]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/mips/au1000/common/dbdma.c
Misc au1200 updates.
[mirror_ubuntu-artful-kernel.git] / arch / mips / au1000 / common / dbdma.c
CommitLineData
1da177e4
LT
1/*
2 *
3 * BRIEF MODULE DESCRIPTION
4 * The Descriptor Based DMA channel manager that first appeared
5 * on the Au1550. I started with dma.c, but I think all that is
6 * left is this initial comment :-)
7 *
8 * Copyright 2004 Embedded Edge, LLC
9 * dan@embeddededge.com
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * You should have received a copy of the GNU General Public License along
28 * with this program; if not, write to the Free Software Foundation, Inc.,
29 * 675 Mass Ave, Cambridge, MA 02139, USA.
30 *
31 */
e3ad1c23 32
1da177e4
LT
33#include <linux/config.h>
34#include <linux/kernel.h>
35#include <linux/errno.h>
36#include <linux/sched.h>
37#include <linux/slab.h>
38#include <linux/spinlock.h>
39#include <linux/string.h>
40#include <linux/delay.h>
41#include <linux/interrupt.h>
2d32ffa4 42#include <linux/module.h>
1da177e4
LT
43#include <asm/mach-au1x00/au1000.h>
44#include <asm/mach-au1x00/au1xxx_dbdma.h>
45#include <asm/system.h>
46
e3ad1c23 47
1da177e4
LT
48#if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200)
49
50/*
51 * The Descriptor Based DMA supports up to 16 channels.
52 *
53 * There are 32 devices defined. We keep an internal structure
54 * of devices using these channels, along with additional
55 * information.
56 *
57 * We allocate the descriptors and allow access to them through various
58 * functions. The drivers allocate the data buffers and assign them
59 * to the descriptors.
60 */
e3ad1c23 61static spinlock_t au1xxx_dbdma_spin_lock = SPIN_LOCK_UNLOCKED;
1da177e4
LT
62
63/* I couldn't find a macro that did this......
64*/
65#define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))
66
e3ad1c23
PP
67static dbdma_global_t *dbdma_gptr = (dbdma_global_t *)DDMA_GLOBAL_BASE;
68static int dbdma_initialized=0;
1da177e4
LT
69static void au1xxx_dbdma_init(void);
70
1da177e4
LT
71static dbdev_tab_t dbdev_tab[] = {
72#ifdef CONFIG_SOC_AU1550
73 /* UARTS */
74 { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
75 { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
76 { DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
77 { DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 },
78
79 /* EXT DMA */
80 { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
81 { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
82 { DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
83 { DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
84
85 /* USB DEV */
86 { DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 },
87 { DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
88 { DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
89 { DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
90 { DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 },
91 { DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 },
92
93 /* PSC 0 */
94 { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
95 { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
96
97 /* PSC 1 */
98 { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
99 { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
100
101 /* PSC 2 */
102 { DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
103 { DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 },
104
105 /* PSC 3 */
106 { DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
107 { DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 },
108
109 { DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */
110 { DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
111
112 /* MAC 0 */
113 { DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
114 { DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
115
116 /* MAC 1 */
117 { DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
118 { DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
119
120#endif /* CONFIG_SOC_AU1550 */
121
122#ifdef CONFIG_SOC_AU1200
123 { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
124 { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
125 { DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
126 { DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 },
127
128 { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
129 { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
130
131 { DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
132 { DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
133 { DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
134 { DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
135
e3ad1c23
PP
136 { DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
137 { DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
138 { DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
139 { DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 },
1da177e4 140
e3ad1c23
PP
141 { DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
142 { DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
1da177e4
LT
143
144 { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
145 { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
146 { DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
147
148 { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
149 { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
150 { DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
151
e3ad1c23
PP
152 { DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
153 { DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
154 { DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
1da177e4
LT
155 { DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
156
157 { DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
158
159#endif // CONFIG_SOC_AU1200
160
161 { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
162 { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
e3ad1c23
PP
163
164 /* Provide 16 user definable device types */
165 { 0, 0, 0, 0, 0, 0, 0 },
166 { 0, 0, 0, 0, 0, 0, 0 },
167 { 0, 0, 0, 0, 0, 0, 0 },
168 { 0, 0, 0, 0, 0, 0, 0 },
169 { 0, 0, 0, 0, 0, 0, 0 },
170 { 0, 0, 0, 0, 0, 0, 0 },
171 { 0, 0, 0, 0, 0, 0, 0 },
172 { 0, 0, 0, 0, 0, 0, 0 },
173 { 0, 0, 0, 0, 0, 0, 0 },
174 { 0, 0, 0, 0, 0, 0, 0 },
175 { 0, 0, 0, 0, 0, 0, 0 },
176 { 0, 0, 0, 0, 0, 0, 0 },
177 { 0, 0, 0, 0, 0, 0, 0 },
178 { 0, 0, 0, 0, 0, 0, 0 },
179 { 0, 0, 0, 0, 0, 0, 0 },
180 { 0, 0, 0, 0, 0, 0, 0 },
1da177e4
LT
181};
182
183#define DBDEV_TAB_SIZE (sizeof(dbdev_tab) / sizeof(dbdev_tab_t))
184
185static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
186
187static dbdev_tab_t *
188find_dbdev_id (u32 id)
189{
190 int i;
191 dbdev_tab_t *p;
192 for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
193 p = &dbdev_tab[i];
194 if (p->dev_id == id)
195 return p;
196 }
197 return NULL;
198}
199
e3ad1c23
PP
200u32
201au1xxx_ddma_add_device(dbdev_tab_t *dev)
202{
203 u32 ret = 0;
204 dbdev_tab_t *p=NULL;
205 static u16 new_id=0x1000;
206
207 p = find_dbdev_id(0);
208 if ( NULL != p )
209 {
210 memcpy(p, dev, sizeof(dbdev_tab_t));
211 p->dev_id = DSCR_DEV2CUSTOM_ID(new_id,dev->dev_id);
212 ret = p->dev_id;
213 new_id++;
214#if 0
215 printk("add_device: id:%x flags:%x padd:%x\n",
216 p->dev_id, p->dev_flags, p->dev_physaddr );
217#endif
218 }
219
220 return ret;
221}
222EXPORT_SYMBOL(au1xxx_ddma_add_device);
223
1da177e4
LT
224/* Allocate a channel and return a non-zero descriptor if successful.
225*/
226u32
227au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
228 void (*callback)(int, void *, struct pt_regs *), void *callparam)
229{
230 unsigned long flags;
231 u32 used, chan, rv;
232 u32 dcp;
233 int i;
234 dbdev_tab_t *stp, *dtp;
235 chan_tab_t *ctp;
e3ad1c23 236 au1x_dma_chan_t *cp;
1da177e4
LT
237
238 /* We do the intialization on the first channel allocation.
239 * We have to wait because of the interrupt handler initialization
240 * which can't be done successfully during board set up.
241 */
242 if (!dbdma_initialized)
243 au1xxx_dbdma_init();
244 dbdma_initialized = 1;
245
1da177e4
LT
246 if ((stp = find_dbdev_id(srcid)) == NULL) return 0;
247 if ((dtp = find_dbdev_id(destid)) == NULL) return 0;
248
249 used = 0;
250 rv = 0;
251
252 /* Check to see if we can get both channels.
253 */
254 spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
255 if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
256 (stp->dev_flags & DEV_FLAGS_ANYUSE)) {
257 /* Got source */
258 stp->dev_flags |= DEV_FLAGS_INUSE;
259 if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
260 (dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
261 /* Got destination */
262 dtp->dev_flags |= DEV_FLAGS_INUSE;
263 }
264 else {
265 /* Can't get dest. Release src.
266 */
267 stp->dev_flags &= ~DEV_FLAGS_INUSE;
268 used++;
269 }
270 }
271 else {
272 used++;
273 }
274 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
275
276 if (!used) {
277 /* Let's see if we can allocate a channel for it.
278 */
279 ctp = NULL;
280 chan = 0;
281 spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
282 for (i=0; i<NUM_DBDMA_CHANS; i++) {
283 if (chan_tab_ptr[i] == NULL) {
284 /* If kmalloc fails, it is caught below same
285 * as a channel not available.
286 */
e3ad1c23
PP
287 ctp = (chan_tab_t *)
288 kmalloc(sizeof(chan_tab_t), GFP_KERNEL);
1da177e4 289 chan_tab_ptr[i] = ctp;
1da177e4
LT
290 break;
291 }
292 }
293 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
294
295 if (ctp != NULL) {
296 memset(ctp, 0, sizeof(chan_tab_t));
e3ad1c23 297 ctp->chan_index = chan = i;
1da177e4
LT
298 dcp = DDMA_CHANNEL_BASE;
299 dcp += (0x0100 * chan);
300 ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
e3ad1c23 301 cp = (au1x_dma_chan_t *)dcp;
1da177e4
LT
302 ctp->chan_src = stp;
303 ctp->chan_dest = dtp;
304 ctp->chan_callback = callback;
305 ctp->chan_callparam = callparam;
306
307 /* Initialize channel configuration.
308 */
309 i = 0;
310 if (stp->dev_intlevel)
311 i |= DDMA_CFG_SED;
312 if (stp->dev_intpolarity)
313 i |= DDMA_CFG_SP;
314 if (dtp->dev_intlevel)
315 i |= DDMA_CFG_DED;
316 if (dtp->dev_intpolarity)
317 i |= DDMA_CFG_DP;
e3ad1c23
PP
318 if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
319 (dtp->dev_flags & DEV_FLAGS_SYNC))
320 i |= DDMA_CFG_SYNC;
1da177e4
LT
321 cp->ddma_cfg = i;
322 au_sync();
323
324 /* Return a non-zero value that can be used to
325 * find the channel information in subsequent
326 * operations.
327 */
328 rv = (u32)(&chan_tab_ptr[chan]);
329 }
330 else {
e3ad1c23 331 /* Release devices */
1da177e4
LT
332 stp->dev_flags &= ~DEV_FLAGS_INUSE;
333 dtp->dev_flags &= ~DEV_FLAGS_INUSE;
334 }
335 }
336 return rv;
337}
e3ad1c23 338EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
1da177e4
LT
339
340/* Set the device width if source or destination is a FIFO.
341 * Should be 8, 16, or 32 bits.
342 */
343u32
344au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
345{
346 u32 rv;
347 chan_tab_t *ctp;
348 dbdev_tab_t *stp, *dtp;
349
350 ctp = *((chan_tab_t **)chanid);
351 stp = ctp->chan_src;
352 dtp = ctp->chan_dest;
353 rv = 0;
354
355 if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */
356 rv = stp->dev_devwidth;
357 stp->dev_devwidth = bits;
358 }
359 if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */
360 rv = dtp->dev_devwidth;
361 dtp->dev_devwidth = bits;
362 }
363
364 return rv;
365}
e3ad1c23 366EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
1da177e4
LT
367
368/* Allocate a descriptor ring, initializing as much as possible.
369*/
370u32
371au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
372{
373 int i;
374 u32 desc_base, srcid, destid;
375 u32 cmd0, cmd1, src1, dest1;
376 u32 src0, dest0;
377 chan_tab_t *ctp;
378 dbdev_tab_t *stp, *dtp;
379 au1x_ddma_desc_t *dp;
380
381 /* I guess we could check this to be within the
382 * range of the table......
383 */
384 ctp = *((chan_tab_t **)chanid);
385 stp = ctp->chan_src;
386 dtp = ctp->chan_dest;
387
388 /* The descriptors must be 32-byte aligned. There is a
389 * possibility the allocation will give us such an address,
390 * and if we try that first we are likely to not waste larger
391 * slabs of memory.
392 */
e3ad1c23
PP
393 desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t),
394 GFP_KERNEL|GFP_DMA);
1da177e4
LT
395 if (desc_base == 0)
396 return 0;
397
398 if (desc_base & 0x1f) {
399 /* Lost....do it again, allocate extra, and round
400 * the address base.
401 */
402 kfree((const void *)desc_base);
403 i = entries * sizeof(au1x_ddma_desc_t);
404 i += (sizeof(au1x_ddma_desc_t) - 1);
e3ad1c23 405 if ((desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA)) == 0)
1da177e4
LT
406 return 0;
407
408 desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
409 }
410 dp = (au1x_ddma_desc_t *)desc_base;
411
412 /* Keep track of the base descriptor.
413 */
414 ctp->chan_desc_base = dp;
415
416 /* Initialize the rings with as much information as we know.
417 */
418 srcid = stp->dev_id;
419 destid = dtp->dev_id;
420
421 cmd0 = cmd1 = src1 = dest1 = 0;
422 src0 = dest0 = 0;
423
424 cmd0 |= DSCR_CMD0_SID(srcid);
425 cmd0 |= DSCR_CMD0_DID(destid);
426 cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
427 cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_CURRENT);
428
429 switch (stp->dev_devwidth) {
430 case 8:
431 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
432 break;
433 case 16:
434 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
435 break;
436 case 32:
437 default:
438 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
439 break;
440 }
441
442 switch (dtp->dev_devwidth) {
443 case 8:
444 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
445 break;
446 case 16:
447 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
448 break;
449 case 32:
450 default:
451 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
452 break;
453 }
454
455 /* If the device is marked as an in/out FIFO, ensure it is
456 * set non-coherent.
457 */
458 if (stp->dev_flags & DEV_FLAGS_IN)
459 cmd0 |= DSCR_CMD0_SN; /* Source in fifo */
460 if (dtp->dev_flags & DEV_FLAGS_OUT)
461 cmd0 |= DSCR_CMD0_DN; /* Destination out fifo */
462
463 /* Set up source1. For now, assume no stride and increment.
464 * A channel attribute update can change this later.
465 */
466 switch (stp->dev_tsize) {
467 case 1:
468 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
469 break;
470 case 2:
471 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
472 break;
473 case 4:
474 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
475 break;
476 case 8:
477 default:
478 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
479 break;
480 }
481
482 /* If source input is fifo, set static address.
483 */
484 if (stp->dev_flags & DEV_FLAGS_IN) {
e3ad1c23
PP
485 if ( stp->dev_flags & DEV_FLAGS_BURSTABLE )
486 src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
487 else
1da177e4 488 src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
e3ad1c23 489
1da177e4 490 }
e3ad1c23
PP
491 if (stp->dev_physaddr)
492 src0 = stp->dev_physaddr;
1da177e4
LT
493
494 /* Set up dest1. For now, assume no stride and increment.
495 * A channel attribute update can change this later.
496 */
497 switch (dtp->dev_tsize) {
498 case 1:
499 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
500 break;
501 case 2:
502 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
503 break;
504 case 4:
505 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
506 break;
507 case 8:
508 default:
509 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
510 break;
511 }
512
513 /* If destination output is fifo, set static address.
514 */
515 if (dtp->dev_flags & DEV_FLAGS_OUT) {
e3ad1c23
PP
516 if ( dtp->dev_flags & DEV_FLAGS_BURSTABLE )
517 dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
518 else
1da177e4
LT
519 dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
520 }
e3ad1c23
PP
521 if (dtp->dev_physaddr)
522 dest0 = dtp->dev_physaddr;
1da177e4 523
e3ad1c23
PP
524#if 0
525 printk("did:%x sid:%x cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
526 dtp->dev_id, stp->dev_id, cmd0, cmd1, src0, src1, dest0, dest1 );
527#endif
1da177e4
LT
528 for (i=0; i<entries; i++) {
529 dp->dscr_cmd0 = cmd0;
530 dp->dscr_cmd1 = cmd1;
531 dp->dscr_source0 = src0;
532 dp->dscr_source1 = src1;
533 dp->dscr_dest0 = dest0;
534 dp->dscr_dest1 = dest1;
535 dp->dscr_stat = 0;
e3ad1c23 536 dp->sw_context = dp->sw_status = 0;
1da177e4
LT
537 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
538 dp++;
539 }
540
541 /* Make last descrptor point to the first.
542 */
543 dp--;
544 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
545 ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
546
547 return (u32)(ctp->chan_desc_base);
548}
e3ad1c23 549EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
1da177e4
LT
550
551/* Put a source buffer into the DMA ring.
552 * This updates the source pointer and byte count. Normally used
553 * for memory to fifo transfers.
554 */
555u32
e3ad1c23 556_au1xxx_dbdma_put_source(u32 chanid, void *buf, int nbytes, u32 flags)
1da177e4
LT
557{
558 chan_tab_t *ctp;
559 au1x_ddma_desc_t *dp;
560
561 /* I guess we could check this to be within the
562 * range of the table......
563 */
564 ctp = *((chan_tab_t **)chanid);
565
566 /* We should have multiple callers for a particular channel,
567 * an interrupt doesn't affect this pointer nor the descriptor,
568 * so no locking should be needed.
569 */
570 dp = ctp->put_ptr;
571
572 /* If the descriptor is valid, we are way ahead of the DMA
573 * engine, so just return an error condition.
574 */
575 if (dp->dscr_cmd0 & DSCR_CMD0_V) {
576 return 0;
577 }
578
579 /* Load up buffer address and byte count.
580 */
581 dp->dscr_source0 = virt_to_phys(buf);
582 dp->dscr_cmd1 = nbytes;
e3ad1c23
PP
583 /* Check flags */
584 if (flags & DDMA_FLAGS_IE)
585 dp->dscr_cmd0 |= DSCR_CMD0_IE;
586 if (flags & DDMA_FLAGS_NOIE)
587 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
1da177e4
LT
588 /* Get next descriptor pointer.
589 */
590 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
591
e3ad1c23
PP
592 /*
593 * There is an errata on the Au1200/Au1550 parts that could result
594 * in "stale" data being DMA'd. It has to do with the snoop logic on
595 * the dache eviction buffer. NONCOHERENT_IO is on by default for
596 * these parts. If it is fixedin the future, these dma_cache_inv will
597 * just be nothing more than empty macros. See io.h.
598 * */
2d32ffa4 599 dma_cache_wback_inv((unsigned long)buf, nbytes);
e3ad1c23
PP
600 dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
601 au_sync();
2d32ffa4 602 dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
e3ad1c23
PP
603 ctp->chan_ptr->ddma_dbell = 0;
604
1da177e4
LT
605 /* return something not zero.
606 */
607 return nbytes;
608}
e3ad1c23 609EXPORT_SYMBOL(_au1xxx_dbdma_put_source);
1da177e4
LT
610
611/* Put a destination buffer into the DMA ring.
612 * This updates the destination pointer and byte count. Normally used
613 * to place an empty buffer into the ring for fifo to memory transfers.
614 */
615u32
e3ad1c23 616_au1xxx_dbdma_put_dest(u32 chanid, void *buf, int nbytes, u32 flags)
1da177e4
LT
617{
618 chan_tab_t *ctp;
619 au1x_ddma_desc_t *dp;
620
621 /* I guess we could check this to be within the
622 * range of the table......
623 */
624 ctp = *((chan_tab_t **)chanid);
625
626 /* We should have multiple callers for a particular channel,
627 * an interrupt doesn't affect this pointer nor the descriptor,
628 * so no locking should be needed.
629 */
630 dp = ctp->put_ptr;
631
632 /* If the descriptor is valid, we are way ahead of the DMA
633 * engine, so just return an error condition.
634 */
635 if (dp->dscr_cmd0 & DSCR_CMD0_V)
636 return 0;
637
e3ad1c23
PP
638 /* Load up buffer address and byte count */
639
640 /* Check flags */
641 if (flags & DDMA_FLAGS_IE)
642 dp->dscr_cmd0 |= DSCR_CMD0_IE;
643 if (flags & DDMA_FLAGS_NOIE)
644 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
645
1da177e4
LT
646 dp->dscr_dest0 = virt_to_phys(buf);
647 dp->dscr_cmd1 = nbytes;
e3ad1c23
PP
648#if 0
649 printk("cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
650 dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
651 dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1 );
652#endif
653 /*
654 * There is an errata on the Au1200/Au1550 parts that could result in
655 * "stale" data being DMA'd. It has to do with the snoop logic on the
656 * dache eviction buffer. NONCOHERENT_IO is on by default for these
657 * parts. If it is fixedin the future, these dma_cache_inv will just
658 * be nothing more than empty macros. See io.h.
659 * */
2d32ffa4 660 dma_cache_inv((unsigned long)buf,nbytes);
1da177e4 661 dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
e3ad1c23 662 au_sync();
2d32ffa4 663 dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
e3ad1c23 664 ctp->chan_ptr->ddma_dbell = 0;
1da177e4
LT
665
666 /* Get next descriptor pointer.
667 */
668 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
669
670 /* return something not zero.
671 */
672 return nbytes;
673}
e3ad1c23 674EXPORT_SYMBOL(_au1xxx_dbdma_put_dest);
1da177e4
LT
675
676/* Get a destination buffer into the DMA ring.
677 * Normally used to get a full buffer from the ring during fifo
678 * to memory transfers. This does not set the valid bit, you will
679 * have to put another destination buffer to keep the DMA going.
680 */
681u32
682au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
683{
684 chan_tab_t *ctp;
685 au1x_ddma_desc_t *dp;
686 u32 rv;
687
688 /* I guess we could check this to be within the
689 * range of the table......
690 */
691 ctp = *((chan_tab_t **)chanid);
692
693 /* We should have multiple callers for a particular channel,
694 * an interrupt doesn't affect this pointer nor the descriptor,
695 * so no locking should be needed.
696 */
697 dp = ctp->get_ptr;
698
699 /* If the descriptor is valid, we are way ahead of the DMA
700 * engine, so just return an error condition.
701 */
702 if (dp->dscr_cmd0 & DSCR_CMD0_V)
703 return 0;
704
705 /* Return buffer address and byte count.
706 */
707 *buf = (void *)(phys_to_virt(dp->dscr_dest0));
708 *nbytes = dp->dscr_cmd1;
709 rv = dp->dscr_stat;
710
711 /* Get next descriptor pointer.
712 */
713 ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
714
715 /* return something not zero.
716 */
717 return rv;
718}
719
720void
721au1xxx_dbdma_stop(u32 chanid)
722{
723 chan_tab_t *ctp;
e3ad1c23 724 au1x_dma_chan_t *cp;
1da177e4
LT
725 int halt_timeout = 0;
726
727 ctp = *((chan_tab_t **)chanid);
728
729 cp = ctp->chan_ptr;
730 cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */
731 au_sync();
732 while (!(cp->ddma_stat & DDMA_STAT_H)) {
733 udelay(1);
734 halt_timeout++;
735 if (halt_timeout > 100) {
736 printk("warning: DMA channel won't halt\n");
737 break;
738 }
739 }
740 /* clear current desc valid and doorbell */
741 cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
742 au_sync();
743}
e3ad1c23 744EXPORT_SYMBOL(au1xxx_dbdma_stop);
1da177e4
LT
745
746/* Start using the current descriptor pointer. If the dbdma encounters
747 * a not valid descriptor, it will stop. In this case, we can just
748 * continue by adding a buffer to the list and starting again.
749 */
750void
751au1xxx_dbdma_start(u32 chanid)
752{
753 chan_tab_t *ctp;
e3ad1c23 754 au1x_dma_chan_t *cp;
1da177e4
LT
755
756 ctp = *((chan_tab_t **)chanid);
1da177e4
LT
757 cp = ctp->chan_ptr;
758 cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
759 cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */
760 au_sync();
e3ad1c23 761 cp->ddma_dbell = 0;
1da177e4
LT
762 au_sync();
763}
e3ad1c23 764EXPORT_SYMBOL(au1xxx_dbdma_start);
1da177e4
LT
765
766void
767au1xxx_dbdma_reset(u32 chanid)
768{
769 chan_tab_t *ctp;
770 au1x_ddma_desc_t *dp;
771
772 au1xxx_dbdma_stop(chanid);
773
774 ctp = *((chan_tab_t **)chanid);
775 ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
776
777 /* Run through the descriptors and reset the valid indicator.
778 */
779 dp = ctp->chan_desc_base;
780
781 do {
782 dp->dscr_cmd0 &= ~DSCR_CMD0_V;
e3ad1c23
PP
783 /* reset our SW status -- this is used to determine
784 * if a descriptor is in use by upper level SW. Since
785 * posting can reset 'V' bit.
786 */
787 dp->sw_status = 0;
1da177e4
LT
788 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
789 } while (dp != ctp->chan_desc_base);
790}
e3ad1c23 791EXPORT_SYMBOL(au1xxx_dbdma_reset);
1da177e4
LT
792
793u32
794au1xxx_get_dma_residue(u32 chanid)
795{
796 chan_tab_t *ctp;
e3ad1c23 797 au1x_dma_chan_t *cp;
1da177e4
LT
798 u32 rv;
799
800 ctp = *((chan_tab_t **)chanid);
801 cp = ctp->chan_ptr;
802
803 /* This is only valid if the channel is stopped.
804 */
805 rv = cp->ddma_bytecnt;
806 au_sync();
807
808 return rv;
809}
810
811void
812au1xxx_dbdma_chan_free(u32 chanid)
813{
814 chan_tab_t *ctp;
815 dbdev_tab_t *stp, *dtp;
816
817 ctp = *((chan_tab_t **)chanid);
818 stp = ctp->chan_src;
819 dtp = ctp->chan_dest;
820
821 au1xxx_dbdma_stop(chanid);
822
2d32ffa4 823 kfree((void *)ctp->chan_desc_base);
1da177e4
LT
824
825 stp->dev_flags &= ~DEV_FLAGS_INUSE;
826 dtp->dev_flags &= ~DEV_FLAGS_INUSE;
827 chan_tab_ptr[ctp->chan_index] = NULL;
828
829 kfree(ctp);
830}
e3ad1c23 831EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
1da177e4 832
2d32ffa4 833static irqreturn_t
1da177e4
LT
834dbdma_interrupt(int irq, void *dev_id, struct pt_regs *regs)
835{
2d32ffa4
PP
836 u32 intstat;
837 u32 chan_index;
1da177e4
LT
838 chan_tab_t *ctp;
839 au1x_ddma_desc_t *dp;
e3ad1c23 840 au1x_dma_chan_t *cp;
1da177e4
LT
841
842 intstat = dbdma_gptr->ddma_intstat;
843 au_sync();
844 chan_index = au_ffs(intstat) - 1;
845
846 ctp = chan_tab_ptr[chan_index];
847 cp = ctp->chan_ptr;
848 dp = ctp->cur_ptr;
849
850 /* Reset interrupt.
851 */
852 cp->ddma_irq = 0;
853 au_sync();
854
855 if (ctp->chan_callback)
856 (ctp->chan_callback)(irq, ctp->chan_callparam, regs);
857
858 ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
2d32ffa4 859 return IRQ_RETVAL(1);
1da177e4
LT
860}
861
e3ad1c23 862static void au1xxx_dbdma_init(void)
1da177e4 863{
e3ad1c23
PP
864 int irq_nr;
865
1da177e4
LT
866 dbdma_gptr->ddma_config = 0;
867 dbdma_gptr->ddma_throttle = 0;
868 dbdma_gptr->ddma_inten = 0xffff;
869 au_sync();
870
e3ad1c23
PP
871#if defined(CONFIG_SOC_AU1550)
872 irq_nr = AU1550_DDMA_INT;
873#elif defined(CONFIG_SOC_AU1200)
874 irq_nr = AU1200_DDMA_INT;
875#else
876 #error Unknown Au1x00 SOC
877#endif
878
879 if (request_irq(irq_nr, dbdma_interrupt, SA_INTERRUPT,
1da177e4
LT
880 "Au1xxx dbdma", (void *)dbdma_gptr))
881 printk("Can't get 1550 dbdma irq");
882}
883
884void
885au1xxx_dbdma_dump(u32 chanid)
886{
887 chan_tab_t *ctp;
888 au1x_ddma_desc_t *dp;
889 dbdev_tab_t *stp, *dtp;
e3ad1c23
PP
890 au1x_dma_chan_t *cp;
891 u32 i = 0;
1da177e4
LT
892
893 ctp = *((chan_tab_t **)chanid);
894 stp = ctp->chan_src;
895 dtp = ctp->chan_dest;
896 cp = ctp->chan_ptr;
897
898 printk("Chan %x, stp %x (dev %d) dtp %x (dev %d) \n",
899 (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp, dtp - dbdev_tab);
900 printk("desc base %x, get %x, put %x, cur %x\n",
901 (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
902 (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
903
904 printk("dbdma chan %x\n", (u32)cp);
905 printk("cfg %08x, desptr %08x, statptr %08x\n",
906 cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
907 printk("dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
908 cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat, cp->ddma_bytecnt);
909
910
911 /* Run through the descriptors
912 */
913 dp = ctp->chan_desc_base;
914
915 do {
e3ad1c23
PP
916 printk("Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
917 i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
918 printk("src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
919 dp->dscr_source0, dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
920 printk("stat %08x, nxtptr %08x\n",
921 dp->dscr_stat, dp->dscr_nxtptr);
1da177e4
LT
922 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
923 } while (dp != ctp->chan_desc_base);
924}
925
e3ad1c23
PP
926/* Put a descriptor into the DMA ring.
927 * This updates the source/destination pointers and byte count.
928 */
929u32
930au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr )
931{
932 chan_tab_t *ctp;
933 au1x_ddma_desc_t *dp;
934 u32 nbytes=0;
935
936 /* I guess we could check this to be within the
937 * range of the table......
938 */
939 ctp = *((chan_tab_t **)chanid);
940
941 /* We should have multiple callers for a particular channel,
942 * an interrupt doesn't affect this pointer nor the descriptor,
943 * so no locking should be needed.
944 */
945 dp = ctp->put_ptr;
946
947 /* If the descriptor is valid, we are way ahead of the DMA
948 * engine, so just return an error condition.
949 */
950 if (dp->dscr_cmd0 & DSCR_CMD0_V)
951 return 0;
952
953 /* Load up buffer addresses and byte count.
954 */
955 dp->dscr_dest0 = dscr->dscr_dest0;
956 dp->dscr_source0 = dscr->dscr_source0;
957 dp->dscr_dest1 = dscr->dscr_dest1;
958 dp->dscr_source1 = dscr->dscr_source1;
959 dp->dscr_cmd1 = dscr->dscr_cmd1;
960 nbytes = dscr->dscr_cmd1;
961 /* Allow the caller to specifiy if an interrupt is generated */
962 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
963 dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
964 ctp->chan_ptr->ddma_dbell = 0;
965
966 /* Get next descriptor pointer.
967 */
968 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
969
970 /* return something not zero.
971 */
972 return nbytes;
973}
974
1da177e4
LT
975#endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */
976