]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/metag/kernel/process.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-bionic-kernel.git] / arch / metag / kernel / process.c
CommitLineData
44dea393
JH
1/*
2 * Copyright (C) 2005,2006,2007,2008,2009,2010,2011 Imagination Technologies
3 *
4 * This file contains the architecture-dependent parts of process handling.
5 *
6 */
7
8#include <linux/errno.h>
9#include <linux/export.h>
10#include <linux/sched.h>
b17b0153 11#include <linux/sched/debug.h>
29930025 12#include <linux/sched/task.h>
44dea393
JH
13#include <linux/kernel.h>
14#include <linux/mm.h>
15#include <linux/unistd.h>
16#include <linux/ptrace.h>
17#include <linux/user.h>
18#include <linux/reboot.h>
19#include <linux/elfcore.h>
20#include <linux/fs.h>
21#include <linux/tick.h>
22#include <linux/slab.h>
23#include <linux/mman.h>
24#include <linux/pm.h>
25#include <linux/syscalls.h>
26#include <linux/uaccess.h>
d1dba0fc 27#include <linux/smp.h>
44dea393
JH
28#include <asm/core_reg.h>
29#include <asm/user_gateway.h>
30#include <asm/tcm.h>
31#include <asm/traps.h>
32#include <asm/switch_to.h>
33
34/*
35 * Wait for the next interrupt and enable local interrupts
36 */
d1dba0fc 37void arch_cpu_idle(void)
44dea393
JH
38{
39 int tmp;
40
41 /*
42 * Quickly jump straight into the interrupt entry point without actually
43 * triggering an interrupt. When TXSTATI gets read the processor will
44 * block until an interrupt is triggered.
45 */
46 asm volatile (/* Switch into ISTAT mode */
47 "RTH\n\t"
48 /* Enable local interrupts */
49 "MOV TXMASKI, %1\n\t"
50 /*
51 * We can't directly "SWAP PC, PCX", so we swap via a
52 * temporary. Essentially we do:
53 * PCX_new = 1f (the place to continue execution)
54 * PC = PCX_old
55 */
56 "ADD %0, CPC0, #(1f-.)\n\t"
57 "SWAP PCX, %0\n\t"
58 "MOV PC, %0\n"
59 /* Continue execution here with interrupts enabled */
60 "1:"
61 : "=a" (tmp)
62 : "r" (get_trigger_mask()));
63}
64
44dea393 65#ifdef CONFIG_HOTPLUG_CPU
d1dba0fc
TG
66void arch_cpu_idle_dead(void)
67{
68 cpu_die();
44dea393 69}
d1dba0fc 70#endif
44dea393
JH
71
72void (*pm_power_off)(void);
73EXPORT_SYMBOL(pm_power_off);
74
75void (*soc_restart)(char *cmd);
76void (*soc_halt)(void);
77
78void machine_restart(char *cmd)
79{
80 if (soc_restart)
81 soc_restart(cmd);
82 hard_processor_halt(HALT_OK);
83}
84
85void machine_halt(void)
86{
87 if (soc_halt)
88 soc_halt();
89 smp_send_stop();
90 hard_processor_halt(HALT_OK);
91}
92
93void machine_power_off(void)
94{
95 if (pm_power_off)
96 pm_power_off();
97 smp_send_stop();
98 hard_processor_halt(HALT_OK);
99}
100
101#define FLAG_Z 0x8
102#define FLAG_N 0x4
103#define FLAG_O 0x2
104#define FLAG_C 0x1
105
106void show_regs(struct pt_regs *regs)
107{
108 int i;
109 const char *AX0_names[] = {"A0StP", "A0FrP"};
110 const char *AX1_names[] = {"A1GbP", "A1LbP"};
111
112 const char *DX0_names[] = {
113 "D0Re0",
114 "D0Ar6",
115 "D0Ar4",
116 "D0Ar2",
117 "D0FrT",
118 "D0.5 ",
119 "D0.6 ",
120 "D0.7 "
121 };
122
123 const char *DX1_names[] = {
124 "D1Re0",
125 "D1Ar5",
126 "D1Ar3",
127 "D1Ar1",
128 "D1RtP",
129 "D1.5 ",
130 "D1.6 ",
131 "D1.7 "
132 };
133
a43cb95d
TH
134 show_regs_print_info(KERN_INFO);
135
44dea393
JH
136 pr_info(" pt_regs @ %p\n", regs);
137 pr_info(" SaveMask = 0x%04hx\n", regs->ctx.SaveMask);
138 pr_info(" Flags = 0x%04hx (%c%c%c%c)\n", regs->ctx.Flags,
139 regs->ctx.Flags & FLAG_Z ? 'Z' : 'z',
140 regs->ctx.Flags & FLAG_N ? 'N' : 'n',
141 regs->ctx.Flags & FLAG_O ? 'O' : 'o',
142 regs->ctx.Flags & FLAG_C ? 'C' : 'c');
143 pr_info(" TXRPT = 0x%08x\n", regs->ctx.CurrRPT);
144 pr_info(" PC = 0x%08x\n", regs->ctx.CurrPC);
145
146 /* AX regs */
147 for (i = 0; i < 2; i++) {
148 pr_info(" %s = 0x%08x ",
149 AX0_names[i],
150 regs->ctx.AX[i].U0);
151 printk(" %s = 0x%08x\n",
152 AX1_names[i],
153 regs->ctx.AX[i].U1);
154 }
155
156 if (regs->ctx.SaveMask & TBICTX_XEXT_BIT)
157 pr_warn(" Extended state present - AX2.[01] will be WRONG\n");
158
159 /* Special place with AXx.2 */
160 pr_info(" A0.2 = 0x%08x ",
161 regs->ctx.Ext.AX2.U0);
162 printk(" A1.2 = 0x%08x\n",
163 regs->ctx.Ext.AX2.U1);
164
165 /* 'extended' AX regs (nominally, just AXx.3) */
166 for (i = 0; i < (TBICTX_AX_REGS - 3); i++) {
167 pr_info(" A0.%d = 0x%08x ", i + 3, regs->ctx.AX3[i].U0);
168 printk(" A1.%d = 0x%08x\n", i + 3, regs->ctx.AX3[i].U1);
169 }
170
171 for (i = 0; i < 8; i++) {
172 pr_info(" %s = 0x%08x ", DX0_names[i], regs->ctx.DX[i].U0);
173 printk(" %s = 0x%08x\n", DX1_names[i], regs->ctx.DX[i].U1);
174 }
175
176 show_trace(NULL, (unsigned long *)regs->ctx.AX[0].U0, regs);
177}
178
40346a03
AD
179/*
180 * Copy architecture-specific thread state
181 */
44dea393 182int copy_thread(unsigned long clone_flags, unsigned long usp,
40346a03 183 unsigned long kthread_arg, struct task_struct *tsk)
44dea393
JH
184{
185 struct pt_regs *childregs = task_pt_regs(tsk);
186 void *kernel_context = ((void *) childregs +
187 sizeof(struct pt_regs));
188 unsigned long global_base;
189
190 BUG_ON(((unsigned long)childregs) & 0x7);
191 BUG_ON(((unsigned long)kernel_context) & 0x7);
192
193 memset(&tsk->thread.kernel_context, 0,
194 sizeof(tsk->thread.kernel_context));
195
196 tsk->thread.kernel_context = __TBISwitchInit(kernel_context,
197 ret_from_fork,
198 0, 0);
199
200 if (unlikely(tsk->flags & PF_KTHREAD)) {
201 /*
202 * Make sure we don't leak any kernel data to child's regs
203 * if kernel thread becomes a userspace thread in the future
204 */
205 memset(childregs, 0 , sizeof(struct pt_regs));
206
207 global_base = __core_reg_get(A1GbP);
208 childregs->ctx.AX[0].U1 = (unsigned long) global_base;
209 childregs->ctx.AX[0].U0 = (unsigned long) kernel_context;
40346a03 210 /* Set D1Ar1=kthread_arg and D1RtP=usp (fn) */
44dea393 211 childregs->ctx.DX[4].U1 = usp;
40346a03 212 childregs->ctx.DX[3].U1 = kthread_arg;
44dea393
JH
213 tsk->thread.int_depth = 2;
214 return 0;
215 }
40346a03 216
44dea393
JH
217 /*
218 * Get a pointer to where the new child's register block should have
219 * been pushed.
220 * The Meta's stack grows upwards, and the context is the the first
221 * thing to be pushed by TBX (phew)
222 */
223 *childregs = *current_pt_regs();
224 /* Set the correct stack for the clone mode */
225 if (usp)
226 childregs->ctx.AX[0].U0 = ALIGN(usp, 8);
227 tsk->thread.int_depth = 1;
228
229 /* set return value for child process */
230 childregs->ctx.DX[0].U0 = 0;
231
232 /* The TLS pointer is passed as an argument to sys_clone. */
233 if (clone_flags & CLONE_SETTLS)
234 tsk->thread.tls_ptr =
235 (__force void __user *)childregs->ctx.DX[1].U1;
236
237#ifdef CONFIG_METAG_FPU
238 if (tsk->thread.fpu_context) {
239 struct meta_fpu_context *ctx;
240
241 ctx = kmemdup(tsk->thread.fpu_context,
242 sizeof(struct meta_fpu_context), GFP_ATOMIC);
243 tsk->thread.fpu_context = ctx;
244 }
245#endif
246
247#ifdef CONFIG_METAG_DSP
248 if (tsk->thread.dsp_context) {
249 struct meta_ext_context *ctx;
250 int i;
251
252 ctx = kmemdup(tsk->thread.dsp_context,
253 sizeof(struct meta_ext_context), GFP_ATOMIC);
254 for (i = 0; i < 2; i++)
255 ctx->ram[i] = kmemdup(ctx->ram[i], ctx->ram_sz[i],
256 GFP_ATOMIC);
257 tsk->thread.dsp_context = ctx;
258 }
259#endif
260
261 return 0;
262}
263
264#ifdef CONFIG_METAG_FPU
265static void alloc_fpu_context(struct thread_struct *thread)
266{
267 thread->fpu_context = kzalloc(sizeof(struct meta_fpu_context),
268 GFP_ATOMIC);
269}
270
271static void clear_fpu(struct thread_struct *thread)
272{
273 thread->user_flags &= ~TBICTX_FPAC_BIT;
274 kfree(thread->fpu_context);
275 thread->fpu_context = NULL;
276}
277#else
278static void clear_fpu(struct thread_struct *thread)
279{
280}
281#endif
282
283#ifdef CONFIG_METAG_DSP
284static void clear_dsp(struct thread_struct *thread)
285{
286 if (thread->dsp_context) {
287 kfree(thread->dsp_context->ram[0]);
288 kfree(thread->dsp_context->ram[1]);
289
290 kfree(thread->dsp_context);
291
292 thread->dsp_context = NULL;
293 }
294
295 __core_reg_set(D0.8, 0);
296}
297#else
298static void clear_dsp(struct thread_struct *thread)
299{
300}
301#endif
302
303struct task_struct *__sched __switch_to(struct task_struct *prev,
304 struct task_struct *next)
305{
306 TBIRES to, from;
307
308 to.Switch.pCtx = next->thread.kernel_context;
309 to.Switch.pPara = prev;
310
311#ifdef CONFIG_METAG_FPU
312 if (prev->thread.user_flags & TBICTX_FPAC_BIT) {
313 struct pt_regs *regs = task_pt_regs(prev);
314 TBIRES state;
315
316 state.Sig.SaveMask = prev->thread.user_flags;
317 state.Sig.pCtx = &regs->ctx;
318
319 if (!prev->thread.fpu_context)
320 alloc_fpu_context(&prev->thread);
321 if (prev->thread.fpu_context)
322 __TBICtxFPUSave(state, prev->thread.fpu_context);
323 }
324 /*
325 * Force a restore of the FPU context next time this process is
326 * scheduled.
327 */
328 if (prev->thread.fpu_context)
329 prev->thread.fpu_context->needs_restore = true;
330#endif
331
332
333 from = __TBISwitch(to, &prev->thread.kernel_context);
334
335 /* Restore TLS pointer for this process. */
336 set_gateway_tls(current->thread.tls_ptr);
337
338 return (struct task_struct *) from.Switch.pPara;
339}
340
341void flush_thread(void)
342{
343 clear_fpu(&current->thread);
344 clear_dsp(&current->thread);
345}
346
347/*
348 * Free current thread data structures etc.
349 */
e6464694 350void exit_thread(struct task_struct *tsk)
44dea393 351{
e6464694
JS
352 clear_fpu(&tsk->thread);
353 clear_dsp(&tsk->thread);
44dea393
JH
354}
355
356/* TODO: figure out how to unwind the kernel stack here to figure out
357 * where we went to sleep. */
358unsigned long get_wchan(struct task_struct *p)
359{
360 return 0;
361}
362
363int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
364{
365 /* Returning 0 indicates that the FPU state was not stored (as it was
366 * not in use) */
367 return 0;
368}
369
370#ifdef CONFIG_METAG_USER_TCM
371
372#define ELF_MIN_ALIGN PAGE_SIZE
373
374#define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
375#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
376#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
377
378#define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
379
380unsigned long __metag_elf_map(struct file *filep, unsigned long addr,
381 struct elf_phdr *eppnt, int prot, int type,
382 unsigned long total_size)
383{
384 unsigned long map_addr, size;
385 unsigned long page_off = ELF_PAGEOFFSET(eppnt->p_vaddr);
386 unsigned long raw_size = eppnt->p_filesz + page_off;
387 unsigned long off = eppnt->p_offset - page_off;
388 unsigned int tcm_tag;
389 addr = ELF_PAGESTART(addr);
390 size = ELF_PAGEALIGN(raw_size);
391
392 /* mmap() will return -EINVAL if given a zero size, but a
393 * segment with zero filesize is perfectly valid */
394 if (!size)
395 return addr;
396
397 tcm_tag = tcm_lookup_tag(addr);
398
399 if (tcm_tag != TCM_INVALID_TAG)
400 type &= ~MAP_FIXED;
401
402 /*
403 * total_size is the size of the ELF (interpreter) image.
404 * The _first_ mmap needs to know the full size, otherwise
405 * randomization might put this image into an overlapping
406 * position with the ELF binary image. (since size < total_size)
407 * So we first map the 'big' image - and unmap the remainder at
408 * the end. (which unmap is needed for ELF images with holes.)
409 */
410 if (total_size) {
411 total_size = ELF_PAGEALIGN(total_size);
412 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
413 if (!BAD_ADDR(map_addr))
414 vm_munmap(map_addr+size, total_size-size);
415 } else
416 map_addr = vm_mmap(filep, addr, size, prot, type, off);
417
418 if (!BAD_ADDR(map_addr) && tcm_tag != TCM_INVALID_TAG) {
419 struct tcm_allocation *tcm;
420 unsigned long tcm_addr;
421
422 tcm = kmalloc(sizeof(*tcm), GFP_KERNEL);
423 if (!tcm)
424 return -ENOMEM;
425
426 tcm_addr = tcm_alloc(tcm_tag, raw_size);
427 if (tcm_addr != addr) {
428 kfree(tcm);
429 return -ENOMEM;
430 }
431
432 tcm->tag = tcm_tag;
433 tcm->addr = tcm_addr;
434 tcm->size = raw_size;
435
436 list_add(&tcm->list, &current->mm->context.tcm);
437
438 eppnt->p_vaddr = map_addr;
439 if (copy_from_user((void *) addr, (void __user *) map_addr,
440 raw_size))
441 return -EFAULT;
442 }
443
444 return map_addr;
445}
446#endif