]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/ia64/lib/do_csum.S
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[mirror_ubuntu-bionic-kernel.git] / arch / ia64 / lib / do_csum.S
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2/*
3 *
4 * Optmized version of the standard do_csum() function
5 *
6 * Return: a 64bit quantity containing the 16bit Internet checksum
7 *
8 * Inputs:
9 * in0: address of buffer to checksum (char *)
10 * in1: length of the buffer (int)
11 *
12 * Copyright (C) 1999, 2001-2002 Hewlett-Packard Co
13 * Stephane Eranian <eranian@hpl.hp.com>
14 *
15 * 02/04/22 Ken Chen <kenneth.w.chen@intel.com>
16 * Data locality study on the checksum buffer.
17 * More optimization cleanup - remove excessive stop bits.
18 * 02/04/08 David Mosberger <davidm@hpl.hp.com>
19 * More cleanup and tuning.
20 * 01/04/18 Jun Nakajima <jun.nakajima@intel.com>
21 * Clean up and optimize and the software pipeline, loading two
22 * back-to-back 8-byte words per loop. Clean up the initialization
23 * for the loop. Support the cases where load latency = 1 or 2.
24 * Set CONFIG_IA64_LOAD_LATENCY to 1 or 2 (default).
25 */
26
27#include <asm/asmmacro.h>
28
29//
30// Theory of operations:
31// The goal is to go as quickly as possible to the point where
32// we can checksum 16 bytes/loop. Before reaching that point we must
33// take care of incorrect alignment of first byte.
34//
35// The code hereafter also takes care of the "tail" part of the buffer
36// before entering the core loop, if any. The checksum is a sum so it
37// allows us to commute operations. So we do the "head" and "tail"
38// first to finish at full speed in the body. Once we get the head and
39// tail values, we feed them into the pipeline, very handy initialization.
40//
41// Of course we deal with the special case where the whole buffer fits
42// into one 8 byte word. In this case we have only one entry in the pipeline.
43//
44// We use a (LOAD_LATENCY+2)-stage pipeline in the loop to account for
45// possible load latency and also to accommodate for head and tail.
46//
47// The end of the function deals with folding the checksum from 64bits
48// down to 16bits taking care of the carry.
49//
50// This version avoids synchronization in the core loop by also using a
51// pipeline for the accumulation of the checksum in resultx[] (x=1,2).
52//
53// wordx[] (x=1,2)
54// |---|
55// | | 0 : new value loaded in pipeline
56// |---|
57// | | - : in transit data
58// |---|
59// | | LOAD_LATENCY : current value to add to checksum
60// |---|
61// | | LOAD_LATENCY+1 : previous value added to checksum
62// |---| (previous iteration)
63//
64// resultx[] (x=1,2)
65// |---|
66// | | 0 : initial value
67// |---|
68// | | LOAD_LATENCY-1 : new checksum
69// |---|
70// | | LOAD_LATENCY : previous value of checksum
71// |---|
72// | | LOAD_LATENCY+1 : final checksum when out of the loop
73// |---|
74//
75//
76// See RFC1071 "Computing the Internet Checksum" for various techniques for
77// calculating the Internet checksum.
78//
79// NOT YET DONE:
80// - Maybe another algorithm which would take care of the folding at the
81// end in a different manner
82// - Work with people more knowledgeable than me on the network stack
83// to figure out if we could not split the function depending on the
84// type of packet or alignment we get. Like the ip_fast_csum() routine
85// where we know we have at least 20bytes worth of data to checksum.
86// - Do a better job of handling small packets.
87// - Note on prefetching: it was found that under various load, i.e. ftp read/write,
88// nfs read/write, the L1 cache hit rate is at 60% and L2 cache hit rate is at 99.8%
89// on the data that buffer points to (partly because the checksum is often preceded by
90// a copy_from_user()). This finding indiate that lfetch will not be beneficial since
91// the data is already in the cache.
92//
93
94#define saved_pfs r11
95#define hmask r16
96#define tmask r17
97#define first1 r18
98#define firstval r19
99#define firstoff r20
100#define last r21
101#define lastval r22
102#define lastoff r23
103#define saved_lc r24
104#define saved_pr r25
105#define tmp1 r26
106#define tmp2 r27
107#define tmp3 r28
108#define carry1 r29
109#define carry2 r30
110#define first2 r31
111
112#define buf in0
113#define len in1
114
115#define LOAD_LATENCY 2 // XXX fix me
116
117#if (LOAD_LATENCY != 1) && (LOAD_LATENCY != 2)
118# error "Only 1 or 2 is supported/tested for LOAD_LATENCY."
119#endif
120
121#define PIPE_DEPTH (LOAD_LATENCY+2)
122#define ELD p[LOAD_LATENCY] // end of load
123#define ELD_1 p[LOAD_LATENCY+1] // and next stage
124
125// unsigned long do_csum(unsigned char *buf,long len)
126
127GLOBAL_ENTRY(do_csum)
128 .prologue
129 .save ar.pfs, saved_pfs
130 alloc saved_pfs=ar.pfs,2,16,0,16
131 .rotr word1[4], word2[4],result1[LOAD_LATENCY+2],result2[LOAD_LATENCY+2]
132 .rotp p[PIPE_DEPTH], pC1[2], pC2[2]
133 mov ret0=r0 // in case we have zero length
134 cmp.lt p0,p6=r0,len // check for zero length or negative (32bit len)
135 ;;
136 add tmp1=buf,len // last byte's address
137 .save pr, saved_pr
138 mov saved_pr=pr // preserve predicates (rotation)
139(p6) br.ret.spnt.many rp // return if zero or negative length
140
141 mov hmask=-1 // initialize head mask
142 tbit.nz p15,p0=buf,0 // is buf an odd address?
143 and first1=-8,buf // 8-byte align down address of first1 element
144
145 and firstoff=7,buf // how many bytes off for first1 element
146 mov tmask=-1 // initialize tail mask
147
148 ;;
149 adds tmp2=-1,tmp1 // last-1
150 and lastoff=7,tmp1 // how many bytes off for last element
151 ;;
152 sub tmp1=8,lastoff // complement to lastoff
153 and last=-8,tmp2 // address of word containing last byte
154 ;;
155 sub tmp3=last,first1 // tmp3=distance from first1 to last
156 .save ar.lc, saved_lc
157 mov saved_lc=ar.lc // save lc
158 cmp.eq p8,p9=last,first1 // everything fits in one word ?
159
160 ld8 firstval=[first1],8 // load, ahead of time, "first1" word
161 and tmp1=7, tmp1 // make sure that if tmp1==8 -> tmp1=0
162 shl tmp2=firstoff,3 // number of bits
163 ;;
164(p9) ld8 lastval=[last] // load, ahead of time, "last" word, if needed
165 shl tmp1=tmp1,3 // number of bits
166(p9) adds tmp3=-8,tmp3 // effectively loaded
167 ;;
168(p8) mov lastval=r0 // we don't need lastval if first1==last
169 shl hmask=hmask,tmp2 // build head mask, mask off [0,first1off[
170 shr.u tmask=tmask,tmp1 // build tail mask, mask off ]8,lastoff]
171 ;;
172 .body
173#define count tmp3
174
175(p8) and hmask=hmask,tmask // apply tail mask to head mask if 1 word only
176(p9) and word2[0]=lastval,tmask // mask last it as appropriate
177 shr.u count=count,3 // how many 8-byte?
178 ;;
179 // If count is odd, finish this 8-byte word so that we can
180 // load two back-to-back 8-byte words per loop thereafter.
181 and word1[0]=firstval,hmask // and mask it as appropriate
182 tbit.nz p10,p11=count,0 // if (count is odd)
183 ;;
184(p8) mov result1[0]=word1[0]
185(p9) add result1[0]=word1[0],word2[0]
186 ;;
187 cmp.ltu p6,p0=result1[0],word1[0] // check the carry
188 cmp.eq.or.andcm p8,p0=0,count // exit if zero 8-byte
189 ;;
190(p6) adds result1[0]=1,result1[0]
191(p8) br.cond.dptk .do_csum_exit // if (within an 8-byte word)
192(p11) br.cond.dptk .do_csum16 // if (count is even)
193
194 // Here count is odd.
195 ld8 word1[1]=[first1],8 // load an 8-byte word
196 cmp.eq p9,p10=1,count // if (count == 1)
197 adds count=-1,count // loaded an 8-byte word
198 ;;
199 add result1[0]=result1[0],word1[1]
200 ;;
201 cmp.ltu p6,p0=result1[0],word1[1]
202 ;;
203(p6) adds result1[0]=1,result1[0]
204(p9) br.cond.sptk .do_csum_exit // if (count == 1) exit
25985edc 205 // Fall through to calculate the checksum, feeding result1[0] as
1da177e4
LT
206 // the initial value in result1[0].
207 //
208 // Calculate the checksum loading two 8-byte words per loop.
209 //
210.do_csum16:
211 add first2=8,first1
212 shr.u count=count,1 // we do 16 bytes per loop
213 ;;
214 adds count=-1,count
215 mov carry1=r0
216 mov carry2=r0
217 brp.loop.imp 1f,2f
218 ;;
219 mov ar.ec=PIPE_DEPTH
220 mov ar.lc=count // set lc
221 mov pr.rot=1<<16
222 // result1[0] must be initialized in advance.
223 mov result2[0]=r0
224 ;;
225 .align 32
2261:
227(ELD_1) cmp.ltu pC1[0],p0=result1[LOAD_LATENCY],word1[LOAD_LATENCY+1]
228(pC1[1])adds carry1=1,carry1
229(ELD_1) cmp.ltu pC2[0],p0=result2[LOAD_LATENCY],word2[LOAD_LATENCY+1]
230(pC2[1])adds carry2=1,carry2
231(ELD) add result1[LOAD_LATENCY-1]=result1[LOAD_LATENCY],word1[LOAD_LATENCY]
232(ELD) add result2[LOAD_LATENCY-1]=result2[LOAD_LATENCY],word2[LOAD_LATENCY]
2332:
234(p[0]) ld8 word1[0]=[first1],16
235(p[0]) ld8 word2[0]=[first2],16
236 br.ctop.sptk 1b
237 ;;
238 // Since len is a 32-bit value, carry cannot be larger than a 64-bit value.
239(pC1[1])adds carry1=1,carry1 // since we miss the last one
240(pC2[1])adds carry2=1,carry2
241 ;;
242 add result1[LOAD_LATENCY+1]=result1[LOAD_LATENCY+1],carry1
243 add result2[LOAD_LATENCY+1]=result2[LOAD_LATENCY+1],carry2
244 ;;
245 cmp.ltu p6,p0=result1[LOAD_LATENCY+1],carry1
246 cmp.ltu p7,p0=result2[LOAD_LATENCY+1],carry2
247 ;;
248(p6) adds result1[LOAD_LATENCY+1]=1,result1[LOAD_LATENCY+1]
249(p7) adds result2[LOAD_LATENCY+1]=1,result2[LOAD_LATENCY+1]
250 ;;
251 add result1[0]=result1[LOAD_LATENCY+1],result2[LOAD_LATENCY+1]
252 ;;
253 cmp.ltu p6,p0=result1[0],result2[LOAD_LATENCY+1]
254 ;;
255(p6) adds result1[0]=1,result1[0]
256 ;;
257.do_csum_exit:
258 //
259 // now fold 64 into 16 bits taking care of carry
260 // that's not very good because it has lots of sequentiality
261 //
262 mov tmp3=0xffff
263 zxt4 tmp1=result1[0]
264 shr.u tmp2=result1[0],32
265 ;;
266 add result1[0]=tmp1,tmp2
267 ;;
268 and tmp1=result1[0],tmp3
269 shr.u tmp2=result1[0],16
270 ;;
271 add result1[0]=tmp1,tmp2
272 ;;
273 and tmp1=result1[0],tmp3
274 shr.u tmp2=result1[0],16
275 ;;
276 add result1[0]=tmp1,tmp2
277 ;;
278 and tmp1=result1[0],tmp3
279 shr.u tmp2=result1[0],16
280 ;;
281 add ret0=tmp1,tmp2
282 mov pr=saved_pr,0xffffffffffff0000
283 ;;
284 // if buf was odd then swap bytes
285 mov ar.pfs=saved_pfs // restore ar.ec
286(p15) mux1 ret0=ret0,@rev // reverse word
287 ;;
288 mov ar.lc=saved_lc
289(p15) shr.u ret0=ret0,64-16 // + shift back to position = swap bytes
290 br.ret.sptk.many rp
291
292// I (Jun Nakajima) wrote an equivalent code (see below), but it was
293// not much better than the original. So keep the original there so that
294// someone else can challenge.
295//
296// shr.u word1[0]=result1[0],32
297// zxt4 result1[0]=result1[0]
298// ;;
299// add result1[0]=result1[0],word1[0]
300// ;;
301// zxt2 result2[0]=result1[0]
302// extr.u word1[0]=result1[0],16,16
303// shr.u carry1=result1[0],32
304// ;;
305// add result2[0]=result2[0],word1[0]
306// ;;
307// add result2[0]=result2[0],carry1
308// ;;
309// extr.u ret0=result2[0],16,16
310// ;;
311// add ret0=ret0,result2[0]
312// ;;
313// zxt2 ret0=ret0
314// mov ar.pfs=saved_pfs // restore ar.ec
315// mov pr=saved_pr,0xffffffffffff0000
316// ;;
317// // if buf was odd then swap bytes
318// mov ar.lc=saved_lc
319//(p15) mux1 ret0=ret0,@rev // reverse word
320// ;;
321//(p15) shr.u ret0=ret0,64-16 // + shift back to position = swap bytes
322// br.ret.sptk.many rp
323
324END(do_csum)