]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/mips/kernel/smp-bmips.c
MIPS: allow asm/cpu.h to be included from assembly
[mirror_ubuntu-artful-kernel.git] / arch / mips / kernel / smp-bmips.c
CommitLineData
df0ac8a4
KC
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7 *
8 * SMP support for BMIPS
9 */
10
df0ac8a4
KC
11#include <linux/init.h>
12#include <linux/sched.h>
13#include <linux/mm.h>
14#include <linux/delay.h>
15#include <linux/smp.h>
16#include <linux/interrupt.h>
17#include <linux/spinlock.h>
df0ac8a4
KC
18#include <linux/cpu.h>
19#include <linux/cpumask.h>
20#include <linux/reboot.h>
21#include <linux/io.h>
22#include <linux/compiler.h>
23#include <linux/linkage.h>
24#include <linux/bug.h>
25#include <linux/kernel.h>
26
27#include <asm/time.h>
28#include <asm/pgtable.h>
29#include <asm/processor.h>
df0ac8a4
KC
30#include <asm/bootinfo.h>
31#include <asm/pmon.h>
32#include <asm/cacheflush.h>
33#include <asm/tlbflush.h>
34#include <asm/mipsregs.h>
35#include <asm/bmips.h>
36#include <asm/traps.h>
37#include <asm/barrier.h>
38
39static int __maybe_unused max_cpus = 1;
40
41/* these may be configured by the platform code */
42int bmips_smp_enabled = 1;
43int bmips_cpu_offset;
44cpumask_t bmips_booted_mask;
45
46#ifdef CONFIG_SMP
47
48/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
49unsigned long bmips_smp_boot_sp;
50unsigned long bmips_smp_boot_gp;
51
52static void bmips_send_ipi_single(int cpu, unsigned int action);
53static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id);
54
55/* SW interrupts 0,1 are used for interprocessor signaling */
56#define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0)
57#define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1)
58
59#define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift))
60#define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
61#define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
62#define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0))
63
64static void __init bmips_smp_setup(void)
65{
4df715aa 66 int i, cpu = 1, boot_cpu = 0;
df0ac8a4
KC
67
68#if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
fcfa66de
FF
69 int cpu_hw_intr;
70
df0ac8a4
KC
71 /* arbitration priority */
72 clear_c0_brcm_cmt_ctrl(0x30);
73
74 /* NBK and weak order flags */
75 set_c0_brcm_config_0(0x30000);
76
4df715aa
FF
77 /* Find out if we are running on TP0 or TP1 */
78 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
79
df0ac8a4
KC
80 /*
81 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other thread
82 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
83 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
84 */
fcfa66de
FF
85 if (boot_cpu == 0)
86 cpu_hw_intr = 0x02;
87 else
88 cpu_hw_intr = 0x1d;
89
90 change_c0_brcm_cmt_intr(0xf8018000, (cpu_hw_intr << 27) | (0x03 << 15));
df0ac8a4
KC
91
92 /* single core, 2 threads (2 pipelines) */
93 max_cpus = 2;
94#elif defined(CONFIG_CPU_BMIPS5000)
95 /* enable raceless SW interrupts */
96 set_c0_brcm_config(0x03 << 22);
97
98 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
99 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
100
101 /* N cores, 2 threads per core */
102 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
103
104 /* clear any pending SW interrupts */
105 for (i = 0; i < max_cpus; i++) {
106 write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
107 write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
108 }
109#endif
110
111 if (!bmips_smp_enabled)
112 max_cpus = 1;
113
114 /* this can be overridden by the BSP */
115 if (!board_ebase_setup)
116 board_ebase_setup = &bmips_ebase_setup;
117
4df715aa
FF
118 __cpu_number_map[boot_cpu] = 0;
119 __cpu_logical_map[0] = boot_cpu;
120
df0ac8a4 121 for (i = 0; i < max_cpus; i++) {
4df715aa
FF
122 if (i != boot_cpu) {
123 __cpu_number_map[i] = cpu;
124 __cpu_logical_map[cpu] = i;
125 cpu++;
126 }
df0ac8a4
KC
127 set_cpu_possible(i, 1);
128 set_cpu_present(i, 1);
129 }
130}
131
132/*
133 * IPI IRQ setup - runs on CPU0
134 */
135static void bmips_prepare_cpus(unsigned int max_cpus)
136{
137 if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
138 "smp_ipi0", NULL))
f7777dcc 139 panic("Can't request IPI0 interrupt");
df0ac8a4
KC
140 if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
141 "smp_ipi1", NULL))
f7777dcc 142 panic("Can't request IPI1 interrupt");
df0ac8a4
KC
143}
144
145/*
146 * Tell the hardware to boot CPUx - runs on CPU0
147 */
148static void bmips_boot_secondary(int cpu, struct task_struct *idle)
149{
150 bmips_smp_boot_sp = __KSTK_TOS(idle);
151 bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
152 mb();
153
154 /*
155 * Initial boot sequence for secondary CPU:
156 * bmips_reset_nmi_vec @ a000_0000 ->
157 * bmips_smp_entry ->
158 * plat_wired_tlb_setup (cached function call; optional) ->
159 * start_secondary (cached jump)
160 *
161 * Warm restart sequence:
162 * play_dead WAIT loop ->
163 * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
164 * eret to play_dead ->
165 * bmips_secondary_reentry ->
166 * start_secondary
167 */
168
169 pr_info("SMP: Booting CPU%d...\n", cpu);
170
171 if (cpumask_test_cpu(cpu, &bmips_booted_mask))
172 bmips_send_ipi_single(cpu, 0);
173 else {
174#if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
4df715aa 175 /* Reset slave TP1 if booting from TP0 */
976f39b1 176 if (cpu_logical_map(cpu) == 1)
4df715aa 177 set_c0_brcm_cmt_ctrl(0x01);
df0ac8a4
KC
178#elif defined(CONFIG_CPU_BMIPS5000)
179 if (cpu & 0x01)
180 write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
181 else {
182 /*
183 * core N thread 0 was already booted; just
184 * pulse the NMI line
185 */
186 bmips_write_zscm_reg(0x210, 0xc0000000);
187 udelay(10);
188 bmips_write_zscm_reg(0x210, 0x00);
189 }
190#endif
191 cpumask_set_cpu(cpu, &bmips_booted_mask);
192 }
193}
194
195/*
196 * Early setup - runs on secondary CPU after cache probe
197 */
198static void bmips_init_secondary(void)
199{
200 /* move NMI vector to kseg0, in case XKS01 is enabled */
201
202#if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
203 void __iomem *cbr = BMIPS_GET_CBR();
204 unsigned long old_vec;
ff5fadaf
FF
205 unsigned long relo_vector;
206 int boot_cpu;
df0ac8a4 207
ff5fadaf
FF
208 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
209 relo_vector = boot_cpu ? BMIPS_RELO_VECTOR_CONTROL_0 :
210 BMIPS_RELO_VECTOR_CONTROL_1;
211
212 old_vec = __raw_readl(cbr + relo_vector);
213 __raw_writel(old_vec & ~0x20000000, cbr + relo_vector);
df0ac8a4
KC
214
215 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
216#elif defined(CONFIG_CPU_BMIPS5000)
217 write_c0_brcm_bootvec(read_c0_brcm_bootvec() &
218 (smp_processor_id() & 0x01 ? ~0x20000000 : ~0x2000));
219
220 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
221#endif
df0ac8a4
KC
222}
223
224/*
225 * Late setup - runs on secondary CPU before entering the idle loop
226 */
227static void bmips_smp_finish(void)
228{
229 pr_info("SMP: CPU%d is running\n", smp_processor_id());
856ac3c6
YZ
230
231 /* make sure there won't be a timer interrupt for a little while */
232 write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
233
234 irq_enable_hazard();
235 set_c0_status(IE_SW0 | IE_SW1 | IE_IRQ1 | IE_IRQ5 | ST0_IE);
236 irq_enable_hazard();
df0ac8a4
KC
237}
238
239/*
240 * Runs on CPU0 after all CPUs have been booted
241 */
242static void bmips_cpus_done(void)
243{
244}
245
246#if defined(CONFIG_CPU_BMIPS5000)
247
248/*
249 * BMIPS5000 raceless IPIs
250 *
251 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
252 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
253 * IPI1 is used for SMP_CALL_FUNCTION
254 */
255
256static void bmips_send_ipi_single(int cpu, unsigned int action)
257{
258 write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
259}
260
261static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id)
262{
263 int action = irq - IPI0_IRQ;
264
265 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
266
267 if (action == 0)
268 scheduler_ipi();
269 else
270 smp_call_function_interrupt();
271
272 return IRQ_HANDLED;
273}
274
275#else
276
277/*
278 * BMIPS43xx racey IPIs
279 *
280 * We use one inbound SW IRQ for each CPU.
281 *
282 * A spinlock must be held in order to keep CPUx from accidentally clearing
283 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The
284 * same spinlock is used to protect the action masks.
285 */
286
287static DEFINE_SPINLOCK(ipi_lock);
288static DEFINE_PER_CPU(int, ipi_action_mask);
289
290static void bmips_send_ipi_single(int cpu, unsigned int action)
291{
292 unsigned long flags;
293
294 spin_lock_irqsave(&ipi_lock, flags);
295 set_c0_cause(cpu ? C_SW1 : C_SW0);
296 per_cpu(ipi_action_mask, cpu) |= action;
297 irq_enable_hazard();
298 spin_unlock_irqrestore(&ipi_lock, flags);
299}
300
301static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id)
302{
303 unsigned long flags;
304 int action, cpu = irq - IPI0_IRQ;
305
306 spin_lock_irqsave(&ipi_lock, flags);
307 action = __get_cpu_var(ipi_action_mask);
308 per_cpu(ipi_action_mask, cpu) = 0;
309 clear_c0_cause(cpu ? C_SW1 : C_SW0);
310 spin_unlock_irqrestore(&ipi_lock, flags);
311
312 if (action & SMP_RESCHEDULE_YOURSELF)
313 scheduler_ipi();
314 if (action & SMP_CALL_FUNCTION)
315 smp_call_function_interrupt();
316
317 return IRQ_HANDLED;
318}
319
320#endif /* BMIPS type */
321
322static void bmips_send_ipi_mask(const struct cpumask *mask,
323 unsigned int action)
324{
325 unsigned int i;
326
327 for_each_cpu(i, mask)
328 bmips_send_ipi_single(i, action);
329}
330
331#ifdef CONFIG_HOTPLUG_CPU
332
333static int bmips_cpu_disable(void)
334{
335 unsigned int cpu = smp_processor_id();
336
337 if (cpu == 0)
338 return -EBUSY;
339
340 pr_info("SMP: CPU%d is offline\n", cpu);
341
0b5f9c00 342 set_cpu_online(cpu, false);
df0ac8a4
KC
343 cpu_clear(cpu, cpu_callin_map);
344
345 local_flush_tlb_all();
346 local_flush_icache_range(0, ~0);
347
348 return 0;
349}
350
351static void bmips_cpu_die(unsigned int cpu)
352{
353}
354
355void __ref play_dead(void)
356{
357 idle_task_exit();
358
359 /* flush data cache */
360 _dma_cache_wback_inv(0, ~0);
361
362 /*
363 * Wakeup is on SW0 or SW1; disable everything else
364 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
365 * IRQ handlers; this clears ST0_IE and returns immediately.
366 */
367 clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
368 change_c0_status(IE_IRQ5 | IE_IRQ1 | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
369 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
370 irq_disable_hazard();
371
372 /*
373 * wait for SW interrupt from bmips_boot_secondary(), then jump
374 * back to start_secondary()
375 */
376 __asm__ __volatile__(
377 " wait\n"
378 " j bmips_secondary_reentry\n"
379 : : : "memory");
380}
381
382#endif /* CONFIG_HOTPLUG_CPU */
383
384struct plat_smp_ops bmips_smp_ops = {
385 .smp_setup = bmips_smp_setup,
386 .prepare_cpus = bmips_prepare_cpus,
387 .boot_secondary = bmips_boot_secondary,
388 .smp_finish = bmips_smp_finish,
389 .init_secondary = bmips_init_secondary,
390 .cpus_done = bmips_cpus_done,
391 .send_ipi_single = bmips_send_ipi_single,
392 .send_ipi_mask = bmips_send_ipi_mask,
393#ifdef CONFIG_HOTPLUG_CPU
394 .cpu_disable = bmips_cpu_disable,
395 .cpu_die = bmips_cpu_die,
396#endif
397};
398
399#endif /* CONFIG_SMP */
400
401/***********************************************************************
402 * BMIPS vector relocation
403 * This is primarily used for SMP boot, but it is applicable to some
404 * UP BMIPS systems as well.
405 ***********************************************************************/
406
078a55fc 407static void bmips_wr_vec(unsigned long dst, char *start, char *end)
df0ac8a4
KC
408{
409 memcpy((void *)dst, start, end - start);
410 dma_cache_wback((unsigned long)start, end - start);
411 local_flush_icache_range(dst, dst + (end - start));
412 instruction_hazard();
413}
414
078a55fc 415static inline void bmips_nmi_handler_setup(void)
df0ac8a4
KC
416{
417 bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
418 &bmips_reset_nmi_vec_end);
419 bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
420 &bmips_smp_int_vec_end);
421}
422
078a55fc 423void bmips_ebase_setup(void)
df0ac8a4
KC
424{
425 unsigned long new_ebase = ebase;
426 void __iomem __maybe_unused *cbr;
427
428 BUG_ON(ebase != CKSEG0);
429
430#if defined(CONFIG_CPU_BMIPS4350)
431 /*
432 * BMIPS4350 cannot relocate the normal vectors, but it
433 * can relocate the BEV=1 vectors. So CPU1 starts up at
434 * the relocated BEV=1, IV=0 general exception vector @
435 * 0xa000_0380.
436 *
437 * set_uncached_handler() is used here because:
438 * - CPU1 will run this from uncached space
439 * - None of the cacheflush functions are set up yet
440 */
441 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
442 &bmips_smp_int_vec, 0x80);
443 __sync();
444 return;
445#elif defined(CONFIG_CPU_BMIPS4380)
446 /*
447 * 0x8000_0000: reset/NMI (initially in kseg1)
448 * 0x8000_0400: normal vectors
449 */
450 new_ebase = 0x80000400;
451 cbr = BMIPS_GET_CBR();
452 __raw_writel(0x80080800, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
453 __raw_writel(0xa0080800, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
454#elif defined(CONFIG_CPU_BMIPS5000)
455 /*
456 * 0x8000_0000: reset/NMI (initially in kseg1)
457 * 0x8000_1000: normal vectors
458 */
459 new_ebase = 0x80001000;
460 write_c0_brcm_bootvec(0xa0088008);
461 write_c0_ebase(new_ebase);
462 if (max_cpus > 2)
463 bmips_write_zscm_reg(0xa0, 0xa008a008);
464#else
465 return;
466#endif
467 board_nmi_handler_setup = &bmips_nmi_handler_setup;
468 ebase = new_ebase;
469}
470
471asmlinkage void __weak plat_wired_tlb_setup(void)
472{
473 /*
474 * Called when starting/restarting a secondary CPU.
475 * Kernel stacks and other important data might only be accessible
476 * once the wired entries are present.
477 */
478}