]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/ia64/kernel/time.c
Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[mirror_ubuntu-artful-kernel.git] / arch / ia64 / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/ia64/kernel/time.c
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger <davidm@hpl.hp.com>
7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8 * Copyright (C) 1999-2000 VA Linux Systems
9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10 */
1da177e4
LT
11
12#include <linux/cpu.h>
13#include <linux/init.h>
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/profile.h>
17#include <linux/sched.h>
18#include <linux/time.h>
19#include <linux/interrupt.h>
20#include <linux/efi.h>
1da177e4 21#include <linux/timex.h>
0aa366f3 22#include <linux/clocksource.h>
1da177e4
LT
23
24#include <asm/machvec.h>
25#include <asm/delay.h>
26#include <asm/hw_irq.h>
00d21d82 27#include <asm/paravirt.h>
1da177e4
LT
28#include <asm/ptrace.h>
29#include <asm/sal.h>
30#include <asm/sections.h>
31#include <asm/system.h>
32
0aa366f3
TL
33#include "fsyscall_gtod_data.h"
34
35static cycle_t itc_get_cycles(void);
36
37struct fsyscall_gtod_data_t fsyscall_gtod_data = {
38 .lock = SEQLOCK_UNLOCKED,
39};
40
41struct itc_jitter_data_t itc_jitter_data;
42
ff741906 43volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
1da177e4
LT
44
45#ifdef CONFIG_IA64_DEBUG_IRQ
46
47unsigned long last_cli_ip;
48EXPORT_SYMBOL(last_cli_ip);
49
50#endif
51
00d21d82
IY
52#ifdef CONFIG_PARAVIRT
53static void
54paravirt_clocksource_resume(void)
55{
56 if (pv_time_ops.clocksource_resume)
57 pv_time_ops.clocksource_resume();
58}
59#endif
60
0aa366f3 61static struct clocksource clocksource_itc = {
3eb05676
LZ
62 .name = "itc",
63 .rating = 350,
64 .read = itc_get_cycles,
65 .mask = CLOCKSOURCE_MASK(64),
66 .mult = 0, /*to be calculated*/
67 .shift = 16,
68 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
00d21d82
IY
69#ifdef CONFIG_PARAVIRT
70 .resume = paravirt_clocksource_resume,
71#endif
1da177e4 72};
0aa366f3 73static struct clocksource *itc_clocksource;
1da177e4 74
b64f34cd
HS
75#ifdef CONFIG_VIRT_CPU_ACCOUNTING
76
77#include <linux/kernel_stat.h>
78
79extern cputime_t cycle_to_cputime(u64 cyc);
80
81/*
82 * Called from the context switch with interrupts disabled, to charge all
83 * accumulated times to the current process, and to prepare accounting on
84 * the next process.
85 */
86void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
87{
88 struct thread_info *pi = task_thread_info(prev);
89 struct thread_info *ni = task_thread_info(next);
90 cputime_t delta_stime, delta_utime;
91 __u64 now;
92
93 now = ia64_get_itc();
94
95 delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
96 account_system_time(prev, 0, delta_stime);
97 account_system_time_scaled(prev, delta_stime);
98
99 if (pi->ac_utime) {
100 delta_utime = cycle_to_cputime(pi->ac_utime);
101 account_user_time(prev, delta_utime);
102 account_user_time_scaled(prev, delta_utime);
103 }
104
105 pi->ac_stamp = ni->ac_stamp = now;
106 ni->ac_stime = ni->ac_utime = 0;
107}
108
109/*
110 * Account time for a transition between system, hard irq or soft irq state.
111 * Note that this function is called with interrupts enabled.
112 */
113void account_system_vtime(struct task_struct *tsk)
114{
115 struct thread_info *ti = task_thread_info(tsk);
116 unsigned long flags;
117 cputime_t delta_stime;
118 __u64 now;
119
120 local_irq_save(flags);
121
122 now = ia64_get_itc();
123
124 delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
125 account_system_time(tsk, 0, delta_stime);
126 account_system_time_scaled(tsk, delta_stime);
127 ti->ac_stime = 0;
128
129 ti->ac_stamp = now;
130
131 local_irq_restore(flags);
132}
3a677d21 133EXPORT_SYMBOL_GPL(account_system_vtime);
b64f34cd
HS
134
135/*
136 * Called from the timer interrupt handler to charge accumulated user time
137 * to the current process. Must be called with interrupts disabled.
138 */
139void account_process_tick(struct task_struct *p, int user_tick)
140{
141 struct thread_info *ti = task_thread_info(p);
142 cputime_t delta_utime;
143
144 if (ti->ac_utime) {
145 delta_utime = cycle_to_cputime(ti->ac_utime);
146 account_user_time(p, delta_utime);
147 account_user_time_scaled(p, delta_utime);
148 ti->ac_utime = 0;
149 }
150}
151
152#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
153
1da177e4 154static irqreturn_t
7d12e780 155timer_interrupt (int irq, void *dev_id)
1da177e4
LT
156{
157 unsigned long new_itm;
158
159 if (unlikely(cpu_is_offline(smp_processor_id()))) {
160 return IRQ_HANDLED;
161 }
162
7d12e780 163 platform_timer_interrupt(irq, dev_id);
1da177e4
LT
164
165 new_itm = local_cpu_data->itm_next;
166
167 if (!time_after(ia64_get_itc(), new_itm))
168 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
169 ia64_get_itc(), new_itm);
170
7d12e780 171 profile_tick(CPU_PROFILING);
1da177e4 172
00d21d82
IY
173 if (paravirt_do_steal_accounting(&new_itm))
174 goto skip_process_time_accounting;
175
1da177e4 176 while (1) {
7d12e780 177 update_process_times(user_mode(get_irq_regs()));
1da177e4
LT
178
179 new_itm += local_cpu_data->itm_delta;
180
ff741906 181 if (smp_processor_id() == time_keeper_id) {
1da177e4
LT
182 /*
183 * Here we are in the timer irq handler. We have irqs locally
184 * disabled, but we don't know if the timer_bh is running on
185 * another CPU. We need to avoid to SMP race by acquiring the
186 * xtime_lock.
187 */
188 write_seqlock(&xtime_lock);
3171a030 189 do_timer(1);
1da177e4
LT
190 local_cpu_data->itm_next = new_itm;
191 write_sequnlock(&xtime_lock);
192 } else
193 local_cpu_data->itm_next = new_itm;
194
195 if (time_after(new_itm, ia64_get_itc()))
196 break;
accaddb2
JS
197
198 /*
199 * Allow IPIs to interrupt the timer loop.
200 */
201 local_irq_enable();
202 local_irq_disable();
1da177e4
LT
203 }
204
00d21d82
IY
205skip_process_time_accounting:
206
1da177e4
LT
207 do {
208 /*
209 * If we're too close to the next clock tick for
210 * comfort, we increase the safety margin by
211 * intentionally dropping the next tick(s). We do NOT
212 * update itm.next because that would force us to call
213 * do_timer() which in turn would let our clock run
214 * too fast (with the potentially devastating effect
215 * of losing monotony of time).
216 */
217 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
218 new_itm += local_cpu_data->itm_delta;
219 ia64_set_itm(new_itm);
220 /* double check, in case we got hit by a (slow) PMI: */
221 } while (time_after_eq(ia64_get_itc(), new_itm));
222 return IRQ_HANDLED;
223}
224
225/*
226 * Encapsulate access to the itm structure for SMP.
227 */
228void
229ia64_cpu_local_tick (void)
230{
231 int cpu = smp_processor_id();
232 unsigned long shift = 0, delta;
233
234 /* arrange for the cycle counter to generate a timer interrupt: */
235 ia64_set_itv(IA64_TIMER_VECTOR);
236
237 delta = local_cpu_data->itm_delta;
238 /*
239 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
240 * same time:
241 */
242 if (cpu) {
243 unsigned long hi = 1UL << ia64_fls(cpu);
244 shift = (2*(cpu - hi) + 1) * delta/hi/2;
245 }
246 local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
247 ia64_set_itm(local_cpu_data->itm_next);
248}
249
250static int nojitter;
251
252static int __init nojitter_setup(char *str)
253{
254 nojitter = 1;
255 printk("Jitter checking for ITC timers disabled\n");
256 return 1;
257}
258
259__setup("nojitter", nojitter_setup);
260
261
262void __devinit
263ia64_init_itm (void)
264{
265 unsigned long platform_base_freq, itc_freq;
266 struct pal_freq_ratio itc_ratio, proc_ratio;
267 long status, platform_base_drift, itc_drift;
268
269 /*
270 * According to SAL v2.6, we need to use a SAL call to determine the platform base
271 * frequency and then a PAL call to determine the frequency ratio between the ITC
272 * and the base frequency.
273 */
274 status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
275 &platform_base_freq, &platform_base_drift);
276 if (status != 0) {
277 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
278 } else {
279 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
280 if (status != 0)
281 printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
282 }
283 if (status != 0) {
284 /* invent "random" values */
285 printk(KERN_ERR
286 "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
287 platform_base_freq = 100000000;
288 platform_base_drift = -1; /* no drift info */
289 itc_ratio.num = 3;
290 itc_ratio.den = 1;
291 }
292 if (platform_base_freq < 40000000) {
293 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
294 platform_base_freq);
295 platform_base_freq = 75000000;
296 platform_base_drift = -1;
297 }
298 if (!proc_ratio.den)
299 proc_ratio.den = 1; /* avoid division by zero */
300 if (!itc_ratio.den)
301 itc_ratio.den = 1; /* avoid division by zero */
302
303 itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
304
305 local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
2ab9391d 306 printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
1da177e4
LT
307 "ITC freq=%lu.%03luMHz", smp_processor_id(),
308 platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
309 itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
310
311 if (platform_base_drift != -1) {
312 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
313 printk("+/-%ldppm\n", itc_drift);
314 } else {
315 itc_drift = -1;
316 printk("\n");
317 }
318
319 local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
320 local_cpu_data->itc_freq = itc_freq;
321 local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
322 local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
323 + itc_freq/2)/itc_freq;
324
325 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
1da177e4
LT
326#ifdef CONFIG_SMP
327 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
328 * Jitter compensation requires a cmpxchg which may limit
329 * the scalability of the syscalls for retrieving time.
330 * The ITC synchronization is usually successful to within a few
331 * ITC ticks but this is not a sure thing. If you need to improve
332 * timer performance in SMP situations then boot the kernel with the
333 * "nojitter" option. However, doing so may result in time fluctuating (maybe
334 * even going backward) if the ITC offsets between the individual CPUs
335 * are too large.
336 */
0aa366f3
TL
337 if (!nojitter)
338 itc_jitter_data.itc_jitter = 1;
1da177e4 339#endif
b718f91c
CL
340 } else
341 /*
342 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
343 * ITC values may fluctuate significantly between processors.
344 * Clock should not be used for hrtimers. Mark itc as only
345 * useful for boot and testing.
346 *
347 * Note that jitter compensation is off! There is no point of
348 * synchronizing ITCs since they may be large differentials
349 * that change over time.
350 *
351 * The only way to fix this would be to repeatedly sync the
352 * ITCs. Until that time we have to avoid ITC.
353 */
354 clocksource_itc.rating = 50;
1da177e4 355
00d21d82
IY
356 paravirt_init_missing_ticks_accounting(smp_processor_id());
357
358 /* avoid softlock up message when cpu is unplug and plugged again. */
359 touch_softlockup_watchdog();
360
1da177e4
LT
361 /* Setup the CPU local timer tick */
362 ia64_cpu_local_tick();
0aa366f3
TL
363
364 if (!itc_clocksource) {
365 /* Sort out mult/shift values: */
366 clocksource_itc.mult =
367 clocksource_hz2mult(local_cpu_data->itc_freq,
368 clocksource_itc.shift);
369 clocksource_register(&clocksource_itc);
370 itc_clocksource = &clocksource_itc;
371 }
1da177e4
LT
372}
373
8dc94630 374static cycle_t itc_get_cycles(void)
0aa366f3
TL
375{
376 u64 lcycle, now, ret;
377
378 if (!itc_jitter_data.itc_jitter)
379 return get_cycles();
380
381 lcycle = itc_jitter_data.itc_lastcycle;
382 now = get_cycles();
383 if (lcycle && time_after(lcycle, now))
384 return lcycle;
385
386 /*
387 * Keep track of the last timer value returned.
388 * In an SMP environment, you could lose out in contention of
389 * cmpxchg. If so, your cmpxchg returns new value which the
390 * winner of contention updated to. Use the new value instead.
391 */
392 ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
393 if (unlikely(ret != lcycle))
394 return ret;
395
396 return now;
397}
398
399
1da177e4
LT
400static struct irqaction timer_irqaction = {
401 .handler = timer_interrupt,
d217c265 402 .flags = IRQF_DISABLED | IRQF_IRQPOLL,
1da177e4
LT
403 .name = "timer"
404};
405
406void __init
407time_init (void)
408{
409 register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
410 efi_gettimeofday(&xtime);
411 ia64_init_itm();
412
413 /*
414 * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
415 * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
416 */
417 set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
418}
f5899b5d 419
defbb2c9 420/*
421 * Generic udelay assumes that if preemption is allowed and the thread
422 * migrates to another CPU, that the ITC values are synchronized across
423 * all CPUs.
424 */
425static void
426ia64_itc_udelay (unsigned long usecs)
f5899b5d 427{
defbb2c9 428 unsigned long start = ia64_get_itc();
429 unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
f5899b5d 430
defbb2c9 431 while (time_before(ia64_get_itc(), end))
432 cpu_relax();
433}
f5899b5d 434
defbb2c9 435void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
f5899b5d 436
defbb2c9 437void
438udelay (unsigned long usecs)
439{
440 (*ia64_udelay)(usecs);
f5899b5d
JH
441}
442EXPORT_SYMBOL(udelay);
d6e56a2a 443
2c622148
TB
444/* IA64 doesn't cache the timezone */
445void update_vsyscall_tz(void)
446{
447}
448
0aa366f3
TL
449void update_vsyscall(struct timespec *wall, struct clocksource *c)
450{
451 unsigned long flags;
452
453 write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
454
455 /* copy fsyscall clock data */
456 fsyscall_gtod_data.clk_mask = c->mask;
457 fsyscall_gtod_data.clk_mult = c->mult;
458 fsyscall_gtod_data.clk_shift = c->shift;
459 fsyscall_gtod_data.clk_fsys_mmio = c->fsys_mmio;
460 fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
461
462 /* copy kernel time structures */
463 fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
464 fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
465 fsyscall_gtod_data.monotonic_time.tv_sec = wall_to_monotonic.tv_sec
466 + wall->tv_sec;
467 fsyscall_gtod_data.monotonic_time.tv_nsec = wall_to_monotonic.tv_nsec
468 + wall->tv_nsec;
469
470 /* normalize */
471 while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
472 fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
473 fsyscall_gtod_data.monotonic_time.tv_sec++;
474 }
475
476 write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);
477}
478