);