]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - arch/ia64/mm/discontig.c
[PATCH] Register sysfs file for hotplugged new node
[mirror_ubuntu-focal-kernel.git] / arch / ia64 / mm / discontig.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
3 * Copyright (c) 2001 Intel Corp.
4 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
5 * Copyright (c) 2002 NEC Corp.
6 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
7 * Copyright (c) 2004 Silicon Graphics, Inc
8 * Russ Anderson <rja@sgi.com>
9 * Jesse Barnes <jbarnes@sgi.com>
10 * Jack Steiner <steiner@sgi.com>
11 */
12
13/*
14 * Platform initialization for Discontig Memory
15 */
16
17#include <linux/kernel.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bootmem.h>
21#include <linux/acpi.h>
22#include <linux/efi.h>
23#include <linux/nodemask.h>
24#include <asm/pgalloc.h>
25#include <asm/tlb.h>
26#include <asm/meminit.h>
27#include <asm/numa.h>
28#include <asm/sections.h>
29
30/*
31 * Track per-node information needed to setup the boot memory allocator, the
32 * per-node areas, and the real VM.
33 */
34struct early_node_data {
35 struct ia64_node_data *node_data;
36 pg_data_t *pgdat;
37 unsigned long pernode_addr;
38 unsigned long pernode_size;
39 struct bootmem_data bootmem_data;
40 unsigned long num_physpages;
41 unsigned long num_dma_physpages;
42 unsigned long min_pfn;
43 unsigned long max_pfn;
44};
45
46static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
564601a5 47static nodemask_t memory_less_mask __initdata;
1da177e4
LT
48
49/*
50 * To prevent cache aliasing effects, align per-node structures so that they
51 * start at addresses that are strided by node number.
52 */
acb7f672 53#define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
1da177e4 54#define NODEDATA_ALIGN(addr, node) \
acb7f672
JS
55 ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
56 (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
1da177e4
LT
57
58/**
59 * build_node_maps - callback to setup bootmem structs for each node
60 * @start: physical start of range
61 * @len: length of range
62 * @node: node where this range resides
63 *
64 * We allocate a struct bootmem_data for each piece of memory that we wish to
65 * treat as a virtually contiguous block (i.e. each node). Each such block
66 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
67 * if necessary. Any non-existent pages will simply be part of the virtual
68 * memmap. We also update min_low_pfn and max_low_pfn here as we receive
69 * memory ranges from the caller.
70 */
71static int __init build_node_maps(unsigned long start, unsigned long len,
72 int node)
73{
74 unsigned long cstart, epfn, end = start + len;
75 struct bootmem_data *bdp = &mem_data[node].bootmem_data;
76
77 epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
78 cstart = GRANULEROUNDDOWN(start);
79
80 if (!bdp->node_low_pfn) {
81 bdp->node_boot_start = cstart;
82 bdp->node_low_pfn = epfn;
83 } else {
84 bdp->node_boot_start = min(cstart, bdp->node_boot_start);
85 bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
86 }
87
88 min_low_pfn = min(min_low_pfn, bdp->node_boot_start>>PAGE_SHIFT);
89 max_low_pfn = max(max_low_pfn, bdp->node_low_pfn);
90
91 return 0;
92}
93
94/**
564601a5 95 * early_nr_cpus_node - return number of cpus on a given node
1da177e4
LT
96 * @node: node to check
97 *
564601a5 98 * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
1da177e4 99 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
564601a5 100 * called yet. Note that node 0 will also count all non-existent cpus.
1da177e4 101 */
564601a5 102static int __init early_nr_cpus_node(int node)
1da177e4
LT
103{
104 int cpu, n = 0;
105
106 for (cpu = 0; cpu < NR_CPUS; cpu++)
107 if (node == node_cpuid[cpu].nid)
564601a5 108 n++;
1da177e4
LT
109
110 return n;
111}
112
564601a5 113/**
114 * compute_pernodesize - compute size of pernode data
115 * @node: the node id.
116 */
117static unsigned long __init compute_pernodesize(int node)
118{
119 unsigned long pernodesize = 0, cpus;
120
121 cpus = early_nr_cpus_node(node);
122 pernodesize += PERCPU_PAGE_SIZE * cpus;
123 pernodesize += node * L1_CACHE_BYTES;
124 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
125 pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
126 pernodesize = PAGE_ALIGN(pernodesize);
127 return pernodesize;
128}
1da177e4 129
8d7e3517
TL
130/**
131 * per_cpu_node_setup - setup per-cpu areas on each node
132 * @cpu_data: per-cpu area on this node
133 * @node: node to setup
134 *
135 * Copy the static per-cpu data into the region we just set aside and then
136 * setup __per_cpu_offset for each CPU on this node. Return a pointer to
137 * the end of the area.
138 */
139static void *per_cpu_node_setup(void *cpu_data, int node)
140{
141#ifdef CONFIG_SMP
142 int cpu;
143
144 for (cpu = 0; cpu < NR_CPUS; cpu++) {
145 if (node == node_cpuid[cpu].nid) {
146 memcpy(__va(cpu_data), __phys_per_cpu_start,
147 __per_cpu_end - __per_cpu_start);
148 __per_cpu_offset[cpu] = (char*)__va(cpu_data) -
149 __per_cpu_start;
150 cpu_data += PERCPU_PAGE_SIZE;
151 }
152 }
153#endif
154 return cpu_data;
155}
156
1da177e4 157/**
564601a5 158 * fill_pernode - initialize pernode data.
159 * @node: the node id.
160 * @pernode: physical address of pernode data
161 * @pernodesize: size of the pernode data
1da177e4 162 */
564601a5 163static void __init fill_pernode(int node, unsigned long pernode,
164 unsigned long pernodesize)
1da177e4 165{
564601a5 166 void *cpu_data;
8d7e3517 167 int cpus = early_nr_cpus_node(node);
564601a5 168 struct bootmem_data *bdp = &mem_data[node].bootmem_data;
1da177e4 169
564601a5 170 mem_data[node].pernode_addr = pernode;
171 mem_data[node].pernode_size = pernodesize;
172 memset(__va(pernode), 0, pernodesize);
1da177e4 173
564601a5 174 cpu_data = (void *)pernode;
175 pernode += PERCPU_PAGE_SIZE * cpus;
176 pernode += node * L1_CACHE_BYTES;
177
178 mem_data[node].pgdat = __va(pernode);
179 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
180
181 mem_data[node].node_data = __va(pernode);
182 pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
183
184 mem_data[node].pgdat->bdata = bdp;
185 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
186
8d7e3517 187 cpu_data = per_cpu_node_setup(cpu_data, node);
1da177e4 188
564601a5 189 return;
190}
8d7e3517 191
1da177e4
LT
192/**
193 * find_pernode_space - allocate memory for memory map and per-node structures
194 * @start: physical start of range
195 * @len: length of range
196 * @node: node where this range resides
197 *
198 * This routine reserves space for the per-cpu data struct, the list of
199 * pg_data_ts and the per-node data struct. Each node will have something like
200 * the following in the first chunk of addr. space large enough to hold it.
201 *
202 * ________________________
203 * | |
204 * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
205 * | PERCPU_PAGE_SIZE * | start and length big enough
206 * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
207 * |------------------------|
208 * | local pg_data_t * |
209 * |------------------------|
210 * | local ia64_node_data |
211 * |------------------------|
212 * | ??? |
213 * |________________________|
214 *
215 * Once this space has been set aside, the bootmem maps are initialized. We
216 * could probably move the allocation of the per-cpu and ia64_node_data space
217 * outside of this function and use alloc_bootmem_node(), but doing it here
218 * is straightforward and we get the alignments we want so...
219 */
220static int __init find_pernode_space(unsigned long start, unsigned long len,
221 int node)
222{
564601a5 223 unsigned long epfn;
1da177e4 224 unsigned long pernodesize = 0, pernode, pages, mapsize;
1da177e4
LT
225 struct bootmem_data *bdp = &mem_data[node].bootmem_data;
226
227 epfn = (start + len) >> PAGE_SHIFT;
228
229 pages = bdp->node_low_pfn - (bdp->node_boot_start >> PAGE_SHIFT);
230 mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
231
232 /*
233 * Make sure this memory falls within this node's usable memory
234 * since we may have thrown some away in build_maps().
235 */
236 if (start < bdp->node_boot_start || epfn > bdp->node_low_pfn)
237 return 0;
238
239 /* Don't setup this node's local space twice... */
240 if (mem_data[node].pernode_addr)
241 return 0;
242
243 /*
244 * Calculate total size needed, incl. what's necessary
245 * for good alignment and alias prevention.
246 */
564601a5 247 pernodesize = compute_pernodesize(node);
1da177e4
LT
248 pernode = NODEDATA_ALIGN(start, node);
249
250 /* Is this range big enough for what we want to store here? */
564601a5 251 if (start + len > (pernode + pernodesize + mapsize))
252 fill_pernode(node, pernode, pernodesize);
1da177e4
LT
253
254 return 0;
255}
256
257/**
258 * free_node_bootmem - free bootmem allocator memory for use
259 * @start: physical start of range
260 * @len: length of range
261 * @node: node where this range resides
262 *
263 * Simply calls the bootmem allocator to free the specified ranged from
264 * the given pg_data_t's bdata struct. After this function has been called
265 * for all the entries in the EFI memory map, the bootmem allocator will
266 * be ready to service allocation requests.
267 */
268static int __init free_node_bootmem(unsigned long start, unsigned long len,
269 int node)
270{
271 free_bootmem_node(mem_data[node].pgdat, start, len);
272
273 return 0;
274}
275
276/**
277 * reserve_pernode_space - reserve memory for per-node space
278 *
279 * Reserve the space used by the bootmem maps & per-node space in the boot
280 * allocator so that when we actually create the real mem maps we don't
281 * use their memory.
282 */
283static void __init reserve_pernode_space(void)
284{
285 unsigned long base, size, pages;
286 struct bootmem_data *bdp;
287 int node;
288
289 for_each_online_node(node) {
290 pg_data_t *pdp = mem_data[node].pgdat;
291
564601a5 292 if (node_isset(node, memory_less_mask))
293 continue;
294
1da177e4
LT
295 bdp = pdp->bdata;
296
297 /* First the bootmem_map itself */
298 pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT);
299 size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
300 base = __pa(bdp->node_bootmem_map);
301 reserve_bootmem_node(pdp, base, size);
302
303 /* Now the per-node space */
304 size = mem_data[node].pernode_size;
305 base = __pa(mem_data[node].pernode_addr);
306 reserve_bootmem_node(pdp, base, size);
307 }
308}
309
310/**
311 * initialize_pernode_data - fixup per-cpu & per-node pointers
312 *
313 * Each node's per-node area has a copy of the global pg_data_t list, so
314 * we copy that to each node here, as well as setting the per-cpu pointer
315 * to the local node data structure. The active_cpus field of the per-node
316 * structure gets setup by the platform_cpu_init() function later.
317 */
318static void __init initialize_pernode_data(void)
319{
1da177e4 320 pg_data_t *pgdat_list[MAX_NUMNODES];
8d7e3517 321 int cpu, node;
1da177e4
LT
322
323 for_each_online_node(node)
324 pgdat_list[node] = mem_data[node].pgdat;
325
326 /* Copy the pg_data_t list to each node and init the node field */
327 for_each_online_node(node) {
328 memcpy(mem_data[node].node_data->pg_data_ptrs, pgdat_list,
329 sizeof(pgdat_list));
330 }
8d7e3517 331#ifdef CONFIG_SMP
1da177e4
LT
332 /* Set the node_data pointer for each per-cpu struct */
333 for (cpu = 0; cpu < NR_CPUS; cpu++) {
334 node = node_cpuid[cpu].nid;
335 per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data;
336 }
8d7e3517
TL
337#else
338 {
339 struct cpuinfo_ia64 *cpu0_cpu_info;
340 cpu = 0;
341 node = node_cpuid[cpu].nid;
342 cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
343 ((char *)&per_cpu__cpu_info - __per_cpu_start));
344 cpu0_cpu_info->node_data = mem_data[node].node_data;
345 }
346#endif /* CONFIG_SMP */
1da177e4
LT
347}
348
564601a5 349/**
350 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
351 * node but fall back to any other node when __alloc_bootmem_node fails
352 * for best.
353 * @nid: node id
354 * @pernodesize: size of this node's pernode data
564601a5 355 */
97835245 356static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
564601a5 357{
358 void *ptr = NULL;
359 u8 best = 0xff;
97835245 360 int bestnode = -1, node, anynode = 0;
564601a5 361
362 for_each_online_node(node) {
363 if (node_isset(node, memory_less_mask))
364 continue;
365 else if (node_distance(nid, node) < best) {
366 best = node_distance(nid, node);
367 bestnode = node;
368 }
97835245 369 anynode = node;
564601a5 370 }
371
97835245
BP
372 if (bestnode == -1)
373 bestnode = anynode;
374
375 ptr = __alloc_bootmem_node(mem_data[bestnode].pgdat, pernodesize,
376 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
564601a5 377
564601a5 378 return ptr;
379}
380
564601a5 381/**
382 * memory_less_nodes - allocate and initialize CPU only nodes pernode
383 * information.
384 */
385static void __init memory_less_nodes(void)
386{
387 unsigned long pernodesize;
388 void *pernode;
389 int node;
390
391 for_each_node_mask(node, memory_less_mask) {
392 pernodesize = compute_pernodesize(node);
97835245 393 pernode = memory_less_node_alloc(node, pernodesize);
564601a5 394 fill_pernode(node, __pa(pernode), pernodesize);
395 }
396
397 return;
398}
399
2d4b1fa2
BP
400#ifdef CONFIG_SPARSEMEM
401/**
402 * register_sparse_mem - notify SPARSEMEM that this memory range exists.
403 * @start: physical start of range
404 * @end: physical end of range
405 * @arg: unused
406 *
407 * Simply calls SPARSEMEM to register memory section(s).
408 */
409static int __init register_sparse_mem(unsigned long start, unsigned long end,
410 void *arg)
411{
412 int nid;
413
414 start = __pa(start) >> PAGE_SHIFT;
415 end = __pa(end) >> PAGE_SHIFT;
416 nid = early_pfn_to_nid(start);
417 memory_present(nid, start, end);
418
419 return 0;
420}
421
422static void __init arch_sparse_init(void)
423{
424 efi_memmap_walk(register_sparse_mem, NULL);
425 sparse_init();
426}
427#else
428#define arch_sparse_init() do {} while (0)
429#endif
430
1da177e4
LT
431/**
432 * find_memory - walk the EFI memory map and setup the bootmem allocator
433 *
434 * Called early in boot to setup the bootmem allocator, and to
435 * allocate the per-cpu and per-node structures.
436 */
437void __init find_memory(void)
438{
439 int node;
440
441 reserve_memory();
442
443 if (num_online_nodes() == 0) {
444 printk(KERN_ERR "node info missing!\n");
445 node_set_online(0);
446 }
447
564601a5 448 nodes_or(memory_less_mask, memory_less_mask, node_online_map);
1da177e4
LT
449 min_low_pfn = -1;
450 max_low_pfn = 0;
451
1da177e4
LT
452 /* These actually end up getting called by call_pernode_memory() */
453 efi_memmap_walk(filter_rsvd_memory, build_node_maps);
454 efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
455
564601a5 456 for_each_online_node(node)
457 if (mem_data[node].bootmem_data.node_low_pfn) {
458 node_clear(node, memory_less_mask);
459 mem_data[node].min_pfn = ~0UL;
460 }
1da177e4
LT
461 /*
462 * Initialize the boot memory maps in reverse order since that's
463 * what the bootmem allocator expects
464 */
465 for (node = MAX_NUMNODES - 1; node >= 0; node--) {
466 unsigned long pernode, pernodesize, map;
467 struct bootmem_data *bdp;
468
469 if (!node_online(node))
470 continue;
564601a5 471 else if (node_isset(node, memory_less_mask))
472 continue;
1da177e4
LT
473
474 bdp = &mem_data[node].bootmem_data;
475 pernode = mem_data[node].pernode_addr;
476 pernodesize = mem_data[node].pernode_size;
477 map = pernode + pernodesize;
478
1da177e4
LT
479 init_bootmem_node(mem_data[node].pgdat,
480 map>>PAGE_SHIFT,
481 bdp->node_boot_start>>PAGE_SHIFT,
482 bdp->node_low_pfn);
483 }
484
485 efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
486
487 reserve_pernode_space();
564601a5 488 memory_less_nodes();
1da177e4
LT
489 initialize_pernode_data();
490
491 max_pfn = max_low_pfn;
492
493 find_initrd();
494}
495
8d7e3517 496#ifdef CONFIG_SMP
1da177e4
LT
497/**
498 * per_cpu_init - setup per-cpu variables
499 *
500 * find_pernode_space() does most of this already, we just need to set
501 * local_per_cpu_offset
502 */
244fd545 503void __cpuinit *per_cpu_init(void)
1da177e4
LT
504{
505 int cpu;
ff741906
AR
506 static int first_time = 1;
507
1da177e4 508
8d7e3517
TL
509 if (smp_processor_id() != 0)
510 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
511
ff741906
AR
512 if (first_time) {
513 first_time = 0;
514 for (cpu = 0; cpu < NR_CPUS; cpu++)
515 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
516 }
1da177e4
LT
517
518 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
519}
8d7e3517 520#endif /* CONFIG_SMP */
1da177e4 521
ace1d816
RH
522#ifdef CONFIG_VIRTUAL_MEM_MAP
523static inline int find_next_valid_pfn_for_pgdat(pg_data_t *pgdat, int i)
524{
525 unsigned long end_address, hole_next_pfn;
526 unsigned long stop_address;
527
528 end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
529 end_address = PAGE_ALIGN(end_address);
530
531 stop_address = (unsigned long) &vmem_map[
532 pgdat->node_start_pfn + pgdat->node_spanned_pages];
533
534 do {
535 pgd_t *pgd;
536 pud_t *pud;
537 pmd_t *pmd;
538 pte_t *pte;
539
540 pgd = pgd_offset_k(end_address);
541 if (pgd_none(*pgd)) {
542 end_address += PGDIR_SIZE;
543 continue;
544 }
545
546 pud = pud_offset(pgd, end_address);
547 if (pud_none(*pud)) {
548 end_address += PUD_SIZE;
549 continue;
550 }
551
552 pmd = pmd_offset(pud, end_address);
553 if (pmd_none(*pmd)) {
554 end_address += PMD_SIZE;
555 continue;
556 }
557
558 pte = pte_offset_kernel(pmd, end_address);
559retry_pte:
560 if (pte_none(*pte)) {
561 end_address += PAGE_SIZE;
562 pte++;
563 if ((end_address < stop_address) &&
564 (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
565 goto retry_pte;
566 continue;
567 }
568 /* Found next valid vmem_map page */
569 break;
570 } while (end_address < stop_address);
571
572 end_address = min(end_address, stop_address);
573 end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
574 hole_next_pfn = end_address / sizeof(struct page);
575 return hole_next_pfn - pgdat->node_start_pfn;
576}
577#else
578static inline int find_next_valid_pfn_for_pgdat(pg_data_t *pgdat, int i)
579{
580 return i + 1;
581}
582#endif
583
1da177e4
LT
584/**
585 * show_mem - give short summary of memory stats
586 *
587 * Shows a simple page count of reserved and used pages in the system.
588 * For discontig machines, it does this on a per-pgdat basis.
589 */
590void show_mem(void)
591{
592 int i, total_reserved = 0;
593 int total_shared = 0, total_cached = 0;
594 unsigned long total_present = 0;
595 pg_data_t *pgdat;
596
597 printk("Mem-info:\n");
598 show_free_areas();
599 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
ec936fc5 600 for_each_online_pgdat(pgdat) {
208d54e5
DH
601 unsigned long present;
602 unsigned long flags;
1da177e4 603 int shared = 0, cached = 0, reserved = 0;
208d54e5 604
1da177e4 605 printk("Node ID: %d\n", pgdat->node_id);
208d54e5
DH
606 pgdat_resize_lock(pgdat, &flags);
607 present = pgdat->node_present_pages;
1da177e4 608 for(i = 0; i < pgdat->node_spanned_pages; i++) {
2d4b1fa2
BP
609 struct page *page;
610 if (pfn_valid(pgdat->node_start_pfn + i))
611 page = pfn_to_page(pgdat->node_start_pfn + i);
ace1d816
RH
612 else {
613 i = find_next_valid_pfn_for_pgdat(pgdat, i) - 1;
1da177e4 614 continue;
ace1d816 615 }
408fde81 616 if (PageReserved(page))
1da177e4 617 reserved++;
408fde81 618 else if (PageSwapCache(page))
1da177e4 619 cached++;
408fde81
DH
620 else if (page_count(page))
621 shared += page_count(page)-1;
1da177e4 622 }
208d54e5 623 pgdat_resize_unlock(pgdat, &flags);
1da177e4
LT
624 total_present += present;
625 total_reserved += reserved;
626 total_cached += cached;
627 total_shared += shared;
628 printk("\t%ld pages of RAM\n", present);
629 printk("\t%d reserved pages\n", reserved);
630 printk("\t%d pages shared\n", shared);
631 printk("\t%d pages swap cached\n", cached);
632 }
633 printk("%ld pages of RAM\n", total_present);
634 printk("%d reserved pages\n", total_reserved);
635 printk("%d pages shared\n", total_shared);
636 printk("%d pages swap cached\n", total_cached);
fde740e4
RH
637 printk("Total of %ld pages in page table cache\n",
638 pgtable_quicklist_total_size());
1da177e4
LT
639 printk("%d free buffer pages\n", nr_free_buffer_pages());
640}
641
642/**
643 * call_pernode_memory - use SRAT to call callback functions with node info
644 * @start: physical start of range
645 * @len: length of range
646 * @arg: function to call for each range
647 *
648 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
649 * out to which node a block of memory belongs. Ignore memory that we cannot
650 * identify, and split blocks that run across multiple nodes.
651 *
652 * Take this opportunity to round the start address up and the end address
653 * down to page boundaries.
654 */
655void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
656{
657 unsigned long rs, re, end = start + len;
658 void (*func)(unsigned long, unsigned long, int);
659 int i;
660
661 start = PAGE_ALIGN(start);
662 end &= PAGE_MASK;
663 if (start >= end)
664 return;
665
666 func = arg;
667
668 if (!num_node_memblks) {
669 /* No SRAT table, so assume one node (node 0) */
670 if (start < end)
671 (*func)(start, end - start, 0);
672 return;
673 }
674
675 for (i = 0; i < num_node_memblks; i++) {
676 rs = max(start, node_memblk[i].start_paddr);
677 re = min(end, node_memblk[i].start_paddr +
678 node_memblk[i].size);
679
680 if (rs < re)
681 (*func)(rs, re - rs, node_memblk[i].nid);
682
683 if (re == end)
684 break;
685 }
686}
687
688/**
689 * count_node_pages - callback to build per-node memory info structures
690 * @start: physical start of range
691 * @len: length of range
692 * @node: node where this range resides
693 *
694 * Each node has it's own number of physical pages, DMAable pages, start, and
695 * end page frame number. This routine will be called by call_pernode_memory()
696 * for each piece of usable memory and will setup these values for each node.
697 * Very similar to build_maps().
698 */
699static __init int count_node_pages(unsigned long start, unsigned long len, int node)
700{
701 unsigned long end = start + len;
702
703 mem_data[node].num_physpages += len >> PAGE_SHIFT;
704 if (start <= __pa(MAX_DMA_ADDRESS))
705 mem_data[node].num_dma_physpages +=
706 (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
707 start = GRANULEROUNDDOWN(start);
708 start = ORDERROUNDDOWN(start);
709 end = GRANULEROUNDUP(end);
710 mem_data[node].max_pfn = max(mem_data[node].max_pfn,
711 end >> PAGE_SHIFT);
712 mem_data[node].min_pfn = min(mem_data[node].min_pfn,
713 start >> PAGE_SHIFT);
714
715 return 0;
716}
717
718/**
719 * paging_init - setup page tables
720 *
721 * paging_init() sets up the page tables for each node of the system and frees
722 * the bootmem allocator memory for general use.
723 */
724void __init paging_init(void)
725{
726 unsigned long max_dma;
727 unsigned long zones_size[MAX_NR_ZONES];
728 unsigned long zholes_size[MAX_NR_ZONES];
729 unsigned long pfn_offset = 0;
730 int node;
731
732 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
733
2d4b1fa2
BP
734 arch_sparse_init();
735
1da177e4
LT
736 efi_memmap_walk(filter_rsvd_memory, count_node_pages);
737
2d4b1fa2 738#ifdef CONFIG_VIRTUAL_MEM_MAP
564601a5 739 vmalloc_end -= PAGE_ALIGN(max_low_pfn * sizeof(struct page));
740 vmem_map = (struct page *) vmalloc_end;
741 efi_memmap_walk(create_mem_map_page_table, NULL);
742 printk("Virtual mem_map starts at 0x%p\n", vmem_map);
2d4b1fa2 743#endif
564601a5 744
1da177e4
LT
745 for_each_online_node(node) {
746 memset(zones_size, 0, sizeof(zones_size));
747 memset(zholes_size, 0, sizeof(zholes_size));
748
749 num_physpages += mem_data[node].num_physpages;
750
751 if (mem_data[node].min_pfn >= max_dma) {
752 /* All of this node's memory is above ZONE_DMA */
753 zones_size[ZONE_NORMAL] = mem_data[node].max_pfn -
754 mem_data[node].min_pfn;
755 zholes_size[ZONE_NORMAL] = mem_data[node].max_pfn -
756 mem_data[node].min_pfn -
757 mem_data[node].num_physpages;
758 } else if (mem_data[node].max_pfn < max_dma) {
759 /* All of this node's memory is in ZONE_DMA */
760 zones_size[ZONE_DMA] = mem_data[node].max_pfn -
761 mem_data[node].min_pfn;
762 zholes_size[ZONE_DMA] = mem_data[node].max_pfn -
763 mem_data[node].min_pfn -
764 mem_data[node].num_dma_physpages;
765 } else {
766 /* This node has memory in both zones */
767 zones_size[ZONE_DMA] = max_dma -
768 mem_data[node].min_pfn;
769 zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] -
770 mem_data[node].num_dma_physpages;
771 zones_size[ZONE_NORMAL] = mem_data[node].max_pfn -
772 max_dma;
773 zholes_size[ZONE_NORMAL] = zones_size[ZONE_NORMAL] -
774 (mem_data[node].num_physpages -
775 mem_data[node].num_dma_physpages);
776 }
777
1da177e4
LT
778 pfn_offset = mem_data[node].min_pfn;
779
2d4b1fa2 780#ifdef CONFIG_VIRTUAL_MEM_MAP
1da177e4 781 NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
2d4b1fa2 782#endif
1da177e4
LT
783 free_area_init_node(node, NODE_DATA(node), zones_size,
784 pfn_offset, zholes_size);
785 }
786
787 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
788}