]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/mips/kernel/traps.c
MIPS: mm: Use the TLBINVF instruction to flush the VTLB
[mirror_ubuntu-zesty-kernel.git] / arch / mips / kernel / traps.c
CommitLineData
1da177e4
LT
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
36ccf1c0 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
1da177e4
LT
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
60b0d655 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
2a0b24f5 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
1da177e4 13 */
8e8a52ed 14#include <linux/bug.h>
60b0d655 15#include <linux/compiler.h>
c3fc5cd5 16#include <linux/context_tracking.h>
7aa1c8f4 17#include <linux/kexec.h>
1da177e4 18#include <linux/init.h>
8742cd23 19#include <linux/kernel.h>
f9ded569 20#include <linux/module.h>
1da177e4 21#include <linux/mm.h>
1da177e4
LT
22#include <linux/sched.h>
23#include <linux/smp.h>
1da177e4
LT
24#include <linux/spinlock.h>
25#include <linux/kallsyms.h>
e01402b1 26#include <linux/bootmem.h>
d4fd1989 27#include <linux/interrupt.h>
39b8d525 28#include <linux/ptrace.h>
88547001
JW
29#include <linux/kgdb.h>
30#include <linux/kdebug.h>
c1bf207d 31#include <linux/kprobes.h>
69f3a7de 32#include <linux/notifier.h>
5dd11d5d 33#include <linux/kdb.h>
ca4d3e67 34#include <linux/irq.h>
7f788d2d 35#include <linux/perf_event.h>
1da177e4
LT
36
37#include <asm/bootinfo.h>
38#include <asm/branch.h>
39#include <asm/break.h>
69f3a7de 40#include <asm/cop2.h>
1da177e4 41#include <asm/cpu.h>
69f24d17 42#include <asm/cpu-type.h>
e50c0a8f 43#include <asm/dsp.h>
1da177e4 44#include <asm/fpu.h>
ba3049ed 45#include <asm/fpu_emulator.h>
bdc92d74 46#include <asm/idle.h>
340ee4b9
RB
47#include <asm/mipsregs.h>
48#include <asm/mipsmtregs.h>
1da177e4
LT
49#include <asm/module.h>
50#include <asm/pgtable.h>
51#include <asm/ptrace.h>
52#include <asm/sections.h>
1da177e4
LT
53#include <asm/tlbdebug.h>
54#include <asm/traps.h>
55#include <asm/uaccess.h>
b67b2b70 56#include <asm/watch.h>
1da177e4 57#include <asm/mmu_context.h>
1da177e4 58#include <asm/types.h>
1df0f0ff 59#include <asm/stacktrace.h>
92bbe1b9 60#include <asm/uasm.h>
1da177e4 61
c65a5480 62extern void check_wait(void);
c65a5480 63extern asmlinkage void rollback_handle_int(void);
e4ac58af 64extern asmlinkage void handle_int(void);
86a1708a
RB
65extern u32 handle_tlbl[];
66extern u32 handle_tlbs[];
67extern u32 handle_tlbm[];
1da177e4
LT
68extern asmlinkage void handle_adel(void);
69extern asmlinkage void handle_ades(void);
70extern asmlinkage void handle_ibe(void);
71extern asmlinkage void handle_dbe(void);
72extern asmlinkage void handle_sys(void);
73extern asmlinkage void handle_bp(void);
74extern asmlinkage void handle_ri(void);
5b10496b
AN
75extern asmlinkage void handle_ri_rdhwr_vivt(void);
76extern asmlinkage void handle_ri_rdhwr(void);
1da177e4
LT
77extern asmlinkage void handle_cpu(void);
78extern asmlinkage void handle_ov(void);
79extern asmlinkage void handle_tr(void);
80extern asmlinkage void handle_fpe(void);
81extern asmlinkage void handle_mdmx(void);
82extern asmlinkage void handle_watch(void);
340ee4b9 83extern asmlinkage void handle_mt(void);
e50c0a8f 84extern asmlinkage void handle_dsp(void);
1da177e4
LT
85extern asmlinkage void handle_mcheck(void);
86extern asmlinkage void handle_reserved(void);
87
1da177e4
LT
88void (*board_be_init)(void);
89int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
e01402b1
RB
90void (*board_nmi_handler_setup)(void);
91void (*board_ejtag_handler_setup)(void);
92void (*board_bind_eic_interrupt)(int irq, int regset);
6fb97eff 93void (*board_ebase_setup)(void);
078a55fc 94void(*board_cache_error_setup)(void);
1da177e4 95
4d157d5e 96static void show_raw_backtrace(unsigned long reg29)
e889d78f 97{
39b8d525 98 unsigned long *sp = (unsigned long *)(reg29 & ~3);
e889d78f
AN
99 unsigned long addr;
100
101 printk("Call Trace:");
102#ifdef CONFIG_KALLSYMS
103 printk("\n");
104#endif
10220c88
TB
105 while (!kstack_end(sp)) {
106 unsigned long __user *p =
107 (unsigned long __user *)(unsigned long)sp++;
108 if (__get_user(addr, p)) {
109 printk(" (Bad stack address)");
110 break;
39b8d525 111 }
10220c88
TB
112 if (__kernel_text_address(addr))
113 print_ip_sym(addr);
e889d78f 114 }
10220c88 115 printk("\n");
e889d78f
AN
116}
117
f66686f7 118#ifdef CONFIG_KALLSYMS
1df0f0ff 119int raw_show_trace;
f66686f7
AN
120static int __init set_raw_show_trace(char *str)
121{
122 raw_show_trace = 1;
123 return 1;
124}
125__setup("raw_show_trace", set_raw_show_trace);
1df0f0ff 126#endif
4d157d5e 127
eae23f2c 128static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
f66686f7 129{
4d157d5e
FBH
130 unsigned long sp = regs->regs[29];
131 unsigned long ra = regs->regs[31];
f66686f7 132 unsigned long pc = regs->cp0_epc;
f66686f7 133
e909be82
VW
134 if (!task)
135 task = current;
136
f66686f7 137 if (raw_show_trace || !__kernel_text_address(pc)) {
87151ae3 138 show_raw_backtrace(sp);
f66686f7
AN
139 return;
140 }
141 printk("Call Trace:\n");
4d157d5e 142 do {
87151ae3 143 print_ip_sym(pc);
1924600c 144 pc = unwind_stack(task, &sp, pc, &ra);
4d157d5e 145 } while (pc);
f66686f7
AN
146 printk("\n");
147}
f66686f7 148
1da177e4
LT
149/*
150 * This routine abuses get_user()/put_user() to reference pointers
151 * with at least a bit of error checking ...
152 */
eae23f2c
RB
153static void show_stacktrace(struct task_struct *task,
154 const struct pt_regs *regs)
1da177e4
LT
155{
156 const int field = 2 * sizeof(unsigned long);
157 long stackdata;
158 int i;
5e0373b8 159 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
1da177e4
LT
160
161 printk("Stack :");
162 i = 0;
163 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
164 if (i && ((i % (64 / field)) == 0))
70342287 165 printk("\n ");
1da177e4
LT
166 if (i > 39) {
167 printk(" ...");
168 break;
169 }
170
171 if (__get_user(stackdata, sp++)) {
172 printk(" (Bad stack address)");
173 break;
174 }
175
176 printk(" %0*lx", field, stackdata);
177 i++;
178 }
179 printk("\n");
87151ae3 180 show_backtrace(task, regs);
f66686f7
AN
181}
182
f66686f7
AN
183void show_stack(struct task_struct *task, unsigned long *sp)
184{
185 struct pt_regs regs;
186 if (sp) {
187 regs.regs[29] = (unsigned long)sp;
188 regs.regs[31] = 0;
189 regs.cp0_epc = 0;
190 } else {
191 if (task && task != current) {
192 regs.regs[29] = task->thread.reg29;
193 regs.regs[31] = 0;
194 regs.cp0_epc = task->thread.reg31;
5dd11d5d
JW
195#ifdef CONFIG_KGDB_KDB
196 } else if (atomic_read(&kgdb_active) != -1 &&
197 kdb_current_regs) {
198 memcpy(&regs, kdb_current_regs, sizeof(regs));
199#endif /* CONFIG_KGDB_KDB */
f66686f7
AN
200 } else {
201 prepare_frametrace(&regs);
202 }
203 }
204 show_stacktrace(task, &regs);
1da177e4
LT
205}
206
e1bb8289 207static void show_code(unsigned int __user *pc)
1da177e4
LT
208{
209 long i;
39b8d525 210 unsigned short __user *pc16 = NULL;
1da177e4
LT
211
212 printk("\nCode:");
213
39b8d525
RB
214 if ((unsigned long)pc & 1)
215 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
1da177e4
LT
216 for(i = -3 ; i < 6 ; i++) {
217 unsigned int insn;
39b8d525 218 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
1da177e4
LT
219 printk(" (Bad address in epc)\n");
220 break;
221 }
39b8d525 222 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
1da177e4
LT
223 }
224}
225
eae23f2c 226static void __show_regs(const struct pt_regs *regs)
1da177e4
LT
227{
228 const int field = 2 * sizeof(unsigned long);
229 unsigned int cause = regs->cp0_cause;
230 int i;
231
a43cb95d 232 show_regs_print_info(KERN_DEFAULT);
1da177e4
LT
233
234 /*
235 * Saved main processor registers
236 */
237 for (i = 0; i < 32; ) {
238 if ((i % 4) == 0)
239 printk("$%2d :", i);
240 if (i == 0)
241 printk(" %0*lx", field, 0UL);
242 else if (i == 26 || i == 27)
243 printk(" %*s", field, "");
244 else
245 printk(" %0*lx", field, regs->regs[i]);
246
247 i++;
248 if ((i % 4) == 0)
249 printk("\n");
250 }
251
9693a853
FBH
252#ifdef CONFIG_CPU_HAS_SMARTMIPS
253 printk("Acx : %0*lx\n", field, regs->acx);
254#endif
1da177e4
LT
255 printk("Hi : %0*lx\n", field, regs->hi);
256 printk("Lo : %0*lx\n", field, regs->lo);
257
258 /*
259 * Saved cp0 registers
260 */
b012cffe
RB
261 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
262 (void *) regs->cp0_epc);
1da177e4 263 printk(" %s\n", print_tainted());
b012cffe
RB
264 printk("ra : %0*lx %pS\n", field, regs->regs[31],
265 (void *) regs->regs[31]);
1da177e4 266
70342287 267 printk("Status: %08x ", (uint32_t) regs->cp0_status);
1da177e4 268
1990e542 269 if (cpu_has_3kex) {
3b2396d9
MR
270 if (regs->cp0_status & ST0_KUO)
271 printk("KUo ");
272 if (regs->cp0_status & ST0_IEO)
273 printk("IEo ");
274 if (regs->cp0_status & ST0_KUP)
275 printk("KUp ");
276 if (regs->cp0_status & ST0_IEP)
277 printk("IEp ");
278 if (regs->cp0_status & ST0_KUC)
279 printk("KUc ");
280 if (regs->cp0_status & ST0_IEC)
281 printk("IEc ");
1990e542 282 } else if (cpu_has_4kex) {
3b2396d9
MR
283 if (regs->cp0_status & ST0_KX)
284 printk("KX ");
285 if (regs->cp0_status & ST0_SX)
286 printk("SX ");
287 if (regs->cp0_status & ST0_UX)
288 printk("UX ");
289 switch (regs->cp0_status & ST0_KSU) {
290 case KSU_USER:
291 printk("USER ");
292 break;
293 case KSU_SUPERVISOR:
294 printk("SUPERVISOR ");
295 break;
296 case KSU_KERNEL:
297 printk("KERNEL ");
298 break;
299 default:
300 printk("BAD_MODE ");
301 break;
302 }
303 if (regs->cp0_status & ST0_ERL)
304 printk("ERL ");
305 if (regs->cp0_status & ST0_EXL)
306 printk("EXL ");
307 if (regs->cp0_status & ST0_IE)
308 printk("IE ");
1da177e4 309 }
1da177e4
LT
310 printk("\n");
311
312 printk("Cause : %08x\n", cause);
313
314 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
315 if (1 <= cause && cause <= 5)
316 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
317
9966db25
RB
318 printk("PrId : %08x (%s)\n", read_c0_prid(),
319 cpu_name_string());
1da177e4
LT
320}
321
eae23f2c
RB
322/*
323 * FIXME: really the generic show_regs should take a const pointer argument.
324 */
325void show_regs(struct pt_regs *regs)
326{
327 __show_regs((struct pt_regs *)regs);
328}
329
c1bf207d 330void show_registers(struct pt_regs *regs)
1da177e4 331{
39b8d525 332 const int field = 2 * sizeof(unsigned long);
83e4da1e 333 mm_segment_t old_fs = get_fs();
39b8d525 334
eae23f2c 335 __show_regs(regs);
1da177e4 336 print_modules();
39b8d525
RB
337 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
338 current->comm, current->pid, current_thread_info(), current,
339 field, current_thread_info()->tp_value);
340 if (cpu_has_userlocal) {
341 unsigned long tls;
342
343 tls = read_c0_userlocal();
344 if (tls != current_thread_info()->tp_value)
345 printk("*HwTLS: %0*lx\n", field, tls);
346 }
347
83e4da1e
LY
348 if (!user_mode(regs))
349 /* Necessary for getting the correct stack content */
350 set_fs(KERNEL_DS);
f66686f7 351 show_stacktrace(current, regs);
e1bb8289 352 show_code((unsigned int __user *) regs->cp0_epc);
1da177e4 353 printk("\n");
83e4da1e 354 set_fs(old_fs);
1da177e4
LT
355}
356
70dc6f04
DD
357static int regs_to_trapnr(struct pt_regs *regs)
358{
359 return (regs->cp0_cause >> 2) & 0x1f;
360}
361
4d85f6af 362static DEFINE_RAW_SPINLOCK(die_lock);
1da177e4 363
70dc6f04 364void __noreturn die(const char *str, struct pt_regs *regs)
1da177e4
LT
365{
366 static int die_counter;
ce384d83 367 int sig = SIGSEGV;
41c594ab 368#ifdef CONFIG_MIPS_MT_SMTC
8742cd23 369 unsigned long dvpret;
41c594ab 370#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4 371
8742cd23
NL
372 oops_enter();
373
dc73e4c1
RB
374 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
375 SIGSEGV) == NOTIFY_STOP)
10423c91 376 sig = 0;
5dd11d5d 377
1da177e4 378 console_verbose();
4d85f6af 379 raw_spin_lock_irq(&die_lock);
8742cd23
NL
380#ifdef CONFIG_MIPS_MT_SMTC
381 dvpret = dvpe();
382#endif /* CONFIG_MIPS_MT_SMTC */
41c594ab
RB
383 bust_spinlocks(1);
384#ifdef CONFIG_MIPS_MT_SMTC
385 mips_mt_regdump(dvpret);
386#endif /* CONFIG_MIPS_MT_SMTC */
ce384d83 387
178086c8 388 printk("%s[#%d]:\n", str, ++die_counter);
1da177e4 389 show_registers(regs);
373d4d09 390 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
4d85f6af 391 raw_spin_unlock_irq(&die_lock);
d4fd1989 392
8742cd23
NL
393 oops_exit();
394
d4fd1989
MB
395 if (in_interrupt())
396 panic("Fatal exception in interrupt");
397
398 if (panic_on_oops) {
ab75dc02 399 printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
d4fd1989
MB
400 ssleep(5);
401 panic("Fatal exception");
402 }
403
7aa1c8f4
RB
404 if (regs && kexec_should_crash(current))
405 crash_kexec(regs);
406
ce384d83 407 do_exit(sig);
1da177e4
LT
408}
409
0510617b
TB
410extern struct exception_table_entry __start___dbe_table[];
411extern struct exception_table_entry __stop___dbe_table[];
1da177e4 412
b6dcec9b
RB
413__asm__(
414" .section __dbe_table, \"a\"\n"
415" .previous \n");
1da177e4
LT
416
417/* Given an address, look for it in the exception tables. */
418static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
419{
420 const struct exception_table_entry *e;
421
422 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
423 if (!e)
424 e = search_module_dbetables(addr);
425 return e;
426}
427
428asmlinkage void do_be(struct pt_regs *regs)
429{
430 const int field = 2 * sizeof(unsigned long);
431 const struct exception_table_entry *fixup = NULL;
432 int data = regs->cp0_cause & 4;
433 int action = MIPS_BE_FATAL;
c3fc5cd5 434 enum ctx_state prev_state;
1da177e4 435
c3fc5cd5 436 prev_state = exception_enter();
70342287 437 /* XXX For now. Fixme, this searches the wrong table ... */
1da177e4
LT
438 if (data && !user_mode(regs))
439 fixup = search_dbe_tables(exception_epc(regs));
440
441 if (fixup)
442 action = MIPS_BE_FIXUP;
443
444 if (board_be_handler)
28fc582c 445 action = board_be_handler(regs, fixup != NULL);
1da177e4
LT
446
447 switch (action) {
448 case MIPS_BE_DISCARD:
c3fc5cd5 449 goto out;
1da177e4
LT
450 case MIPS_BE_FIXUP:
451 if (fixup) {
452 regs->cp0_epc = fixup->nextinsn;
c3fc5cd5 453 goto out;
1da177e4
LT
454 }
455 break;
456 default:
457 break;
458 }
459
460 /*
461 * Assume it would be too dangerous to continue ...
462 */
463 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
464 data ? "Data" : "Instruction",
465 field, regs->cp0_epc, field, regs->regs[31]);
dc73e4c1
RB
466 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
467 SIGBUS) == NOTIFY_STOP)
c3fc5cd5 468 goto out;
88547001 469
1da177e4
LT
470 die_if_kernel("Oops", regs);
471 force_sig(SIGBUS, current);
c3fc5cd5
RB
472
473out:
474 exception_exit(prev_state);
1da177e4
LT
475}
476
1da177e4 477/*
60b0d655 478 * ll/sc, rdhwr, sync emulation
1da177e4
LT
479 */
480
481#define OPCODE 0xfc000000
482#define BASE 0x03e00000
483#define RT 0x001f0000
484#define OFFSET 0x0000ffff
485#define LL 0xc0000000
486#define SC 0xe0000000
60b0d655 487#define SPEC0 0x00000000
3c37026d
RB
488#define SPEC3 0x7c000000
489#define RD 0x0000f800
490#define FUNC 0x0000003f
60b0d655 491#define SYNC 0x0000000f
3c37026d 492#define RDHWR 0x0000003b
1da177e4 493
2a0b24f5
SH
494/* microMIPS definitions */
495#define MM_POOL32A_FUNC 0xfc00ffff
496#define MM_RDHWR 0x00006b3c
497#define MM_RS 0x001f0000
498#define MM_RT 0x03e00000
499
1da177e4
LT
500/*
501 * The ll_bit is cleared by r*_switch.S
502 */
503
f1e39a4a
RB
504unsigned int ll_bit;
505struct task_struct *ll_task;
1da177e4 506
60b0d655 507static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
1da177e4 508{
fe00f943 509 unsigned long value, __user *vaddr;
1da177e4 510 long offset;
1da177e4
LT
511
512 /*
513 * analyse the ll instruction that just caused a ri exception
514 * and put the referenced address to addr.
515 */
516
517 /* sign extend offset */
518 offset = opcode & OFFSET;
519 offset <<= 16;
520 offset >>= 16;
521
fe00f943 522 vaddr = (unsigned long __user *)
b9688310 523 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4 524
60b0d655
MR
525 if ((unsigned long)vaddr & 3)
526 return SIGBUS;
527 if (get_user(value, vaddr))
528 return SIGSEGV;
1da177e4
LT
529
530 preempt_disable();
531
532 if (ll_task == NULL || ll_task == current) {
533 ll_bit = 1;
534 } else {
535 ll_bit = 0;
536 }
537 ll_task = current;
538
539 preempt_enable();
540
541 regs->regs[(opcode & RT) >> 16] = value;
542
60b0d655 543 return 0;
1da177e4
LT
544}
545
60b0d655 546static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
1da177e4 547{
fe00f943
RB
548 unsigned long __user *vaddr;
549 unsigned long reg;
1da177e4 550 long offset;
1da177e4
LT
551
552 /*
553 * analyse the sc instruction that just caused a ri exception
554 * and put the referenced address to addr.
555 */
556
557 /* sign extend offset */
558 offset = opcode & OFFSET;
559 offset <<= 16;
560 offset >>= 16;
561
fe00f943 562 vaddr = (unsigned long __user *)
b9688310 563 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4
LT
564 reg = (opcode & RT) >> 16;
565
60b0d655
MR
566 if ((unsigned long)vaddr & 3)
567 return SIGBUS;
1da177e4
LT
568
569 preempt_disable();
570
571 if (ll_bit == 0 || ll_task != current) {
572 regs->regs[reg] = 0;
573 preempt_enable();
60b0d655 574 return 0;
1da177e4
LT
575 }
576
577 preempt_enable();
578
60b0d655
MR
579 if (put_user(regs->regs[reg], vaddr))
580 return SIGSEGV;
1da177e4
LT
581
582 regs->regs[reg] = 1;
583
60b0d655 584 return 0;
1da177e4
LT
585}
586
587/*
588 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
589 * opcodes are supposed to result in coprocessor unusable exceptions if
590 * executed on ll/sc-less processors. That's the theory. In practice a
591 * few processors such as NEC's VR4100 throw reserved instruction exceptions
592 * instead, so we're doing the emulation thing in both exception handlers.
593 */
60b0d655 594static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
1da177e4 595{
7f788d2d
DCZ
596 if ((opcode & OPCODE) == LL) {
597 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 598 1, regs, 0);
60b0d655 599 return simulate_ll(regs, opcode);
7f788d2d
DCZ
600 }
601 if ((opcode & OPCODE) == SC) {
602 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 603 1, regs, 0);
60b0d655 604 return simulate_sc(regs, opcode);
7f788d2d 605 }
1da177e4 606
60b0d655 607 return -1; /* Must be something else ... */
1da177e4
LT
608}
609
3c37026d
RB
610/*
611 * Simulate trapping 'rdhwr' instructions to provide user accessible
1f5826bd 612 * registers not implemented in hardware.
3c37026d 613 */
2a0b24f5 614static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
3c37026d 615{
dc8f6029 616 struct thread_info *ti = task_thread_info(current);
3c37026d 617
2a0b24f5
SH
618 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
619 1, regs, 0);
620 switch (rd) {
621 case 0: /* CPU number */
622 regs->regs[rt] = smp_processor_id();
623 return 0;
624 case 1: /* SYNCI length */
625 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
626 current_cpu_data.icache.linesz);
627 return 0;
628 case 2: /* Read count register */
629 regs->regs[rt] = read_c0_count();
630 return 0;
631 case 3: /* Count register resolution */
69f24d17 632 switch (current_cpu_type()) {
2a0b24f5
SH
633 case CPU_20KC:
634 case CPU_25KF:
635 regs->regs[rt] = 1;
636 break;
637 default:
638 regs->regs[rt] = 2;
639 }
640 return 0;
641 case 29:
642 regs->regs[rt] = ti->tp_value;
643 return 0;
644 default:
645 return -1;
646 }
647}
648
649static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
650{
3c37026d
RB
651 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
652 int rd = (opcode & RD) >> 11;
653 int rt = (opcode & RT) >> 16;
2a0b24f5
SH
654
655 simulate_rdhwr(regs, rd, rt);
656 return 0;
657 }
658
659 /* Not ours. */
660 return -1;
661}
662
663static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
664{
665 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
666 int rd = (opcode & MM_RS) >> 16;
667 int rt = (opcode & MM_RT) >> 21;
668 simulate_rdhwr(regs, rd, rt);
669 return 0;
3c37026d
RB
670 }
671
56ebd51b 672 /* Not ours. */
60b0d655
MR
673 return -1;
674}
e5679882 675
60b0d655
MR
676static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
677{
7f788d2d
DCZ
678 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
679 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 680 1, regs, 0);
60b0d655 681 return 0;
7f788d2d 682 }
60b0d655
MR
683
684 return -1; /* Must be something else ... */
3c37026d
RB
685}
686
1da177e4
LT
687asmlinkage void do_ov(struct pt_regs *regs)
688{
c3fc5cd5 689 enum ctx_state prev_state;
1da177e4
LT
690 siginfo_t info;
691
c3fc5cd5 692 prev_state = exception_enter();
36ccf1c0
RB
693 die_if_kernel("Integer overflow", regs);
694
1da177e4
LT
695 info.si_code = FPE_INTOVF;
696 info.si_signo = SIGFPE;
697 info.si_errno = 0;
fe00f943 698 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4 699 force_sig_info(SIGFPE, &info, current);
c3fc5cd5 700 exception_exit(prev_state);
1da177e4
LT
701}
702
102cedc3 703int process_fpemu_return(int sig, void __user *fault_addr)
515b029d
DD
704{
705 if (sig == SIGSEGV || sig == SIGBUS) {
706 struct siginfo si = {0};
707 si.si_addr = fault_addr;
708 si.si_signo = sig;
709 if (sig == SIGSEGV) {
710 if (find_vma(current->mm, (unsigned long)fault_addr))
711 si.si_code = SEGV_ACCERR;
712 else
713 si.si_code = SEGV_MAPERR;
714 } else {
715 si.si_code = BUS_ADRERR;
716 }
717 force_sig_info(sig, &si, current);
718 return 1;
719 } else if (sig) {
720 force_sig(sig, current);
721 return 1;
722 } else {
723 return 0;
724 }
725}
726
1da177e4
LT
727/*
728 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
729 */
730asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
731{
c3fc5cd5 732 enum ctx_state prev_state;
515b029d 733 siginfo_t info = {0};
948a34cf 734
c3fc5cd5 735 prev_state = exception_enter();
dc73e4c1
RB
736 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
737 SIGFPE) == NOTIFY_STOP)
c3fc5cd5 738 goto out;
57725f9e
CD
739 die_if_kernel("FP exception in kernel code", regs);
740
1da177e4
LT
741 if (fcr31 & FPU_CSR_UNI_X) {
742 int sig;
515b029d 743 void __user *fault_addr = NULL;
1da177e4 744
1da177e4 745 /*
a3dddd56 746 * Unimplemented operation exception. If we've got the full
1da177e4
LT
747 * software emulator on-board, let's use it...
748 *
749 * Force FPU to dump state into task/thread context. We're
750 * moving a lot of data here for what is probably a single
751 * instruction, but the alternative is to pre-decode the FP
752 * register operands before invoking the emulator, which seems
753 * a bit extreme for what should be an infrequent event.
754 */
cd21dfcf 755 /* Ensure 'resume' not overwrite saved fp context again. */
53dc8028 756 lose_fpu(1);
1da177e4
LT
757
758 /* Run the emulator */
515b029d
DD
759 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
760 &fault_addr);
1da177e4
LT
761
762 /*
763 * We can't allow the emulated instruction to leave any of
764 * the cause bit set in $fcr31.
765 */
eae89076 766 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1da177e4
LT
767
768 /* Restore the hardware register state */
70342287 769 own_fpu(1); /* Using the FPU again. */
1da177e4
LT
770
771 /* If something went wrong, signal */
515b029d 772 process_fpemu_return(sig, fault_addr);
1da177e4 773
c3fc5cd5 774 goto out;
948a34cf
TS
775 } else if (fcr31 & FPU_CSR_INV_X)
776 info.si_code = FPE_FLTINV;
777 else if (fcr31 & FPU_CSR_DIV_X)
778 info.si_code = FPE_FLTDIV;
779 else if (fcr31 & FPU_CSR_OVF_X)
780 info.si_code = FPE_FLTOVF;
781 else if (fcr31 & FPU_CSR_UDF_X)
782 info.si_code = FPE_FLTUND;
783 else if (fcr31 & FPU_CSR_INE_X)
784 info.si_code = FPE_FLTRES;
785 else
786 info.si_code = __SI_FAULT;
787 info.si_signo = SIGFPE;
788 info.si_errno = 0;
789 info.si_addr = (void __user *) regs->cp0_epc;
790 force_sig_info(SIGFPE, &info, current);
c3fc5cd5
RB
791
792out:
793 exception_exit(prev_state);
1da177e4
LT
794}
795
df270051
RB
796static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
797 const char *str)
1da177e4 798{
1da177e4 799 siginfo_t info;
df270051 800 char b[40];
1da177e4 801
5dd11d5d 802#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
70dc6f04 803 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
5dd11d5d
JW
804 return;
805#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
806
dc73e4c1
RB
807 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
808 SIGTRAP) == NOTIFY_STOP)
88547001
JW
809 return;
810
1da177e4 811 /*
df270051
RB
812 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
813 * insns, even for trap and break codes that indicate arithmetic
814 * failures. Weird ...
1da177e4
LT
815 * But should we continue the brokenness??? --macro
816 */
df270051
RB
817 switch (code) {
818 case BRK_OVERFLOW:
819 case BRK_DIVZERO:
820 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
821 die_if_kernel(b, regs);
822 if (code == BRK_DIVZERO)
1da177e4
LT
823 info.si_code = FPE_INTDIV;
824 else
825 info.si_code = FPE_INTOVF;
826 info.si_signo = SIGFPE;
827 info.si_errno = 0;
fe00f943 828 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
829 force_sig_info(SIGFPE, &info, current);
830 break;
63dc68a8 831 case BRK_BUG:
df270051
RB
832 die_if_kernel("Kernel bug detected", regs);
833 force_sig(SIGTRAP, current);
63dc68a8 834 break;
ba3049ed
RB
835 case BRK_MEMU:
836 /*
837 * Address errors may be deliberately induced by the FPU
838 * emulator to retake control of the CPU after executing the
839 * instruction in the delay slot of an emulated branch.
840 *
841 * Terminate if exception was recognized as a delay slot return
842 * otherwise handle as normal.
843 */
844 if (do_dsemulret(regs))
845 return;
846
847 die_if_kernel("Math emu break/trap", regs);
848 force_sig(SIGTRAP, current);
849 break;
1da177e4 850 default:
df270051
RB
851 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
852 die_if_kernel(b, regs);
1da177e4
LT
853 force_sig(SIGTRAP, current);
854 }
df270051
RB
855}
856
857asmlinkage void do_bp(struct pt_regs *regs)
858{
859 unsigned int opcode, bcode;
c3fc5cd5 860 enum ctx_state prev_state;
2a0b24f5
SH
861 unsigned long epc;
862 u16 instr[2];
863
c3fc5cd5 864 prev_state = exception_enter();
2a0b24f5
SH
865 if (get_isa16_mode(regs->cp0_epc)) {
866 /* Calculate EPC. */
867 epc = exception_epc(regs);
868 if (cpu_has_mmips) {
869 if ((__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)) ||
870 (__get_user(instr[1], (u16 __user *)msk_isa16_mode(epc + 2)))))
871 goto out_sigsegv;
872 opcode = (instr[0] << 16) | instr[1];
873 } else {
874 /* MIPS16e mode */
875 if (__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)))
876 goto out_sigsegv;
877 bcode = (instr[0] >> 6) & 0x3f;
878 do_trap_or_bp(regs, bcode, "Break");
c3fc5cd5 879 goto out;
2a0b24f5
SH
880 }
881 } else {
882 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
883 goto out_sigsegv;
884 }
df270051
RB
885
886 /*
887 * There is the ancient bug in the MIPS assemblers that the break
888 * code starts left to bit 16 instead to bit 6 in the opcode.
889 * Gas is bug-compatible, but not always, grrr...
890 * We handle both cases with a simple heuristics. --macro
891 */
892 bcode = ((opcode >> 6) & ((1 << 20) - 1));
893 if (bcode >= (1 << 10))
894 bcode >>= 10;
895
c1bf207d
DD
896 /*
897 * notify the kprobe handlers, if instruction is likely to
898 * pertain to them.
899 */
900 switch (bcode) {
901 case BRK_KPROBE_BP:
dc73e4c1
RB
902 if (notify_die(DIE_BREAK, "debug", regs, bcode,
903 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
c3fc5cd5 904 goto out;
c1bf207d
DD
905 else
906 break;
907 case BRK_KPROBE_SSTEPBP:
dc73e4c1
RB
908 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
909 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
c3fc5cd5 910 goto out;
c1bf207d
DD
911 else
912 break;
913 default:
914 break;
915 }
916
df270051 917 do_trap_or_bp(regs, bcode, "Break");
c3fc5cd5
RB
918
919out:
920 exception_exit(prev_state);
90fccb13 921 return;
e5679882
RB
922
923out_sigsegv:
924 force_sig(SIGSEGV, current);
c3fc5cd5 925 goto out;
1da177e4
LT
926}
927
928asmlinkage void do_tr(struct pt_regs *regs)
929{
a9a6e7a0 930 u32 opcode, tcode = 0;
c3fc5cd5 931 enum ctx_state prev_state;
2a0b24f5 932 u16 instr[2];
a9a6e7a0 933 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1da177e4 934
c3fc5cd5 935 prev_state = exception_enter();
a9a6e7a0
MR
936 if (get_isa16_mode(regs->cp0_epc)) {
937 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
938 __get_user(instr[1], (u16 __user *)(epc + 2)))
2a0b24f5 939 goto out_sigsegv;
a9a6e7a0
MR
940 opcode = (instr[0] << 16) | instr[1];
941 /* Immediate versions don't provide a code. */
942 if (!(opcode & OPCODE))
943 tcode = (opcode >> 12) & ((1 << 4) - 1);
944 } else {
945 if (__get_user(opcode, (u32 __user *)epc))
946 goto out_sigsegv;
947 /* Immediate versions don't provide a code. */
948 if (!(opcode & OPCODE))
949 tcode = (opcode >> 6) & ((1 << 10) - 1);
2a0b24f5 950 }
1da177e4 951
df270051 952 do_trap_or_bp(regs, tcode, "Trap");
c3fc5cd5
RB
953
954out:
955 exception_exit(prev_state);
90fccb13 956 return;
e5679882
RB
957
958out_sigsegv:
959 force_sig(SIGSEGV, current);
c3fc5cd5 960 goto out;
1da177e4
LT
961}
962
963asmlinkage void do_ri(struct pt_regs *regs)
964{
60b0d655
MR
965 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
966 unsigned long old_epc = regs->cp0_epc;
2a0b24f5 967 unsigned long old31 = regs->regs[31];
c3fc5cd5 968 enum ctx_state prev_state;
60b0d655
MR
969 unsigned int opcode = 0;
970 int status = -1;
1da177e4 971
c3fc5cd5 972 prev_state = exception_enter();
dc73e4c1
RB
973 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
974 SIGILL) == NOTIFY_STOP)
c3fc5cd5 975 goto out;
88547001 976
60b0d655 977 die_if_kernel("Reserved instruction in kernel code", regs);
1da177e4 978
60b0d655 979 if (unlikely(compute_return_epc(regs) < 0))
c3fc5cd5 980 goto out;
3c37026d 981
2a0b24f5
SH
982 if (get_isa16_mode(regs->cp0_epc)) {
983 unsigned short mmop[2] = { 0 };
60b0d655 984
2a0b24f5
SH
985 if (unlikely(get_user(mmop[0], epc) < 0))
986 status = SIGSEGV;
987 if (unlikely(get_user(mmop[1], epc) < 0))
988 status = SIGSEGV;
989 opcode = (mmop[0] << 16) | mmop[1];
60b0d655 990
2a0b24f5
SH
991 if (status < 0)
992 status = simulate_rdhwr_mm(regs, opcode);
993 } else {
994 if (unlikely(get_user(opcode, epc) < 0))
995 status = SIGSEGV;
60b0d655 996
2a0b24f5
SH
997 if (!cpu_has_llsc && status < 0)
998 status = simulate_llsc(regs, opcode);
999
1000 if (status < 0)
1001 status = simulate_rdhwr_normal(regs, opcode);
1002
1003 if (status < 0)
1004 status = simulate_sync(regs, opcode);
1005 }
60b0d655
MR
1006
1007 if (status < 0)
1008 status = SIGILL;
1009
1010 if (unlikely(status > 0)) {
1011 regs->cp0_epc = old_epc; /* Undo skip-over. */
2a0b24f5 1012 regs->regs[31] = old31;
60b0d655
MR
1013 force_sig(status, current);
1014 }
c3fc5cd5
RB
1015
1016out:
1017 exception_exit(prev_state);
1da177e4
LT
1018}
1019
d223a861
RB
1020/*
1021 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1022 * emulated more than some threshold number of instructions, force migration to
1023 * a "CPU" that has FP support.
1024 */
1025static void mt_ase_fp_affinity(void)
1026{
1027#ifdef CONFIG_MIPS_MT_FPAFF
1028 if (mt_fpemul_threshold > 0 &&
1029 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1030 /*
1031 * If there's no FPU present, or if the application has already
1032 * restricted the allowed set to exclude any CPUs with FPUs,
1033 * we'll skip the procedure.
1034 */
1035 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
1036 cpumask_t tmask;
1037
9cc12363
KK
1038 current->thread.user_cpus_allowed
1039 = current->cpus_allowed;
1040 cpus_and(tmask, current->cpus_allowed,
1041 mt_fpu_cpumask);
ed1bbdef 1042 set_cpus_allowed_ptr(current, &tmask);
293c5bd1 1043 set_thread_flag(TIF_FPUBOUND);
d223a861
RB
1044 }
1045 }
1046#endif /* CONFIG_MIPS_MT_FPAFF */
1047}
1048
69f3a7de
RB
1049/*
1050 * No lock; only written during early bootup by CPU 0.
1051 */
1052static RAW_NOTIFIER_HEAD(cu2_chain);
1053
1054int __ref register_cu2_notifier(struct notifier_block *nb)
1055{
1056 return raw_notifier_chain_register(&cu2_chain, nb);
1057}
1058
1059int cu2_notifier_call_chain(unsigned long val, void *v)
1060{
1061 return raw_notifier_call_chain(&cu2_chain, val, v);
1062}
1063
1064static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
70342287 1065 void *data)
69f3a7de
RB
1066{
1067 struct pt_regs *regs = data;
1068
83bee792 1069 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
69f3a7de 1070 "instruction", regs);
83bee792 1071 force_sig(SIGILL, current);
69f3a7de
RB
1072
1073 return NOTIFY_OK;
1074}
1075
1da177e4
LT
1076asmlinkage void do_cpu(struct pt_regs *regs)
1077{
c3fc5cd5 1078 enum ctx_state prev_state;
60b0d655 1079 unsigned int __user *epc;
2a0b24f5 1080 unsigned long old_epc, old31;
60b0d655 1081 unsigned int opcode;
1da177e4 1082 unsigned int cpid;
597ce172 1083 int status, err;
f9bb4cf3 1084 unsigned long __maybe_unused flags;
1da177e4 1085
c3fc5cd5 1086 prev_state = exception_enter();
1da177e4
LT
1087 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1088
83bee792
J
1089 if (cpid != 2)
1090 die_if_kernel("do_cpu invoked from kernel context!", regs);
1091
1da177e4
LT
1092 switch (cpid) {
1093 case 0:
60b0d655
MR
1094 epc = (unsigned int __user *)exception_epc(regs);
1095 old_epc = regs->cp0_epc;
2a0b24f5 1096 old31 = regs->regs[31];
60b0d655
MR
1097 opcode = 0;
1098 status = -1;
1da177e4 1099
60b0d655 1100 if (unlikely(compute_return_epc(regs) < 0))
c3fc5cd5 1101 goto out;
3c37026d 1102
2a0b24f5
SH
1103 if (get_isa16_mode(regs->cp0_epc)) {
1104 unsigned short mmop[2] = { 0 };
60b0d655 1105
2a0b24f5
SH
1106 if (unlikely(get_user(mmop[0], epc) < 0))
1107 status = SIGSEGV;
1108 if (unlikely(get_user(mmop[1], epc) < 0))
1109 status = SIGSEGV;
1110 opcode = (mmop[0] << 16) | mmop[1];
60b0d655 1111
2a0b24f5
SH
1112 if (status < 0)
1113 status = simulate_rdhwr_mm(regs, opcode);
1114 } else {
1115 if (unlikely(get_user(opcode, epc) < 0))
1116 status = SIGSEGV;
1117
1118 if (!cpu_has_llsc && status < 0)
1119 status = simulate_llsc(regs, opcode);
1120
1121 if (status < 0)
1122 status = simulate_rdhwr_normal(regs, opcode);
1123 }
60b0d655
MR
1124
1125 if (status < 0)
1126 status = SIGILL;
1127
1128 if (unlikely(status > 0)) {
1129 regs->cp0_epc = old_epc; /* Undo skip-over. */
2a0b24f5 1130 regs->regs[31] = old31;
60b0d655
MR
1131 force_sig(status, current);
1132 }
1133
c3fc5cd5 1134 goto out;
1da177e4 1135
051ff44a
MR
1136 case 3:
1137 /*
1138 * Old (MIPS I and MIPS II) processors will set this code
1139 * for COP1X opcode instructions that replaced the original
70342287 1140 * COP3 space. We don't limit COP1 space instructions in
051ff44a
MR
1141 * the emulator according to the CPU ISA, so we want to
1142 * treat COP1X instructions consistently regardless of which
70342287 1143 * code the CPU chose. Therefore we redirect this trap to
051ff44a
MR
1144 * the FP emulator too.
1145 *
1146 * Then some newer FPU-less processors use this code
1147 * erroneously too, so they are covered by this choice
1148 * as well.
1149 */
1150 if (raw_cpu_has_fpu)
1151 break;
1152 /* Fall through. */
1153
1da177e4 1154 case 1:
70342287 1155 if (used_math()) /* Using the FPU again. */
597ce172 1156 err = own_fpu(1);
70342287 1157 else { /* First time FPU user. */
597ce172 1158 err = init_fpu();
1da177e4
LT
1159 set_used_math();
1160 }
1161
597ce172 1162 if (!raw_cpu_has_fpu || err) {
e04582b7 1163 int sig;
515b029d 1164 void __user *fault_addr = NULL;
e04582b7 1165 sig = fpu_emulator_cop1Handler(regs,
515b029d
DD
1166 &current->thread.fpu,
1167 0, &fault_addr);
597ce172 1168 if (!process_fpemu_return(sig, fault_addr) && !err)
d223a861 1169 mt_ase_fp_affinity();
1da177e4
LT
1170 }
1171
c3fc5cd5 1172 goto out;
1da177e4
LT
1173
1174 case 2:
69f3a7de 1175 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
c3fc5cd5 1176 goto out;
1da177e4
LT
1177 }
1178
1179 force_sig(SIGILL, current);
c3fc5cd5
RB
1180
1181out:
1182 exception_exit(prev_state);
1da177e4
LT
1183}
1184
1185asmlinkage void do_mdmx(struct pt_regs *regs)
1186{
c3fc5cd5
RB
1187 enum ctx_state prev_state;
1188
1189 prev_state = exception_enter();
1da177e4 1190 force_sig(SIGILL, current);
c3fc5cd5 1191 exception_exit(prev_state);
1da177e4
LT
1192}
1193
8bc6d05b
DD
1194/*
1195 * Called with interrupts disabled.
1196 */
1da177e4
LT
1197asmlinkage void do_watch(struct pt_regs *regs)
1198{
c3fc5cd5 1199 enum ctx_state prev_state;
b67b2b70
DD
1200 u32 cause;
1201
c3fc5cd5 1202 prev_state = exception_enter();
1da177e4 1203 /*
b67b2b70
DD
1204 * Clear WP (bit 22) bit of cause register so we don't loop
1205 * forever.
1da177e4 1206 */
b67b2b70
DD
1207 cause = read_c0_cause();
1208 cause &= ~(1 << 22);
1209 write_c0_cause(cause);
1210
1211 /*
1212 * If the current thread has the watch registers loaded, save
1213 * their values and send SIGTRAP. Otherwise another thread
1214 * left the registers set, clear them and continue.
1215 */
1216 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1217 mips_read_watch_registers();
8bc6d05b 1218 local_irq_enable();
b67b2b70 1219 force_sig(SIGTRAP, current);
8bc6d05b 1220 } else {
b67b2b70 1221 mips_clear_watch_registers();
8bc6d05b
DD
1222 local_irq_enable();
1223 }
c3fc5cd5 1224 exception_exit(prev_state);
1da177e4
LT
1225}
1226
1227asmlinkage void do_mcheck(struct pt_regs *regs)
1228{
cac4bcbc
RB
1229 const int field = 2 * sizeof(unsigned long);
1230 int multi_match = regs->cp0_status & ST0_TS;
c3fc5cd5 1231 enum ctx_state prev_state;
cac4bcbc 1232
c3fc5cd5 1233 prev_state = exception_enter();
1da177e4 1234 show_regs(regs);
cac4bcbc
RB
1235
1236 if (multi_match) {
70342287 1237 printk("Index : %0x\n", read_c0_index());
cac4bcbc
RB
1238 printk("Pagemask: %0x\n", read_c0_pagemask());
1239 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1240 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1241 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1242 printk("\n");
1243 dump_tlb_all();
1244 }
1245
e1bb8289 1246 show_code((unsigned int __user *) regs->cp0_epc);
cac4bcbc 1247
1da177e4
LT
1248 /*
1249 * Some chips may have other causes of machine check (e.g. SB1
1250 * graduation timer)
1251 */
1252 panic("Caught Machine Check exception - %scaused by multiple "
1253 "matching entries in the TLB.",
cac4bcbc 1254 (multi_match) ? "" : "not ");
1da177e4
LT
1255}
1256
340ee4b9
RB
1257asmlinkage void do_mt(struct pt_regs *regs)
1258{
41c594ab
RB
1259 int subcode;
1260
41c594ab
RB
1261 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1262 >> VPECONTROL_EXCPT_SHIFT;
1263 switch (subcode) {
1264 case 0:
e35a5e35 1265 printk(KERN_DEBUG "Thread Underflow\n");
41c594ab
RB
1266 break;
1267 case 1:
e35a5e35 1268 printk(KERN_DEBUG "Thread Overflow\n");
41c594ab
RB
1269 break;
1270 case 2:
e35a5e35 1271 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
41c594ab
RB
1272 break;
1273 case 3:
e35a5e35 1274 printk(KERN_DEBUG "Gating Storage Exception\n");
41c594ab
RB
1275 break;
1276 case 4:
e35a5e35 1277 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
41c594ab
RB
1278 break;
1279 case 5:
f232c7e8 1280 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
41c594ab
RB
1281 break;
1282 default:
e35a5e35 1283 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
41c594ab
RB
1284 subcode);
1285 break;
1286 }
340ee4b9
RB
1287 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1288
1289 force_sig(SIGILL, current);
1290}
1291
1292
e50c0a8f
RB
1293asmlinkage void do_dsp(struct pt_regs *regs)
1294{
1295 if (cpu_has_dsp)
ab75dc02 1296 panic("Unexpected DSP exception");
e50c0a8f
RB
1297
1298 force_sig(SIGILL, current);
1299}
1300
1da177e4
LT
1301asmlinkage void do_reserved(struct pt_regs *regs)
1302{
1303 /*
70342287 1304 * Game over - no way to handle this if it ever occurs. Most probably
1da177e4
LT
1305 * caused by a new unknown cpu type or after another deadly
1306 * hard/software error.
1307 */
1308 show_regs(regs);
1309 panic("Caught reserved exception %ld - should not happen.",
1310 (regs->cp0_cause & 0x7f) >> 2);
1311}
1312
39b8d525
RB
1313static int __initdata l1parity = 1;
1314static int __init nol1parity(char *s)
1315{
1316 l1parity = 0;
1317 return 1;
1318}
1319__setup("nol1par", nol1parity);
1320static int __initdata l2parity = 1;
1321static int __init nol2parity(char *s)
1322{
1323 l2parity = 0;
1324 return 1;
1325}
1326__setup("nol2par", nol2parity);
1327
1da177e4
LT
1328/*
1329 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1330 * it different ways.
1331 */
1332static inline void parity_protection_init(void)
1333{
10cc3529 1334 switch (current_cpu_type()) {
1da177e4 1335 case CPU_24K:
98a41de9 1336 case CPU_34K:
39b8d525
RB
1337 case CPU_74K:
1338 case CPU_1004K:
708ac4b8 1339 case CPU_PROAPTIV:
39b8d525
RB
1340 {
1341#define ERRCTL_PE 0x80000000
1342#define ERRCTL_L2P 0x00800000
1343 unsigned long errctl;
1344 unsigned int l1parity_present, l2parity_present;
1345
1346 errctl = read_c0_ecc();
1347 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1348
1349 /* probe L1 parity support */
1350 write_c0_ecc(errctl | ERRCTL_PE);
1351 back_to_back_c0_hazard();
1352 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1353
1354 /* probe L2 parity support */
1355 write_c0_ecc(errctl|ERRCTL_L2P);
1356 back_to_back_c0_hazard();
1357 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1358
1359 if (l1parity_present && l2parity_present) {
1360 if (l1parity)
1361 errctl |= ERRCTL_PE;
1362 if (l1parity ^ l2parity)
1363 errctl |= ERRCTL_L2P;
1364 } else if (l1parity_present) {
1365 if (l1parity)
1366 errctl |= ERRCTL_PE;
1367 } else if (l2parity_present) {
1368 if (l2parity)
1369 errctl |= ERRCTL_L2P;
1370 } else {
1371 /* No parity available */
1372 }
1373
1374 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1375
1376 write_c0_ecc(errctl);
1377 back_to_back_c0_hazard();
1378 errctl = read_c0_ecc();
1379 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1380
1381 if (l1parity_present)
1382 printk(KERN_INFO "Cache parity protection %sabled\n",
1383 (errctl & ERRCTL_PE) ? "en" : "dis");
1384
1385 if (l2parity_present) {
1386 if (l1parity_present && l1parity)
1387 errctl ^= ERRCTL_L2P;
1388 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1389 (errctl & ERRCTL_L2P) ? "en" : "dis");
1390 }
1391 }
1392 break;
1393
1da177e4 1394 case CPU_5KC:
78d4803f 1395 case CPU_5KE:
2fa36399 1396 case CPU_LOONGSON1:
14f18b7f
RB
1397 write_c0_ecc(0x80000000);
1398 back_to_back_c0_hazard();
1399 /* Set the PE bit (bit 31) in the c0_errctl register. */
1400 printk(KERN_INFO "Cache parity protection %sabled\n",
1401 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1da177e4
LT
1402 break;
1403 case CPU_20KC:
1404 case CPU_25KF:
1405 /* Clear the DE bit (bit 16) in the c0_status register. */
1406 printk(KERN_INFO "Enable cache parity protection for "
1407 "MIPS 20KC/25KF CPUs.\n");
1408 clear_c0_status(ST0_DE);
1409 break;
1410 default:
1411 break;
1412 }
1413}
1414
1415asmlinkage void cache_parity_error(void)
1416{
1417 const int field = 2 * sizeof(unsigned long);
1418 unsigned int reg_val;
1419
1420 /* For the moment, report the problem and hang. */
1421 printk("Cache error exception:\n");
1422 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1423 reg_val = read_c0_cacheerr();
1424 printk("c0_cacheerr == %08x\n", reg_val);
1425
1426 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1427 reg_val & (1<<30) ? "secondary" : "primary",
1428 reg_val & (1<<31) ? "data" : "insn");
6de20451
LY
1429 if (cpu_has_mips_r2 &&
1430 ((current_cpu_data.processor_id && 0xff0000) == PRID_COMP_MIPS)) {
1431 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1432 reg_val & (1<<29) ? "ED " : "",
1433 reg_val & (1<<28) ? "ET " : "",
1434 reg_val & (1<<27) ? "ES " : "",
1435 reg_val & (1<<26) ? "EE " : "",
1436 reg_val & (1<<25) ? "EB " : "",
1437 reg_val & (1<<24) ? "EI " : "",
1438 reg_val & (1<<23) ? "E1 " : "",
1439 reg_val & (1<<22) ? "E0 " : "");
1440 } else {
1441 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1442 reg_val & (1<<29) ? "ED " : "",
1443 reg_val & (1<<28) ? "ET " : "",
1444 reg_val & (1<<26) ? "EE " : "",
1445 reg_val & (1<<25) ? "EB " : "",
1446 reg_val & (1<<24) ? "EI " : "",
1447 reg_val & (1<<23) ? "E1 " : "",
1448 reg_val & (1<<22) ? "E0 " : "");
1449 }
1da177e4
LT
1450 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1451
ec917c2c 1452#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1da177e4
LT
1453 if (reg_val & (1<<22))
1454 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1455
1456 if (reg_val & (1<<23))
1457 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1458#endif
1459
1460 panic("Can't handle the cache error!");
1461}
1462
1463/*
1464 * SDBBP EJTAG debug exception handler.
1465 * We skip the instruction and return to the next instruction.
1466 */
1467void ejtag_exception_handler(struct pt_regs *regs)
1468{
1469 const int field = 2 * sizeof(unsigned long);
2a0b24f5 1470 unsigned long depc, old_epc, old_ra;
1da177e4
LT
1471 unsigned int debug;
1472
70ae6126 1473 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1da177e4
LT
1474 depc = read_c0_depc();
1475 debug = read_c0_debug();
70ae6126 1476 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1da177e4
LT
1477 if (debug & 0x80000000) {
1478 /*
1479 * In branch delay slot.
1480 * We cheat a little bit here and use EPC to calculate the
1481 * debug return address (DEPC). EPC is restored after the
1482 * calculation.
1483 */
1484 old_epc = regs->cp0_epc;
2a0b24f5 1485 old_ra = regs->regs[31];
1da177e4 1486 regs->cp0_epc = depc;
2a0b24f5 1487 compute_return_epc(regs);
1da177e4
LT
1488 depc = regs->cp0_epc;
1489 regs->cp0_epc = old_epc;
2a0b24f5 1490 regs->regs[31] = old_ra;
1da177e4
LT
1491 } else
1492 depc += 4;
1493 write_c0_depc(depc);
1494
1495#if 0
70ae6126 1496 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1da177e4
LT
1497 write_c0_debug(debug | 0x100);
1498#endif
1499}
1500
1501/*
1502 * NMI exception handler.
34bd92e2 1503 * No lock; only written during early bootup by CPU 0.
1da177e4 1504 */
34bd92e2
KC
1505static RAW_NOTIFIER_HEAD(nmi_chain);
1506
1507int register_nmi_notifier(struct notifier_block *nb)
1508{
1509 return raw_notifier_chain_register(&nmi_chain, nb);
1510}
1511
ff2d8b19 1512void __noreturn nmi_exception_handler(struct pt_regs *regs)
1da177e4 1513{
83e4da1e
LY
1514 char str[100];
1515
34bd92e2 1516 raw_notifier_call_chain(&nmi_chain, 0, regs);
41c594ab 1517 bust_spinlocks(1);
83e4da1e
LY
1518 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1519 smp_processor_id(), regs->cp0_epc);
1520 regs->cp0_epc = read_c0_errorepc();
1521 die(str, regs);
1da177e4
LT
1522}
1523
e01402b1
RB
1524#define VECTORSPACING 0x100 /* for EI/VI mode */
1525
1526unsigned long ebase;
1da177e4 1527unsigned long exception_handlers[32];
e01402b1 1528unsigned long vi_handlers[64];
1da177e4 1529
2d1b6e95 1530void __init *set_except_vector(int n, void *addr)
1da177e4
LT
1531{
1532 unsigned long handler = (unsigned long) addr;
b22d1b6a 1533 unsigned long old_handler;
1da177e4 1534
2a0b24f5
SH
1535#ifdef CONFIG_CPU_MICROMIPS
1536 /*
1537 * Only the TLB handlers are cache aligned with an even
1538 * address. All other handlers are on an odd address and
1539 * require no modification. Otherwise, MIPS32 mode will
1540 * be entered when handling any TLB exceptions. That
1541 * would be bad...since we must stay in microMIPS mode.
1542 */
1543 if (!(handler & 0x1))
1544 handler |= 1;
1545#endif
b22d1b6a 1546 old_handler = xchg(&exception_handlers[n], handler);
1da177e4 1547
1da177e4 1548 if (n == 0 && cpu_has_divec) {
2a0b24f5
SH
1549#ifdef CONFIG_CPU_MICROMIPS
1550 unsigned long jump_mask = ~((1 << 27) - 1);
1551#else
92bbe1b9 1552 unsigned long jump_mask = ~((1 << 28) - 1);
2a0b24f5 1553#endif
92bbe1b9
FF
1554 u32 *buf = (u32 *)(ebase + 0x200);
1555 unsigned int k0 = 26;
1556 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1557 uasm_i_j(&buf, handler & ~jump_mask);
1558 uasm_i_nop(&buf);
1559 } else {
1560 UASM_i_LA(&buf, k0, handler);
1561 uasm_i_jr(&buf, k0);
1562 uasm_i_nop(&buf);
1563 }
1564 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
e01402b1
RB
1565 }
1566 return (void *)old_handler;
1567}
1568
86a1708a 1569static void do_default_vi(void)
6ba07e59
AN
1570{
1571 show_regs(get_irq_regs());
1572 panic("Caught unexpected vectored interrupt.");
1573}
1574
ef300e42 1575static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
e01402b1
RB
1576{
1577 unsigned long handler;
1578 unsigned long old_handler = vi_handlers[n];
f6771dbb 1579 int srssets = current_cpu_data.srsets;
2a0b24f5 1580 u16 *h;
e01402b1
RB
1581 unsigned char *b;
1582
b72b7092 1583 BUG_ON(!cpu_has_veic && !cpu_has_vint);
e01402b1
RB
1584
1585 if (addr == NULL) {
1586 handler = (unsigned long) do_default_vi;
1587 srs = 0;
41c594ab 1588 } else
e01402b1 1589 handler = (unsigned long) addr;
2a0b24f5 1590 vi_handlers[n] = handler;
e01402b1
RB
1591
1592 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1593
f6771dbb 1594 if (srs >= srssets)
e01402b1
RB
1595 panic("Shadow register set %d not supported", srs);
1596
1597 if (cpu_has_veic) {
1598 if (board_bind_eic_interrupt)
49a89efb 1599 board_bind_eic_interrupt(n, srs);
41c594ab 1600 } else if (cpu_has_vint) {
e01402b1 1601 /* SRSMap is only defined if shadow sets are implemented */
f6771dbb 1602 if (srssets > 1)
49a89efb 1603 change_c0_srsmap(0xf << n*4, srs << n*4);
e01402b1
RB
1604 }
1605
1606 if (srs == 0) {
1607 /*
1608 * If no shadow set is selected then use the default handler
2a0b24f5 1609 * that does normal register saving and standard interrupt exit
e01402b1 1610 */
e01402b1
RB
1611 extern char except_vec_vi, except_vec_vi_lui;
1612 extern char except_vec_vi_ori, except_vec_vi_end;
c65a5480 1613 extern char rollback_except_vec_vi;
f94d9a8e 1614 char *vec_start = using_rollback_handler() ?
c65a5480 1615 &rollback_except_vec_vi : &except_vec_vi;
41c594ab
RB
1616#ifdef CONFIG_MIPS_MT_SMTC
1617 /*
1618 * We need to provide the SMTC vectored interrupt handler
1619 * not only with the address of the handler, but with the
1620 * Status.IM bit to be masked before going there.
1621 */
1622 extern char except_vec_vi_mori;
2a0b24f5
SH
1623#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1624 const int mori_offset = &except_vec_vi_mori - vec_start + 2;
1625#else
c65a5480 1626 const int mori_offset = &except_vec_vi_mori - vec_start;
2a0b24f5 1627#endif
41c594ab 1628#endif /* CONFIG_MIPS_MT_SMTC */
2a0b24f5
SH
1629#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1630 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1631 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1632#else
c65a5480
AN
1633 const int lui_offset = &except_vec_vi_lui - vec_start;
1634 const int ori_offset = &except_vec_vi_ori - vec_start;
2a0b24f5
SH
1635#endif
1636 const int handler_len = &except_vec_vi_end - vec_start;
e01402b1
RB
1637
1638 if (handler_len > VECTORSPACING) {
1639 /*
1640 * Sigh... panicing won't help as the console
1641 * is probably not configured :(
1642 */
49a89efb 1643 panic("VECTORSPACING too small");
e01402b1
RB
1644 }
1645
2a0b24f5
SH
1646 set_handler(((unsigned long)b - ebase), vec_start,
1647#ifdef CONFIG_CPU_MICROMIPS
1648 (handler_len - 1));
1649#else
1650 handler_len);
1651#endif
41c594ab 1652#ifdef CONFIG_MIPS_MT_SMTC
8e8a52ed
RB
1653 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */
1654
2a0b24f5
SH
1655 h = (u16 *)(b + mori_offset);
1656 *h = (0x100 << n);
41c594ab 1657#endif /* CONFIG_MIPS_MT_SMTC */
2a0b24f5
SH
1658 h = (u16 *)(b + lui_offset);
1659 *h = (handler >> 16) & 0xffff;
1660 h = (u16 *)(b + ori_offset);
1661 *h = (handler & 0xffff);
e0cee3ee
TB
1662 local_flush_icache_range((unsigned long)b,
1663 (unsigned long)(b+handler_len));
e01402b1
RB
1664 }
1665 else {
1666 /*
2a0b24f5
SH
1667 * In other cases jump directly to the interrupt handler. It
1668 * is the handler's responsibility to save registers if required
1669 * (eg hi/lo) and return from the exception using "eret".
e01402b1 1670 */
2a0b24f5
SH
1671 u32 insn;
1672
1673 h = (u16 *)b;
1674 /* j handler */
1675#ifdef CONFIG_CPU_MICROMIPS
1676 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1677#else
1678 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1679#endif
1680 h[0] = (insn >> 16) & 0xffff;
1681 h[1] = insn & 0xffff;
1682 h[2] = 0;
1683 h[3] = 0;
e0cee3ee
TB
1684 local_flush_icache_range((unsigned long)b,
1685 (unsigned long)(b+8));
1da177e4 1686 }
e01402b1 1687
1da177e4
LT
1688 return (void *)old_handler;
1689}
1690
ef300e42 1691void *set_vi_handler(int n, vi_handler_t addr)
e01402b1 1692{
ff3eab2a 1693 return set_vi_srs_handler(n, addr, 0);
e01402b1 1694}
f41ae0b2 1695
1da177e4
LT
1696extern void tlb_init(void);
1697
42f77542
RB
1698/*
1699 * Timer interrupt
1700 */
1701int cp0_compare_irq;
68b6352c 1702EXPORT_SYMBOL_GPL(cp0_compare_irq);
010c108d 1703int cp0_compare_irq_shift;
42f77542
RB
1704
1705/*
1706 * Performance counter IRQ or -1 if shared with timer
1707 */
1708int cp0_perfcount_irq;
1709EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1710
078a55fc 1711static int noulri;
bdc94eb4
CD
1712
1713static int __init ulri_disable(char *s)
1714{
1715 pr_info("Disabling ulri\n");
1716 noulri = 1;
1717
1718 return 1;
1719}
1720__setup("noulri", ulri_disable);
1721
078a55fc 1722void per_cpu_trap_init(bool is_boot_cpu)
1da177e4
LT
1723{
1724 unsigned int cpu = smp_processor_id();
1725 unsigned int status_set = ST0_CU0;
18d693b3 1726 unsigned int hwrena = cpu_hwrena_impl_bits;
41c594ab
RB
1727#ifdef CONFIG_MIPS_MT_SMTC
1728 int secondaryTC = 0;
1729 int bootTC = (cpu == 0);
1730
1731 /*
1732 * Only do per_cpu_trap_init() for first TC of Each VPE.
1733 * Note that this hack assumes that the SMTC init code
1734 * assigns TCs consecutively and in ascending order.
1735 */
1736
1737 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1738 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1739 secondaryTC = 1;
1740#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
1741
1742 /*
1743 * Disable coprocessors and select 32-bit or 64-bit addressing
1744 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1745 * flag that some firmware may have left set and the TS bit (for
1746 * IP27). Set XX for ISA IV code to work.
1747 */
875d43e7 1748#ifdef CONFIG_64BIT
1da177e4
LT
1749 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1750#endif
adb37892 1751 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1da177e4 1752 status_set |= ST0_XX;
bbaf238b
CD
1753 if (cpu_has_dsp)
1754 status_set |= ST0_MX;
1755
b38c7399 1756 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1da177e4
LT
1757 status_set);
1758
18d693b3
KC
1759 if (cpu_has_mips_r2)
1760 hwrena |= 0x0000000f;
a3692020 1761
18d693b3
KC
1762 if (!noulri && cpu_has_userlocal)
1763 hwrena |= (1 << 29);
a3692020 1764
18d693b3
KC
1765 if (hwrena)
1766 write_c0_hwrena(hwrena);
e01402b1 1767
41c594ab
RB
1768#ifdef CONFIG_MIPS_MT_SMTC
1769 if (!secondaryTC) {
1770#endif /* CONFIG_MIPS_MT_SMTC */
1771
e01402b1 1772 if (cpu_has_veic || cpu_has_vint) {
9fb4c2b9 1773 unsigned long sr = set_c0_status(ST0_BEV);
49a89efb 1774 write_c0_ebase(ebase);
9fb4c2b9 1775 write_c0_status(sr);
e01402b1 1776 /* Setting vector spacing enables EI/VI mode */
49a89efb 1777 change_c0_intctl(0x3e0, VECTORSPACING);
e01402b1 1778 }
d03d0a57
RB
1779 if (cpu_has_divec) {
1780 if (cpu_has_mipsmt) {
1781 unsigned int vpflags = dvpe();
1782 set_c0_cause(CAUSEF_IV);
1783 evpe(vpflags);
1784 } else
1785 set_c0_cause(CAUSEF_IV);
1786 }
3b1d4ed5
RB
1787
1788 /*
1789 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1790 *
1791 * o read IntCtl.IPTI to determine the timer interrupt
1792 * o read IntCtl.IPPCI to determine the performance counter interrupt
1793 */
1794 if (cpu_has_mips_r2) {
010c108d
DV
1795 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1796 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1797 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
c3e838a2 1798 if (cp0_perfcount_irq == cp0_compare_irq)
3b1d4ed5 1799 cp0_perfcount_irq = -1;
c3e838a2
CD
1800 } else {
1801 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
c6a4ebb9 1802 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
c3e838a2 1803 cp0_perfcount_irq = -1;
3b1d4ed5
RB
1804 }
1805
41c594ab
RB
1806#ifdef CONFIG_MIPS_MT_SMTC
1807 }
1808#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4 1809
48c4ac97
DD
1810 if (!cpu_data[cpu].asid_cache)
1811 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1da177e4
LT
1812
1813 atomic_inc(&init_mm.mm_count);
1814 current->active_mm = &init_mm;
1815 BUG_ON(current->mm);
1816 enter_lazy_tlb(&init_mm, current);
1817
41c594ab
RB
1818#ifdef CONFIG_MIPS_MT_SMTC
1819 if (bootTC) {
1820#endif /* CONFIG_MIPS_MT_SMTC */
6650df3c
DD
1821 /* Boot CPU's cache setup in setup_arch(). */
1822 if (!is_boot_cpu)
1823 cpu_cache_init();
41c594ab
RB
1824 tlb_init();
1825#ifdef CONFIG_MIPS_MT_SMTC
6a05888d
RB
1826 } else if (!secondaryTC) {
1827 /*
1828 * First TC in non-boot VPE must do subset of tlb_init()
1829 * for MMU countrol registers.
1830 */
1831 write_c0_pagemask(PM_DEFAULT_MASK);
1832 write_c0_wired(0);
41c594ab
RB
1833 }
1834#endif /* CONFIG_MIPS_MT_SMTC */
3d8bfdd0 1835 TLBMISS_HANDLER_SETUP();
1da177e4
LT
1836}
1837
e01402b1 1838/* Install CPU exception handler */
078a55fc 1839void set_handler(unsigned long offset, void *addr, unsigned long size)
e01402b1 1840{
2a0b24f5
SH
1841#ifdef CONFIG_CPU_MICROMIPS
1842 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
1843#else
e01402b1 1844 memcpy((void *)(ebase + offset), addr, size);
2a0b24f5 1845#endif
e0cee3ee 1846 local_flush_icache_range(ebase + offset, ebase + offset + size);
e01402b1
RB
1847}
1848
078a55fc 1849static char panic_null_cerr[] =
641e97f3
RB
1850 "Trying to set NULL cache error exception handler";
1851
42fe7ee3
RB
1852/*
1853 * Install uncached CPU exception handler.
1854 * This is suitable only for the cache error exception which is the only
1855 * exception handler that is being run uncached.
1856 */
078a55fc 1857void set_uncached_handler(unsigned long offset, void *addr,
234fcd14 1858 unsigned long size)
e01402b1 1859{
4f81b01a 1860 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
e01402b1 1861
641e97f3
RB
1862 if (!addr)
1863 panic(panic_null_cerr);
1864
e01402b1
RB
1865 memcpy((void *)(uncached_ebase + offset), addr, size);
1866}
1867
5b10496b
AN
1868static int __initdata rdhwr_noopt;
1869static int __init set_rdhwr_noopt(char *str)
1870{
1871 rdhwr_noopt = 1;
1872 return 1;
1873}
1874
1875__setup("rdhwr_noopt", set_rdhwr_noopt);
1876
1da177e4
LT
1877void __init trap_init(void)
1878{
2a0b24f5 1879 extern char except_vec3_generic;
1da177e4 1880 extern char except_vec4;
2a0b24f5 1881 extern char except_vec3_r4000;
1da177e4 1882 unsigned long i;
c65a5480
AN
1883
1884 check_wait();
1da177e4 1885
88547001
JW
1886#if defined(CONFIG_KGDB)
1887 if (kgdb_early_setup)
70342287 1888 return; /* Already done */
88547001
JW
1889#endif
1890
9fb4c2b9
CD
1891 if (cpu_has_veic || cpu_has_vint) {
1892 unsigned long size = 0x200 + VECTORSPACING*64;
1893 ebase = (unsigned long)
1894 __alloc_bootmem(size, 1 << fls(size), 0);
1895 } else {
9843b030
SL
1896#ifdef CONFIG_KVM_GUEST
1897#define KVM_GUEST_KSEG0 0x40000000
1898 ebase = KVM_GUEST_KSEG0;
1899#else
1900 ebase = CKSEG0;
1901#endif
566f74f6
DD
1902 if (cpu_has_mips_r2)
1903 ebase += (read_c0_ebase() & 0x3ffff000);
1904 }
e01402b1 1905
c6213c6c
SH
1906 if (cpu_has_mmips) {
1907 unsigned int config3 = read_c0_config3();
1908
1909 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
1910 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
1911 else
1912 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
1913 }
1914
6fb97eff
KC
1915 if (board_ebase_setup)
1916 board_ebase_setup();
6650df3c 1917 per_cpu_trap_init(true);
1da177e4
LT
1918
1919 /*
1920 * Copy the generic exception handlers to their final destination.
1921 * This will be overriden later as suitable for a particular
1922 * configuration.
1923 */
e01402b1 1924 set_handler(0x180, &except_vec3_generic, 0x80);
1da177e4
LT
1925
1926 /*
1927 * Setup default vectors
1928 */
1929 for (i = 0; i <= 31; i++)
1930 set_except_vector(i, handle_reserved);
1931
1932 /*
1933 * Copy the EJTAG debug exception vector handler code to it's final
1934 * destination.
1935 */
e01402b1 1936 if (cpu_has_ejtag && board_ejtag_handler_setup)
49a89efb 1937 board_ejtag_handler_setup();
1da177e4
LT
1938
1939 /*
1940 * Only some CPUs have the watch exceptions.
1941 */
1942 if (cpu_has_watch)
1943 set_except_vector(23, handle_watch);
1944
1945 /*
e01402b1 1946 * Initialise interrupt handlers
1da177e4 1947 */
e01402b1
RB
1948 if (cpu_has_veic || cpu_has_vint) {
1949 int nvec = cpu_has_veic ? 64 : 8;
1950 for (i = 0; i < nvec; i++)
ff3eab2a 1951 set_vi_handler(i, NULL);
e01402b1
RB
1952 }
1953 else if (cpu_has_divec)
1954 set_handler(0x200, &except_vec4, 0x8);
1da177e4
LT
1955
1956 /*
1957 * Some CPUs can enable/disable for cache parity detection, but does
1958 * it different ways.
1959 */
1960 parity_protection_init();
1961
1962 /*
1963 * The Data Bus Errors / Instruction Bus Errors are signaled
1964 * by external hardware. Therefore these two exceptions
1965 * may have board specific handlers.
1966 */
1967 if (board_be_init)
1968 board_be_init();
1969
f94d9a8e
RB
1970 set_except_vector(0, using_rollback_handler() ? rollback_handle_int
1971 : handle_int);
1da177e4
LT
1972 set_except_vector(1, handle_tlbm);
1973 set_except_vector(2, handle_tlbl);
1974 set_except_vector(3, handle_tlbs);
1975
1976 set_except_vector(4, handle_adel);
1977 set_except_vector(5, handle_ades);
1978
1979 set_except_vector(6, handle_ibe);
1980 set_except_vector(7, handle_dbe);
1981
1982 set_except_vector(8, handle_sys);
1983 set_except_vector(9, handle_bp);
5b10496b
AN
1984 set_except_vector(10, rdhwr_noopt ? handle_ri :
1985 (cpu_has_vtag_icache ?
1986 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1da177e4
LT
1987 set_except_vector(11, handle_cpu);
1988 set_except_vector(12, handle_ov);
1989 set_except_vector(13, handle_tr);
1da177e4 1990
10cc3529
RB
1991 if (current_cpu_type() == CPU_R6000 ||
1992 current_cpu_type() == CPU_R6000A) {
1da177e4
LT
1993 /*
1994 * The R6000 is the only R-series CPU that features a machine
1995 * check exception (similar to the R4000 cache error) and
1996 * unaligned ldc1/sdc1 exception. The handlers have not been
70342287 1997 * written yet. Well, anyway there is no R6000 machine on the
1da177e4
LT
1998 * current list of targets for Linux/MIPS.
1999 * (Duh, crap, there is someone with a triple R6k machine)
2000 */
2001 //set_except_vector(14, handle_mc);
2002 //set_except_vector(15, handle_ndc);
2003 }
2004
e01402b1
RB
2005
2006 if (board_nmi_handler_setup)
2007 board_nmi_handler_setup();
2008
e50c0a8f
RB
2009 if (cpu_has_fpu && !cpu_has_nofpuex)
2010 set_except_vector(15, handle_fpe);
2011
2012 set_except_vector(22, handle_mdmx);
2013
2014 if (cpu_has_mcheck)
2015 set_except_vector(24, handle_mcheck);
2016
340ee4b9
RB
2017 if (cpu_has_mipsmt)
2018 set_except_vector(25, handle_mt);
2019
acaec427 2020 set_except_vector(26, handle_dsp);
e50c0a8f 2021
fcbf1dfd
DD
2022 if (board_cache_error_setup)
2023 board_cache_error_setup();
2024
e50c0a8f
RB
2025 if (cpu_has_vce)
2026 /* Special exception: R4[04]00 uses also the divec space. */
2a0b24f5 2027 set_handler(0x180, &except_vec3_r4000, 0x100);
e50c0a8f 2028 else if (cpu_has_4kex)
2a0b24f5 2029 set_handler(0x180, &except_vec3_generic, 0x80);
e50c0a8f 2030 else
2a0b24f5 2031 set_handler(0x080, &except_vec3_generic, 0x80);
e50c0a8f 2032
e0cee3ee 2033 local_flush_icache_range(ebase, ebase + 0x400);
0510617b
TB
2034
2035 sort_extable(__start___dbe_table, __stop___dbe_table);
69f3a7de 2036
4483b159 2037 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
1da177e4 2038}