]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/ia64/kernel/unaligned.c
[IA64] Use set_cpus_allowed_ptr
[mirror_ubuntu-artful-kernel.git] / arch / ia64 / kernel / unaligned.c
CommitLineData
1da177e4
LT
1/*
2 * Architecture-specific unaligned trap handling.
3 *
4 * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 *
8 * 2002/12/09 Fix rotating register handling (off-by-1 error, missing fr-rotation). Fix
9 * get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame
10 * stacked register returns an undefined value; it does NOT trigger a
11 * "rsvd register fault").
12 * 2001/10/11 Fix unaligned access to rotating registers in s/w pipelined loops.
13 * 2001/08/13 Correct size of extended floats (float_fsz) from 16 to 10 bytes.
14 * 2001/01/17 Add support emulation of unaligned kernel accesses.
15 */
5cf1f7ce 16#include <linux/jiffies.h>
1da177e4
LT
17#include <linux/kernel.h>
18#include <linux/sched.h>
1da177e4
LT
19#include <linux/tty.h>
20
21#include <asm/intrinsics.h>
22#include <asm/processor.h>
23#include <asm/rse.h>
24#include <asm/uaccess.h>
25#include <asm/unaligned.h>
26
620de2f5 27extern int die_if_kernel(char *str, struct pt_regs *regs, long err);
1da177e4
LT
28
29#undef DEBUG_UNALIGNED_TRAP
30
31#ifdef DEBUG_UNALIGNED_TRAP
d4ed8084 32# define DPRINT(a...) do { printk("%s %u: ", __func__, __LINE__); printk (a); } while (0)
1da177e4
LT
33# define DDUMP(str,vp,len) dump(str, vp, len)
34
35static void
36dump (const char *str, void *vp, size_t len)
37{
38 unsigned char *cp = vp;
39 int i;
40
41 printk("%s", str);
42 for (i = 0; i < len; ++i)
43 printk (" %02x", *cp++);
44 printk("\n");
45}
46#else
47# define DPRINT(a...)
48# define DDUMP(str,vp,len)
49#endif
50
51#define IA64_FIRST_STACKED_GR 32
52#define IA64_FIRST_ROTATING_FR 32
53#define SIGN_EXT9 0xffffffffffffff00ul
54
d2b176ed
JS
55/*
56 * sysctl settable hook which tells the kernel whether to honor the
57 * IA64_THREAD_UAC_NOPRINT prctl. Because this is user settable, we want
58 * to allow the super user to enable/disable this for security reasons
59 * (i.e. don't allow attacker to fill up logs with unaligned accesses).
60 */
61int no_unaligned_warning;
88fc241f 62int unaligned_dump_stack;
d2b176ed 63
1da177e4
LT
64/*
65 * For M-unit:
66 *
67 * opcode | m | x6 |
68 * --------|------|---------|
69 * [40-37] | [36] | [35:30] |
70 * --------|------|---------|
71 * 4 | 1 | 6 | = 11 bits
72 * --------------------------
73 * However bits [31:30] are not directly useful to distinguish between
74 * load/store so we can use [35:32] instead, which gives the following
75 * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer
76 * checking the m-bit until later in the load/store emulation.
77 */
78#define IA64_OPCODE_MASK 0x1ef
79#define IA64_OPCODE_SHIFT 32
80
81/*
82 * Table C-28 Integer Load/Store
83 *
84 * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
85 *
86 * ld8.fill, st8.fill MUST be aligned because the RNATs are based on
87 * the address (bits [8:3]), so we must failed.
88 */
89#define LD_OP 0x080
90#define LDS_OP 0x081
91#define LDA_OP 0x082
92#define LDSA_OP 0x083
93#define LDBIAS_OP 0x084
94#define LDACQ_OP 0x085
95/* 0x086, 0x087 are not relevant */
96#define LDCCLR_OP 0x088
97#define LDCNC_OP 0x089
98#define LDCCLRACQ_OP 0x08a
99#define ST_OP 0x08c
100#define STREL_OP 0x08d
101/* 0x08e,0x8f are not relevant */
102
103/*
104 * Table C-29 Integer Load +Reg
105 *
106 * we use the ld->m (bit [36:36]) field to determine whether or not we have
107 * a load/store of this form.
108 */
109
110/*
111 * Table C-30 Integer Load/Store +Imm
112 *
113 * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
114 *
115 * ld8.fill, st8.fill must be aligned because the Nat register are based on
116 * the address, so we must fail and the program must be fixed.
117 */
118#define LD_IMM_OP 0x0a0
119#define LDS_IMM_OP 0x0a1
120#define LDA_IMM_OP 0x0a2
121#define LDSA_IMM_OP 0x0a3
122#define LDBIAS_IMM_OP 0x0a4
123#define LDACQ_IMM_OP 0x0a5
124/* 0x0a6, 0xa7 are not relevant */
125#define LDCCLR_IMM_OP 0x0a8
126#define LDCNC_IMM_OP 0x0a9
127#define LDCCLRACQ_IMM_OP 0x0aa
128#define ST_IMM_OP 0x0ac
129#define STREL_IMM_OP 0x0ad
130/* 0x0ae,0xaf are not relevant */
131
132/*
133 * Table C-32 Floating-point Load/Store
134 */
135#define LDF_OP 0x0c0
136#define LDFS_OP 0x0c1
137#define LDFA_OP 0x0c2
138#define LDFSA_OP 0x0c3
139/* 0x0c6 is irrelevant */
140#define LDFCCLR_OP 0x0c8
141#define LDFCNC_OP 0x0c9
142/* 0x0cb is irrelevant */
143#define STF_OP 0x0cc
144
145/*
146 * Table C-33 Floating-point Load +Reg
147 *
148 * we use the ld->m (bit [36:36]) field to determine whether or not we have
149 * a load/store of this form.
150 */
151
152/*
153 * Table C-34 Floating-point Load/Store +Imm
154 */
155#define LDF_IMM_OP 0x0e0
156#define LDFS_IMM_OP 0x0e1
157#define LDFA_IMM_OP 0x0e2
158#define LDFSA_IMM_OP 0x0e3
159/* 0x0e6 is irrelevant */
160#define LDFCCLR_IMM_OP 0x0e8
161#define LDFCNC_IMM_OP 0x0e9
162#define STF_IMM_OP 0x0ec
163
164typedef struct {
165 unsigned long qp:6; /* [0:5] */
166 unsigned long r1:7; /* [6:12] */
167 unsigned long imm:7; /* [13:19] */
168 unsigned long r3:7; /* [20:26] */
169 unsigned long x:1; /* [27:27] */
170 unsigned long hint:2; /* [28:29] */
171 unsigned long x6_sz:2; /* [30:31] */
172 unsigned long x6_op:4; /* [32:35], x6 = x6_sz|x6_op */
173 unsigned long m:1; /* [36:36] */
174 unsigned long op:4; /* [37:40] */
175 unsigned long pad:23; /* [41:63] */
176} load_store_t;
177
178
179typedef enum {
180 UPD_IMMEDIATE, /* ldXZ r1=[r3],imm(9) */
181 UPD_REG /* ldXZ r1=[r3],r2 */
182} update_t;
183
184/*
185 * We use tables to keep track of the offsets of registers in the saved state.
186 * This way we save having big switch/case statements.
187 *
188 * We use bit 0 to indicate switch_stack or pt_regs.
189 * The offset is simply shifted by 1 bit.
190 * A 2-byte value should be enough to hold any kind of offset
191 *
192 * In case the calling convention changes (and thus pt_regs/switch_stack)
193 * simply use RSW instead of RPT or vice-versa.
194 */
195
196#define RPO(x) ((size_t) &((struct pt_regs *)0)->x)
197#define RSO(x) ((size_t) &((struct switch_stack *)0)->x)
198
199#define RPT(x) (RPO(x) << 1)
200#define RSW(x) (1| RSO(x)<<1)
201
202#define GR_OFFS(x) (gr_info[x]>>1)
203#define GR_IN_SW(x) (gr_info[x] & 0x1)
204
205#define FR_OFFS(x) (fr_info[x]>>1)
206#define FR_IN_SW(x) (fr_info[x] & 0x1)
207
208static u16 gr_info[32]={
209 0, /* r0 is read-only : WE SHOULD NEVER GET THIS */
210
211 RPT(r1), RPT(r2), RPT(r3),
212
213 RSW(r4), RSW(r5), RSW(r6), RSW(r7),
214
215 RPT(r8), RPT(r9), RPT(r10), RPT(r11),
216 RPT(r12), RPT(r13), RPT(r14), RPT(r15),
217
218 RPT(r16), RPT(r17), RPT(r18), RPT(r19),
219 RPT(r20), RPT(r21), RPT(r22), RPT(r23),
220 RPT(r24), RPT(r25), RPT(r26), RPT(r27),
221 RPT(r28), RPT(r29), RPT(r30), RPT(r31)
222};
223
224static u16 fr_info[32]={
225 0, /* constant : WE SHOULD NEVER GET THIS */
226 0, /* constant : WE SHOULD NEVER GET THIS */
227
228 RSW(f2), RSW(f3), RSW(f4), RSW(f5),
229
230 RPT(f6), RPT(f7), RPT(f8), RPT(f9),
231 RPT(f10), RPT(f11),
232
233 RSW(f12), RSW(f13), RSW(f14),
234 RSW(f15), RSW(f16), RSW(f17), RSW(f18), RSW(f19),
235 RSW(f20), RSW(f21), RSW(f22), RSW(f23), RSW(f24),
236 RSW(f25), RSW(f26), RSW(f27), RSW(f28), RSW(f29),
237 RSW(f30), RSW(f31)
238};
239
240/* Invalidate ALAT entry for integer register REGNO. */
241static void
242invala_gr (int regno)
243{
244# define F(reg) case reg: ia64_invala_gr(reg); break
245
246 switch (regno) {
247 F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7);
248 F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
249 F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
250 F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
251 F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
252 F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
253 F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
254 F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
255 F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
256 F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
257 F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
258 F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
259 F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
260 F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
261 F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
262 F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
263 }
264# undef F
265}
266
267/* Invalidate ALAT entry for floating-point register REGNO. */
268static void
269invala_fr (int regno)
270{
271# define F(reg) case reg: ia64_invala_fr(reg); break
272
273 switch (regno) {
274 F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7);
275 F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
276 F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
277 F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
278 F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
279 F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
280 F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
281 F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
282 F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
283 F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
284 F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
285 F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
286 F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
287 F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
288 F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
289 F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
290 }
291# undef F
292}
293
294static inline unsigned long
295rotate_reg (unsigned long sor, unsigned long rrb, unsigned long reg)
296{
297 reg += rrb;
298 if (reg >= sor)
299 reg -= sor;
300 return reg;
301}
302
303static void
304set_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long val, int nat)
305{
306 struct switch_stack *sw = (struct switch_stack *) regs - 1;
307 unsigned long *bsp, *bspstore, *addr, *rnat_addr, *ubs_end;
308 unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
309 unsigned long rnats, nat_mask;
310 unsigned long on_kbs;
311 long sof = (regs->cr_ifs) & 0x7f;
312 long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
313 long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
314 long ridx = r1 - 32;
315
316 if (ridx >= sof) {
317 /* this should never happen, as the "rsvd register fault" has higher priority */
318 DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1, sof);
319 return;
320 }
321
322 if (ridx < sor)
323 ridx = rotate_reg(sor, rrb_gr, ridx);
324
325 DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
326 r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
327
328 on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
329 addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
330 if (addr >= kbs) {
331 /* the register is on the kernel backing store: easy... */
332 rnat_addr = ia64_rse_rnat_addr(addr);
333 if ((unsigned long) rnat_addr >= sw->ar_bspstore)
334 rnat_addr = &sw->ar_rnat;
335 nat_mask = 1UL << ia64_rse_slot_num(addr);
336
337 *addr = val;
338 if (nat)
339 *rnat_addr |= nat_mask;
340 else
341 *rnat_addr &= ~nat_mask;
342 return;
343 }
344
345 if (!user_stack(current, regs)) {
346 DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1);
347 return;
348 }
349
350 bspstore = (unsigned long *)regs->ar_bspstore;
351 ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
352 bsp = ia64_rse_skip_regs(ubs_end, -sof);
353 addr = ia64_rse_skip_regs(bsp, ridx);
354
355 DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
356
357 ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
358
359 rnat_addr = ia64_rse_rnat_addr(addr);
360
361 ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
362 DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n",
363 (void *) rnat_addr, rnats, nat, (rnats >> ia64_rse_slot_num(addr)) & 1);
364
365 nat_mask = 1UL << ia64_rse_slot_num(addr);
366 if (nat)
367 rnats |= nat_mask;
368 else
369 rnats &= ~nat_mask;
370 ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, rnats);
371
372 DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr, rnats);
373}
374
375
376static void
377get_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long *val, int *nat)
378{
379 struct switch_stack *sw = (struct switch_stack *) regs - 1;
380 unsigned long *bsp, *addr, *rnat_addr, *ubs_end, *bspstore;
381 unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
382 unsigned long rnats, nat_mask;
383 unsigned long on_kbs;
384 long sof = (regs->cr_ifs) & 0x7f;
385 long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
386 long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
387 long ridx = r1 - 32;
388
389 if (ridx >= sof) {
390 /* read of out-of-frame register returns an undefined value; 0 in our case. */
391 DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1, sof);
392 goto fail;
393 }
394
395 if (ridx < sor)
396 ridx = rotate_reg(sor, rrb_gr, ridx);
397
398 DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
399 r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
400
401 on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
402 addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
403 if (addr >= kbs) {
404 /* the register is on the kernel backing store: easy... */
405 *val = *addr;
406 if (nat) {
407 rnat_addr = ia64_rse_rnat_addr(addr);
408 if ((unsigned long) rnat_addr >= sw->ar_bspstore)
409 rnat_addr = &sw->ar_rnat;
410 nat_mask = 1UL << ia64_rse_slot_num(addr);
411 *nat = (*rnat_addr & nat_mask) != 0;
412 }
413 return;
414 }
415
416 if (!user_stack(current, regs)) {
417 DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1);
418 goto fail;
419 }
420
421 bspstore = (unsigned long *)regs->ar_bspstore;
422 ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
423 bsp = ia64_rse_skip_regs(ubs_end, -sof);
424 addr = ia64_rse_skip_regs(bsp, ridx);
425
426 DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
427
428 ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
429
430 if (nat) {
431 rnat_addr = ia64_rse_rnat_addr(addr);
432 nat_mask = 1UL << ia64_rse_slot_num(addr);
433
434 DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr, rnats);
435
436 ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
437 *nat = (rnats & nat_mask) != 0;
438 }
439 return;
440
441 fail:
442 *val = 0;
443 if (nat)
444 *nat = 0;
445 return;
446}
447
448
449static void
450setreg (unsigned long regnum, unsigned long val, int nat, struct pt_regs *regs)
451{
452 struct switch_stack *sw = (struct switch_stack *) regs - 1;
453 unsigned long addr;
454 unsigned long bitmask;
455 unsigned long *unat;
456
457 /*
458 * First takes care of stacked registers
459 */
460 if (regnum >= IA64_FIRST_STACKED_GR) {
461 set_rse_reg(regs, regnum, val, nat);
462 return;
463 }
464
465 /*
466 * Using r0 as a target raises a General Exception fault which has higher priority
467 * than the Unaligned Reference fault.
468 */
469
470 /*
471 * Now look at registers in [0-31] range and init correct UNAT
472 */
473 if (GR_IN_SW(regnum)) {
474 addr = (unsigned long)sw;
475 unat = &sw->ar_unat;
476 } else {
477 addr = (unsigned long)regs;
478 unat = &sw->caller_unat;
479 }
480 DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n",
481 addr, unat==&sw->ar_unat ? "yes":"no", GR_OFFS(regnum));
482 /*
483 * add offset from base of struct
484 * and do it !
485 */
486 addr += GR_OFFS(regnum);
487
488 *(unsigned long *)addr = val;
489
490 /*
491 * We need to clear the corresponding UNAT bit to fully emulate the load
492 * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4
493 */
494 bitmask = 1UL << (addr >> 3 & 0x3f);
495 DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr, val, nat, (void *) unat, *unat);
496 if (nat) {
497 *unat |= bitmask;
498 } else {
499 *unat &= ~bitmask;
500 }
501 DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr, val, nat, (void *) unat,*unat);
502}
503
504/*
505 * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the
506 * range from 32-127, result is in the range from 0-95.
507 */
508static inline unsigned long
509fph_index (struct pt_regs *regs, long regnum)
510{
511 unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f;
512 return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR));
513}
514
515static void
516setfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
517{
518 struct switch_stack *sw = (struct switch_stack *)regs - 1;
519 unsigned long addr;
520
521 /*
522 * From EAS-2.5: FPDisableFault has higher priority than Unaligned
523 * Fault. Thus, when we get here, we know the partition is enabled.
524 * To update f32-f127, there are three choices:
525 *
526 * (1) save f32-f127 to thread.fph and update the values there
527 * (2) use a gigantic switch statement to directly access the registers
528 * (3) generate code on the fly to update the desired register
529 *
530 * For now, we are using approach (1).
531 */
532 if (regnum >= IA64_FIRST_ROTATING_FR) {
533 ia64_sync_fph(current);
534 current->thread.fph[fph_index(regs, regnum)] = *fpval;
535 } else {
536 /*
537 * pt_regs or switch_stack ?
538 */
539 if (FR_IN_SW(regnum)) {
540 addr = (unsigned long)sw;
541 } else {
542 addr = (unsigned long)regs;
543 }
544
545 DPRINT("tmp_base=%lx offset=%d\n", addr, FR_OFFS(regnum));
546
547 addr += FR_OFFS(regnum);
548 *(struct ia64_fpreg *)addr = *fpval;
549
550 /*
551 * mark the low partition as being used now
552 *
553 * It is highly unlikely that this bit is not already set, but
554 * let's do it for safety.
555 */
556 regs->cr_ipsr |= IA64_PSR_MFL;
557 }
558}
559
560/*
561 * Those 2 inline functions generate the spilled versions of the constant floating point
562 * registers which can be used with stfX
563 */
564static inline void
565float_spill_f0 (struct ia64_fpreg *final)
566{
567 ia64_stf_spill(final, 0);
568}
569
570static inline void
571float_spill_f1 (struct ia64_fpreg *final)
572{
573 ia64_stf_spill(final, 1);
574}
575
576static void
577getfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
578{
579 struct switch_stack *sw = (struct switch_stack *) regs - 1;
580 unsigned long addr;
581
582 /*
583 * From EAS-2.5: FPDisableFault has higher priority than
584 * Unaligned Fault. Thus, when we get here, we know the partition is
585 * enabled.
586 *
587 * When regnum > 31, the register is still live and we need to force a save
588 * to current->thread.fph to get access to it. See discussion in setfpreg()
589 * for reasons and other ways of doing this.
590 */
591 if (regnum >= IA64_FIRST_ROTATING_FR) {
592 ia64_flush_fph(current);
593 *fpval = current->thread.fph[fph_index(regs, regnum)];
594 } else {
595 /*
596 * f0 = 0.0, f1= 1.0. Those registers are constant and are thus
597 * not saved, we must generate their spilled form on the fly
598 */
599 switch(regnum) {
600 case 0:
601 float_spill_f0(fpval);
602 break;
603 case 1:
604 float_spill_f1(fpval);
605 break;
606 default:
607 /*
608 * pt_regs or switch_stack ?
609 */
610 addr = FR_IN_SW(regnum) ? (unsigned long)sw
611 : (unsigned long)regs;
612
613 DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n",
614 FR_IN_SW(regnum), addr, FR_OFFS(regnum));
615
616 addr += FR_OFFS(regnum);
617 *fpval = *(struct ia64_fpreg *)addr;
618 }
619 }
620}
621
622
623static void
624getreg (unsigned long regnum, unsigned long *val, int *nat, struct pt_regs *regs)
625{
626 struct switch_stack *sw = (struct switch_stack *) regs - 1;
627 unsigned long addr, *unat;
628
629 if (regnum >= IA64_FIRST_STACKED_GR) {
630 get_rse_reg(regs, regnum, val, nat);
631 return;
632 }
633
634 /*
635 * take care of r0 (read-only always evaluate to 0)
636 */
637 if (regnum == 0) {
638 *val = 0;
639 if (nat)
640 *nat = 0;
641 return;
642 }
643
644 /*
645 * Now look at registers in [0-31] range and init correct UNAT
646 */
647 if (GR_IN_SW(regnum)) {
648 addr = (unsigned long)sw;
649 unat = &sw->ar_unat;
650 } else {
651 addr = (unsigned long)regs;
652 unat = &sw->caller_unat;
653 }
654
655 DPRINT("addr_base=%lx offset=0x%x\n", addr, GR_OFFS(regnum));
656
657 addr += GR_OFFS(regnum);
658
659 *val = *(unsigned long *)addr;
660
661 /*
662 * do it only when requested
663 */
664 if (nat)
665 *nat = (*unat >> (addr >> 3 & 0x3f)) & 0x1UL;
666}
667
668static void
669emulate_load_updates (update_t type, load_store_t ld, struct pt_regs *regs, unsigned long ifa)
670{
671 /*
672 * IMPORTANT:
673 * Given the way we handle unaligned speculative loads, we should
674 * not get to this point in the code but we keep this sanity check,
675 * just in case.
676 */
677 if (ld.x6_op == 1 || ld.x6_op == 3) {
d4ed8084 678 printk(KERN_ERR "%s: register update on speculative load, error\n", __func__);
620de2f5
JB
679 if (die_if_kernel("unaligned reference on speculative load with register update\n",
680 regs, 30))
681 return;
1da177e4
LT
682 }
683
684
685 /*
686 * at this point, we know that the base register to update is valid i.e.,
687 * it's not r0
688 */
689 if (type == UPD_IMMEDIATE) {
690 unsigned long imm;
691
692 /*
693 * Load +Imm: ldXZ r1=[r3],imm(9)
694 *
695 *
696 * form imm9: [13:19] contain the first 7 bits
697 */
698 imm = ld.x << 7 | ld.imm;
699
700 /*
701 * sign extend (1+8bits) if m set
702 */
703 if (ld.m) imm |= SIGN_EXT9;
704
705 /*
706 * ifa == r3 and we know that the NaT bit on r3 was clear so
707 * we can directly use ifa.
708 */
709 ifa += imm;
710
711 setreg(ld.r3, ifa, 0, regs);
712
713 DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld.x, ld.m, imm, ifa);
714
715 } else if (ld.m) {
716 unsigned long r2;
717 int nat_r2;
718
719 /*
720 * Load +Reg Opcode: ldXZ r1=[r3],r2
721 *
722 * Note: that we update r3 even in the case of ldfX.a
723 * (where the load does not happen)
724 *
725 * The way the load algorithm works, we know that r3 does not
726 * have its NaT bit set (would have gotten NaT consumption
727 * before getting the unaligned fault). So we can use ifa
728 * which equals r3 at this point.
729 *
730 * IMPORTANT:
731 * The above statement holds ONLY because we know that we
732 * never reach this code when trying to do a ldX.s.
733 * If we ever make it to here on an ldfX.s then
734 */
735 getreg(ld.imm, &r2, &nat_r2, regs);
736
737 ifa += r2;
738
739 /*
740 * propagate Nat r2 -> r3
741 */
742 setreg(ld.r3, ifa, nat_r2, regs);
743
744 DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld.imm, r2, ifa, nat_r2);
745 }
746}
747
748
749static int
750emulate_load_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
751{
752 unsigned int len = 1 << ld.x6_sz;
753 unsigned long val = 0;
754
755 /*
756 * r0, as target, doesn't need to be checked because Illegal Instruction
757 * faults have higher priority than unaligned faults.
758 *
759 * r0 cannot be found as the base as it would never generate an
760 * unaligned reference.
761 */
762
763 /*
764 * ldX.a we will emulate load and also invalidate the ALAT entry.
765 * See comment below for explanation on how we handle ldX.a
766 */
767
768 if (len != 2 && len != 4 && len != 8) {
769 DPRINT("unknown size: x6=%d\n", ld.x6_sz);
770 return -1;
771 }
772 /* this assumes little-endian byte-order: */
773 if (copy_from_user(&val, (void __user *) ifa, len))
774 return -1;
775 setreg(ld.r1, val, 0, regs);
776
777 /*
778 * check for updates on any kind of loads
779 */
780 if (ld.op == 0x5 || ld.m)
781 emulate_load_updates(ld.op == 0x5 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
782
783 /*
784 * handling of various loads (based on EAS2.4):
785 *
786 * ldX.acq (ordered load):
787 * - acquire semantics would have been used, so force fence instead.
788 *
789 * ldX.c.clr (check load and clear):
790 * - if we get to this handler, it's because the entry was not in the ALAT.
791 * Therefore the operation reverts to a normal load
792 *
793 * ldX.c.nc (check load no clear):
794 * - same as previous one
795 *
796 * ldX.c.clr.acq (ordered check load and clear):
797 * - same as above for c.clr part. The load needs to have acquire semantics. So
798 * we use the fence semantics which is stronger and thus ensures correctness.
799 *
800 * ldX.a (advanced load):
801 * - suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the
802 * address doesn't match requested size alignment. This means that we would
803 * possibly need more than one load to get the result.
804 *
805 * The load part can be handled just like a normal load, however the difficult
806 * part is to get the right thing into the ALAT. The critical piece of information
807 * in the base address of the load & size. To do that, a ld.a must be executed,
808 * clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now
809 * if we use the same target register, we will be okay for the check.a instruction.
810 * If we look at the store, basically a stX [r3]=r1 checks the ALAT for any entry
811 * which would overlap within [r3,r3+X] (the size of the load was store in the
812 * ALAT). If such an entry is found the entry is invalidated. But this is not good
813 * enough, take the following example:
814 * r3=3
815 * ld4.a r1=[r3]
816 *
817 * Could be emulated by doing:
818 * ld1.a r1=[r3],1
819 * store to temporary;
820 * ld1.a r1=[r3],1
821 * store & shift to temporary;
822 * ld1.a r1=[r3],1
823 * store & shift to temporary;
824 * ld1.a r1=[r3]
825 * store & shift to temporary;
826 * r1=temporary
827 *
828 * So in this case, you would get the right value is r1 but the wrong info in
829 * the ALAT. Notice that you could do it in reverse to finish with address 3
830 * but you would still get the size wrong. To get the size right, one needs to
831 * execute exactly the same kind of load. You could do it from a aligned
832 * temporary location, but you would get the address wrong.
833 *
834 * So no matter what, it is not possible to emulate an advanced load
835 * correctly. But is that really critical ?
836 *
837 * We will always convert ld.a into a normal load with ALAT invalidated. This
838 * will enable compiler to do optimization where certain code path after ld.a
839 * is not required to have ld.c/chk.a, e.g., code path with no intervening stores.
840 *
841 * If there is a store after the advanced load, one must either do a ld.c.* or
842 * chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no
843 * entry found in ALAT), and that's perfectly ok because:
844 *
845 * - ld.c.*, if the entry is not present a normal load is executed
846 * - chk.a.*, if the entry is not present, execution jumps to recovery code
847 *
848 * In either case, the load can be potentially retried in another form.
849 *
850 * ALAT must be invalidated for the register (so that chk.a or ld.c don't pick
851 * up a stale entry later). The register base update MUST also be performed.
852 */
853
854 /*
855 * when the load has the .acq completer then
856 * use ordering fence.
857 */
858 if (ld.x6_op == 0x5 || ld.x6_op == 0xa)
859 mb();
860
861 /*
862 * invalidate ALAT entry in case of advanced load
863 */
864 if (ld.x6_op == 0x2)
865 invala_gr(ld.r1);
866
867 return 0;
868}
869
870static int
871emulate_store_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
872{
873 unsigned long r2;
874 unsigned int len = 1 << ld.x6_sz;
875
876 /*
877 * if we get to this handler, Nat bits on both r3 and r2 have already
878 * been checked. so we don't need to do it
879 *
880 * extract the value to be stored
881 */
882 getreg(ld.imm, &r2, NULL, regs);
883
884 /*
885 * we rely on the macros in unaligned.h for now i.e.,
886 * we let the compiler figure out how to read memory gracefully.
887 *
888 * We need this switch/case because the way the inline function
889 * works. The code is optimized by the compiler and looks like
890 * a single switch/case.
891 */
892 DPRINT("st%d [%lx]=%lx\n", len, ifa, r2);
893
894 if (len != 2 && len != 4 && len != 8) {
895 DPRINT("unknown size: x6=%d\n", ld.x6_sz);
896 return -1;
897 }
898
899 /* this assumes little-endian byte-order: */
900 if (copy_to_user((void __user *) ifa, &r2, len))
901 return -1;
902
903 /*
904 * stX [r3]=r2,imm(9)
905 *
906 * NOTE:
907 * ld.r3 can never be r0, because r0 would not generate an
908 * unaligned access.
909 */
910 if (ld.op == 0x5) {
911 unsigned long imm;
912
913 /*
914 * form imm9: [12:6] contain first 7bits
915 */
916 imm = ld.x << 7 | ld.r1;
917 /*
918 * sign extend (8bits) if m set
919 */
920 if (ld.m) imm |= SIGN_EXT9;
921 /*
922 * ifa == r3 (NaT is necessarily cleared)
923 */
924 ifa += imm;
925
926 DPRINT("imm=%lx r3=%lx\n", imm, ifa);
927
928 setreg(ld.r3, ifa, 0, regs);
929 }
930 /*
931 * we don't have alat_invalidate_multiple() so we need
932 * to do the complete flush :-<<
933 */
934 ia64_invala();
935
936 /*
937 * stX.rel: use fence instead of release
938 */
939 if (ld.x6_op == 0xd)
940 mb();
941
942 return 0;
943}
944
945/*
946 * floating point operations sizes in bytes
947 */
948static const unsigned char float_fsz[4]={
949 10, /* extended precision (e) */
950 8, /* integer (8) */
951 4, /* single precision (s) */
952 8 /* double precision (d) */
953};
954
955static inline void
956mem2float_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
957{
958 ia64_ldfe(6, init);
959 ia64_stop();
960 ia64_stf_spill(final, 6);
961}
962
963static inline void
964mem2float_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
965{
966 ia64_ldf8(6, init);
967 ia64_stop();
968 ia64_stf_spill(final, 6);
969}
970
971static inline void
972mem2float_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
973{
974 ia64_ldfs(6, init);
975 ia64_stop();
976 ia64_stf_spill(final, 6);
977}
978
979static inline void
980mem2float_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
981{
982 ia64_ldfd(6, init);
983 ia64_stop();
984 ia64_stf_spill(final, 6);
985}
986
987static inline void
988float2mem_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
989{
990 ia64_ldf_fill(6, init);
991 ia64_stop();
992 ia64_stfe(final, 6);
993}
994
995static inline void
996float2mem_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
997{
998 ia64_ldf_fill(6, init);
999 ia64_stop();
1000 ia64_stf8(final, 6);
1001}
1002
1003static inline void
1004float2mem_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
1005{
1006 ia64_ldf_fill(6, init);
1007 ia64_stop();
1008 ia64_stfs(final, 6);
1009}
1010
1011static inline void
1012float2mem_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
1013{
1014 ia64_ldf_fill(6, init);
1015 ia64_stop();
1016 ia64_stfd(final, 6);
1017}
1018
1019static int
1020emulate_load_floatpair (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1021{
1022 struct ia64_fpreg fpr_init[2];
1023 struct ia64_fpreg fpr_final[2];
1024 unsigned long len = float_fsz[ld.x6_sz];
1025
1026 /*
1027 * fr0 & fr1 don't need to be checked because Illegal Instruction faults have
1028 * higher priority than unaligned faults.
1029 *
1030 * r0 cannot be found as the base as it would never generate an unaligned
1031 * reference.
1032 */
1033
1034 /*
1035 * make sure we get clean buffers
1036 */
1037 memset(&fpr_init, 0, sizeof(fpr_init));
1038 memset(&fpr_final, 0, sizeof(fpr_final));
1039
1040 /*
1041 * ldfpX.a: we don't try to emulate anything but we must
1042 * invalidate the ALAT entry and execute updates, if any.
1043 */
1044 if (ld.x6_op != 0x2) {
1045 /*
1046 * This assumes little-endian byte-order. Note that there is no "ldfpe"
1047 * instruction:
1048 */
1049 if (copy_from_user(&fpr_init[0], (void __user *) ifa, len)
1050 || copy_from_user(&fpr_init[1], (void __user *) (ifa + len), len))
1051 return -1;
1052
1053 DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld.r1, ld.imm, ld.x6_sz);
1054 DDUMP("frp_init =", &fpr_init, 2*len);
1055 /*
1056 * XXX fixme
1057 * Could optimize inlines by using ldfpX & 2 spills
1058 */
1059 switch( ld.x6_sz ) {
1060 case 0:
1061 mem2float_extended(&fpr_init[0], &fpr_final[0]);
1062 mem2float_extended(&fpr_init[1], &fpr_final[1]);
1063 break;
1064 case 1:
1065 mem2float_integer(&fpr_init[0], &fpr_final[0]);
1066 mem2float_integer(&fpr_init[1], &fpr_final[1]);
1067 break;
1068 case 2:
1069 mem2float_single(&fpr_init[0], &fpr_final[0]);
1070 mem2float_single(&fpr_init[1], &fpr_final[1]);
1071 break;
1072 case 3:
1073 mem2float_double(&fpr_init[0], &fpr_final[0]);
1074 mem2float_double(&fpr_init[1], &fpr_final[1]);
1075 break;
1076 }
1077 DDUMP("fpr_final =", &fpr_final, 2*len);
1078 /*
1079 * XXX fixme
1080 *
1081 * A possible optimization would be to drop fpr_final and directly
1082 * use the storage from the saved context i.e., the actual final
1083 * destination (pt_regs, switch_stack or thread structure).
1084 */
1085 setfpreg(ld.r1, &fpr_final[0], regs);
1086 setfpreg(ld.imm, &fpr_final[1], regs);
1087 }
1088
1089 /*
1090 * Check for updates: only immediate updates are available for this
1091 * instruction.
1092 */
1093 if (ld.m) {
1094 /*
1095 * the immediate is implicit given the ldsz of the operation:
1096 * single: 8 (2x4) and for all others it's 16 (2x8)
1097 */
1098 ifa += len<<1;
1099
1100 /*
1101 * IMPORTANT:
1102 * the fact that we force the NaT of r3 to zero is ONLY valid
1103 * as long as we don't come here with a ldfpX.s.
1104 * For this reason we keep this sanity check
1105 */
1106 if (ld.x6_op == 1 || ld.x6_op == 3)
1107 printk(KERN_ERR "%s: register update on speculative load pair, error\n",
d4ed8084 1108 __func__);
1da177e4
LT
1109
1110 setreg(ld.r3, ifa, 0, regs);
1111 }
1112
1113 /*
1114 * Invalidate ALAT entries, if any, for both registers.
1115 */
1116 if (ld.x6_op == 0x2) {
1117 invala_fr(ld.r1);
1118 invala_fr(ld.imm);
1119 }
1120 return 0;
1121}
1122
1123
1124static int
1125emulate_load_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1126{
1127 struct ia64_fpreg fpr_init;
1128 struct ia64_fpreg fpr_final;
1129 unsigned long len = float_fsz[ld.x6_sz];
1130
1131 /*
1132 * fr0 & fr1 don't need to be checked because Illegal Instruction
1133 * faults have higher priority than unaligned faults.
1134 *
1135 * r0 cannot be found as the base as it would never generate an
1136 * unaligned reference.
1137 */
1138
1139 /*
1140 * make sure we get clean buffers
1141 */
1142 memset(&fpr_init,0, sizeof(fpr_init));
1143 memset(&fpr_final,0, sizeof(fpr_final));
1144
1145 /*
1146 * ldfX.a we don't try to emulate anything but we must
1147 * invalidate the ALAT entry.
1148 * See comments in ldX for descriptions on how the various loads are handled.
1149 */
1150 if (ld.x6_op != 0x2) {
1151 if (copy_from_user(&fpr_init, (void __user *) ifa, len))
1152 return -1;
1153
1154 DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
1155 DDUMP("fpr_init =", &fpr_init, len);
1156 /*
1157 * we only do something for x6_op={0,8,9}
1158 */
1159 switch( ld.x6_sz ) {
1160 case 0:
1161 mem2float_extended(&fpr_init, &fpr_final);
1162 break;
1163 case 1:
1164 mem2float_integer(&fpr_init, &fpr_final);
1165 break;
1166 case 2:
1167 mem2float_single(&fpr_init, &fpr_final);
1168 break;
1169 case 3:
1170 mem2float_double(&fpr_init, &fpr_final);
1171 break;
1172 }
1173 DDUMP("fpr_final =", &fpr_final, len);
1174 /*
1175 * XXX fixme
1176 *
1177 * A possible optimization would be to drop fpr_final and directly
1178 * use the storage from the saved context i.e., the actual final
1179 * destination (pt_regs, switch_stack or thread structure).
1180 */
1181 setfpreg(ld.r1, &fpr_final, regs);
1182 }
1183
1184 /*
1185 * check for updates on any loads
1186 */
1187 if (ld.op == 0x7 || ld.m)
1188 emulate_load_updates(ld.op == 0x7 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
1189
1190 /*
1191 * invalidate ALAT entry in case of advanced floating point loads
1192 */
1193 if (ld.x6_op == 0x2)
1194 invala_fr(ld.r1);
1195
1196 return 0;
1197}
1198
1199
1200static int
1201emulate_store_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1202{
1203 struct ia64_fpreg fpr_init;
1204 struct ia64_fpreg fpr_final;
1205 unsigned long len = float_fsz[ld.x6_sz];
1206
1207 /*
1208 * make sure we get clean buffers
1209 */
1210 memset(&fpr_init,0, sizeof(fpr_init));
1211 memset(&fpr_final,0, sizeof(fpr_final));
1212
1213 /*
1214 * if we get to this handler, Nat bits on both r3 and r2 have already
1215 * been checked. so we don't need to do it
1216 *
1217 * extract the value to be stored
1218 */
1219 getfpreg(ld.imm, &fpr_init, regs);
1220 /*
1221 * during this step, we extract the spilled registers from the saved
1222 * context i.e., we refill. Then we store (no spill) to temporary
1223 * aligned location
1224 */
1225 switch( ld.x6_sz ) {
1226 case 0:
1227 float2mem_extended(&fpr_init, &fpr_final);
1228 break;
1229 case 1:
1230 float2mem_integer(&fpr_init, &fpr_final);
1231 break;
1232 case 2:
1233 float2mem_single(&fpr_init, &fpr_final);
1234 break;
1235 case 3:
1236 float2mem_double(&fpr_init, &fpr_final);
1237 break;
1238 }
1239 DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
1240 DDUMP("fpr_init =", &fpr_init, len);
1241 DDUMP("fpr_final =", &fpr_final, len);
1242
1243 if (copy_to_user((void __user *) ifa, &fpr_final, len))
1244 return -1;
1245
1246 /*
1247 * stfX [r3]=r2,imm(9)
1248 *
1249 * NOTE:
1250 * ld.r3 can never be r0, because r0 would not generate an
1251 * unaligned access.
1252 */
1253 if (ld.op == 0x7) {
1254 unsigned long imm;
1255
1256 /*
1257 * form imm9: [12:6] contain first 7bits
1258 */
1259 imm = ld.x << 7 | ld.r1;
1260 /*
1261 * sign extend (8bits) if m set
1262 */
1263 if (ld.m)
1264 imm |= SIGN_EXT9;
1265 /*
1266 * ifa == r3 (NaT is necessarily cleared)
1267 */
1268 ifa += imm;
1269
1270 DPRINT("imm=%lx r3=%lx\n", imm, ifa);
1271
1272 setreg(ld.r3, ifa, 0, regs);
1273 }
1274 /*
1275 * we don't have alat_invalidate_multiple() so we need
1276 * to do the complete flush :-<<
1277 */
1278 ia64_invala();
1279
1280 return 0;
1281}
1282
1283/*
1284 * Make sure we log the unaligned access, so that user/sysadmin can notice it and
1285 * eventually fix the program. However, we don't want to do that for every access so we
1286 * pace it with jiffies. This isn't really MP-safe, but it doesn't really have to be
1287 * either...
1288 */
1289static int
1290within_logging_rate_limit (void)
1291{
1292 static unsigned long count, last_time;
1293
5cf1f7ce 1294 if (time_after(jiffies, last_time + 5 * HZ))
1da177e4 1295 count = 0;
79c83bd1 1296 if (count < 5) {
1da177e4 1297 last_time = jiffies;
79c83bd1 1298 count++;
1da177e4
LT
1299 return 1;
1300 }
1301 return 0;
1302
1303}
1304
1305void
1306ia64_handle_unaligned (unsigned long ifa, struct pt_regs *regs)
1307{
1308 struct ia64_psr *ipsr = ia64_psr(regs);
1309 mm_segment_t old_fs = get_fs();
1310 unsigned long bundle[2];
1311 unsigned long opcode;
1312 struct siginfo si;
1313 const struct exception_table_entry *eh = NULL;
1314 union {
1315 unsigned long l;
1316 load_store_t insn;
1317 } u;
1318 int ret = -1;
1319
1320 if (ia64_psr(regs)->be) {
1321 /* we don't support big-endian accesses */
620de2f5
JB
1322 if (die_if_kernel("big-endian unaligned accesses are not supported", regs, 0))
1323 return;
1da177e4
LT
1324 goto force_sigbus;
1325 }
1326
1327 /*
1328 * Treat kernel accesses for which there is an exception handler entry the same as
1329 * user-level unaligned accesses. Otherwise, a clever program could trick this
1330 * handler into reading an arbitrary kernel addresses...
1331 */
1332 if (!user_mode(regs))
1333 eh = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri);
1334 if (user_mode(regs) || eh) {
1335 if ((current->thread.flags & IA64_THREAD_UAC_SIGBUS) != 0)
1336 goto force_sigbus;
1337
d2b176ed
JS
1338 if (!no_unaligned_warning &&
1339 !(current->thread.flags & IA64_THREAD_UAC_NOPRINT) &&
1340 within_logging_rate_limit())
1da177e4
LT
1341 {
1342 char buf[200]; /* comm[] is at most 16 bytes... */
1343 size_t len;
1344
1345 len = sprintf(buf, "%s(%d): unaligned access to 0x%016lx, "
19c5870c
AD
1346 "ip=0x%016lx\n\r", current->comm,
1347 task_pid_nr(current),
1da177e4
LT
1348 ifa, regs->cr_iip + ipsr->ri);
1349 /*
1350 * Don't call tty_write_message() if we're in the kernel; we might
1351 * be holding locks...
1352 */
1353 if (user_mode(regs))
1354 tty_write_message(current->signal->tty, buf);
1355 buf[len-1] = '\0'; /* drop '\r' */
d2b176ed
JS
1356 /* watch for command names containing %s */
1357 printk(KERN_WARNING "%s", buf);
1358 } else {
54f8dd3c
MS
1359 if (no_unaligned_warning) {
1360 printk_once(KERN_WARNING "%s(%d) encountered an "
d2b176ed
JS
1361 "unaligned exception which required\n"
1362 "kernel assistance, which degrades "
1363 "the performance of the application.\n"
1364 "Unaligned exception warnings have "
1365 "been disabled by the system "
1366 "administrator\n"
1367 "echo 0 > /proc/sys/kernel/ignore-"
1368 "unaligned-usertrap to re-enable\n",
19c5870c 1369 current->comm, task_pid_nr(current));
d2b176ed 1370 }
1da177e4
LT
1371 }
1372 } else {
88fc241f 1373 if (within_logging_rate_limit()) {
1da177e4
LT
1374 printk(KERN_WARNING "kernel unaligned access to 0x%016lx, ip=0x%016lx\n",
1375 ifa, regs->cr_iip + ipsr->ri);
88fc241f
DC
1376 if (unaligned_dump_stack)
1377 dump_stack();
1378 }
1da177e4
LT
1379 set_fs(KERNEL_DS);
1380 }
1381
1382 DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n",
1383 regs->cr_iip, ifa, regs->cr_ipsr, ipsr->ri, ipsr->it);
1384
1385 if (__copy_from_user(bundle, (void __user *) regs->cr_iip, 16))
1386 goto failure;
1387
1388 /*
1389 * extract the instruction from the bundle given the slot number
1390 */
1391 switch (ipsr->ri) {
1392 case 0: u.l = (bundle[0] >> 5); break;
1393 case 1: u.l = (bundle[0] >> 46) | (bundle[1] << 18); break;
1394 case 2: u.l = (bundle[1] >> 23); break;
1395 }
1396 opcode = (u.l >> IA64_OPCODE_SHIFT) & IA64_OPCODE_MASK;
1397
1398 DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d "
1399 "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode, u.insn.qp, u.insn.r1, u.insn.imm,
1400 u.insn.r3, u.insn.x, u.insn.hint, u.insn.x6_sz, u.insn.m, u.insn.op);
1401
1402 /*
1403 * IMPORTANT:
1404 * Notice that the switch statement DOES not cover all possible instructions
1405 * that DO generate unaligned references. This is made on purpose because for some
1406 * instructions it DOES NOT make sense to try and emulate the access. Sometimes it
1407 * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e.,
1408 * the program will get a signal and die:
1409 *
1410 * load/store:
1411 * - ldX.spill
1412 * - stX.spill
1413 * Reason: RNATs are based on addresses
1414 * - ld16
1415 * - st16
1416 * Reason: ld16 and st16 are supposed to occur in a single
1417 * memory op
1418 *
1419 * synchronization:
1420 * - cmpxchg
1421 * - fetchadd
1422 * - xchg
1423 * Reason: ATOMIC operations cannot be emulated properly using multiple
1424 * instructions.
1425 *
1426 * speculative loads:
1427 * - ldX.sZ
1428 * Reason: side effects, code must be ready to deal with failure so simpler
1429 * to let the load fail.
1430 * ---------------------------------------------------------------------------------
1431 * XXX fixme
1432 *
1433 * I would like to get rid of this switch case and do something
1434 * more elegant.
1435 */
1436 switch (opcode) {
1437 case LDS_OP:
1438 case LDSA_OP:
1439 if (u.insn.x)
1440 /* oops, really a semaphore op (cmpxchg, etc) */
1441 goto failure;
1442 /* no break */
1443 case LDS_IMM_OP:
1444 case LDSA_IMM_OP:
1445 case LDFS_OP:
1446 case LDFSA_OP:
1447 case LDFS_IMM_OP:
1448 /*
1449 * The instruction will be retried with deferred exceptions turned on, and
1450 * we should get Nat bit installed
1451 *
1452 * IMPORTANT: When PSR_ED is set, the register & immediate update forms
1453 * are actually executed even though the operation failed. So we don't
1454 * need to take care of this.
1455 */
1456 DPRINT("forcing PSR_ED\n");
1457 regs->cr_ipsr |= IA64_PSR_ED;
1458 goto done;
1459
1460 case LD_OP:
1461 case LDA_OP:
1462 case LDBIAS_OP:
1463 case LDACQ_OP:
1464 case LDCCLR_OP:
1465 case LDCNC_OP:
1466 case LDCCLRACQ_OP:
1467 if (u.insn.x)
1468 /* oops, really a semaphore op (cmpxchg, etc) */
1469 goto failure;
1470 /* no break */
1471 case LD_IMM_OP:
1472 case LDA_IMM_OP:
1473 case LDBIAS_IMM_OP:
1474 case LDACQ_IMM_OP:
1475 case LDCCLR_IMM_OP:
1476 case LDCNC_IMM_OP:
1477 case LDCCLRACQ_IMM_OP:
1478 ret = emulate_load_int(ifa, u.insn, regs);
1479 break;
1480
1481 case ST_OP:
1482 case STREL_OP:
1483 if (u.insn.x)
1484 /* oops, really a semaphore op (cmpxchg, etc) */
1485 goto failure;
1486 /* no break */
1487 case ST_IMM_OP:
1488 case STREL_IMM_OP:
1489 ret = emulate_store_int(ifa, u.insn, regs);
1490 break;
1491
1492 case LDF_OP:
1493 case LDFA_OP:
1494 case LDFCCLR_OP:
1495 case LDFCNC_OP:
1da177e4
LT
1496 if (u.insn.x)
1497 ret = emulate_load_floatpair(ifa, u.insn, regs);
1498 else
1499 ret = emulate_load_float(ifa, u.insn, regs);
1500 break;
1501
1a499150
TL
1502 case LDF_IMM_OP:
1503 case LDFA_IMM_OP:
1504 case LDFCCLR_IMM_OP:
1505 case LDFCNC_IMM_OP:
1506 ret = emulate_load_float(ifa, u.insn, regs);
1507 break;
1508
1da177e4
LT
1509 case STF_OP:
1510 case STF_IMM_OP:
1511 ret = emulate_store_float(ifa, u.insn, regs);
1512 break;
1513
1514 default:
1515 goto failure;
1516 }
1517 DPRINT("ret=%d\n", ret);
1518 if (ret)
1519 goto failure;
1520
1521 if (ipsr->ri == 2)
1522 /*
1523 * given today's architecture this case is not likely to happen because a
1524 * memory access instruction (M) can never be in the last slot of a
1525 * bundle. But let's keep it for now.
1526 */
1527 regs->cr_iip += 16;
1528 ipsr->ri = (ipsr->ri + 1) & 0x3;
1529
1530 DPRINT("ipsr->ri=%d iip=%lx\n", ipsr->ri, regs->cr_iip);
1531 done:
1532 set_fs(old_fs); /* restore original address limit */
1533 return;
1534
1535 failure:
1536 /* something went wrong... */
1537 if (!user_mode(regs)) {
1538 if (eh) {
1539 ia64_handle_exception(regs, eh);
1540 goto done;
1541 }
620de2f5
JB
1542 if (die_if_kernel("error during unaligned kernel access\n", regs, ret))
1543 return;
1da177e4
LT
1544 /* NOT_REACHED */
1545 }
1546 force_sigbus:
1547 si.si_signo = SIGBUS;
1548 si.si_errno = 0;
1549 si.si_code = BUS_ADRALN;
1550 si.si_addr = (void __user *) ifa;
1551 si.si_flags = 0;
1552 si.si_isr = 0;
1553 si.si_imm = 0;
1554 force_sig_info(SIGBUS, &si, current);
1555 goto done;
1556}