]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - arch/mips/kernel/traps.c
Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[mirror_ubuntu-kernels.git] / arch / mips / kernel / traps.c
CommitLineData
1da177e4
LT
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
36ccf1c0 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
1da177e4
LT
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
60b0d655 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
2a0b24f5 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
b08a9c95 13 * Copyright (C) 2014, Imagination Technologies Ltd.
1da177e4 14 */
ed2d72c1 15#include <linux/bitops.h>
8e8a52ed 16#include <linux/bug.h>
60b0d655 17#include <linux/compiler.h>
c3fc5cd5 18#include <linux/context_tracking.h>
ae4ce454 19#include <linux/cpu_pm.h>
7aa1c8f4 20#include <linux/kexec.h>
1da177e4 21#include <linux/init.h>
8742cd23 22#include <linux/kernel.h>
f9ded569 23#include <linux/module.h>
9f3b8081 24#include <linux/extable.h>
1da177e4 25#include <linux/mm.h>
68e21be2 26#include <linux/sched/mm.h>
b17b0153 27#include <linux/sched/debug.h>
1da177e4 28#include <linux/smp.h>
1da177e4
LT
29#include <linux/spinlock.h>
30#include <linux/kallsyms.h>
bcec54bf 31#include <linux/memblock.h>
d4fd1989 32#include <linux/interrupt.h>
39b8d525 33#include <linux/ptrace.h>
88547001
JW
34#include <linux/kgdb.h>
35#include <linux/kdebug.h>
c1bf207d 36#include <linux/kprobes.h>
69f3a7de 37#include <linux/notifier.h>
5dd11d5d 38#include <linux/kdb.h>
ca4d3e67 39#include <linux/irq.h>
7f788d2d 40#include <linux/perf_event.h>
1da177e4 41
a13c9962 42#include <asm/addrspace.h>
1da177e4
LT
43#include <asm/bootinfo.h>
44#include <asm/branch.h>
45#include <asm/break.h>
69f3a7de 46#include <asm/cop2.h>
1da177e4 47#include <asm/cpu.h>
69f24d17 48#include <asm/cpu-type.h>
e50c0a8f 49#include <asm/dsp.h>
1da177e4 50#include <asm/fpu.h>
ba3049ed 51#include <asm/fpu_emulator.h>
bdc92d74 52#include <asm/idle.h>
b6d18e77 53#include <asm/isa-rev.h>
e83f7e02 54#include <asm/mips-cps.h>
b0a668fb 55#include <asm/mips-r2-to-r6-emul.h>
340ee4b9
RB
56#include <asm/mipsregs.h>
57#include <asm/mipsmtregs.h>
1da177e4 58#include <asm/module.h>
1db1af84 59#include <asm/msa.h>
1da177e4
LT
60#include <asm/pgtable.h>
61#include <asm/ptrace.h>
62#include <asm/sections.h>
3b143cca 63#include <asm/siginfo.h>
1da177e4
LT
64#include <asm/tlbdebug.h>
65#include <asm/traps.h>
7c0f6ba6 66#include <linux/uaccess.h>
b67b2b70 67#include <asm/watch.h>
1da177e4 68#include <asm/mmu_context.h>
1da177e4 69#include <asm/types.h>
1df0f0ff 70#include <asm/stacktrace.h>
4bcb4ad6 71#include <asm/tlbex.h>
92bbe1b9 72#include <asm/uasm.h>
1da177e4 73
c65a5480 74extern void check_wait(void);
c65a5480 75extern asmlinkage void rollback_handle_int(void);
e4ac58af 76extern asmlinkage void handle_int(void);
1da177e4
LT
77extern asmlinkage void handle_adel(void);
78extern asmlinkage void handle_ades(void);
79extern asmlinkage void handle_ibe(void);
80extern asmlinkage void handle_dbe(void);
81extern asmlinkage void handle_sys(void);
82extern asmlinkage void handle_bp(void);
83extern asmlinkage void handle_ri(void);
5a341331 84extern asmlinkage void handle_ri_rdhwr_tlbp(void);
5b10496b 85extern asmlinkage void handle_ri_rdhwr(void);
1da177e4
LT
86extern asmlinkage void handle_cpu(void);
87extern asmlinkage void handle_ov(void);
88extern asmlinkage void handle_tr(void);
2bcb3fbc 89extern asmlinkage void handle_msa_fpe(void);
1da177e4 90extern asmlinkage void handle_fpe(void);
75b5b5e0 91extern asmlinkage void handle_ftlb(void);
1db1af84 92extern asmlinkage void handle_msa(void);
1da177e4
LT
93extern asmlinkage void handle_mdmx(void);
94extern asmlinkage void handle_watch(void);
340ee4b9 95extern asmlinkage void handle_mt(void);
e50c0a8f 96extern asmlinkage void handle_dsp(void);
1da177e4
LT
97extern asmlinkage void handle_mcheck(void);
98extern asmlinkage void handle_reserved(void);
5890f70f 99extern void tlb_do_page_fault_0(void);
1da177e4 100
1da177e4
LT
101void (*board_be_init)(void);
102int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
e01402b1
RB
103void (*board_nmi_handler_setup)(void);
104void (*board_ejtag_handler_setup)(void);
105void (*board_bind_eic_interrupt)(int irq, int regset);
6fb97eff 106void (*board_ebase_setup)(void);
078a55fc 107void(*board_cache_error_setup)(void);
1da177e4 108
4d157d5e 109static void show_raw_backtrace(unsigned long reg29)
e889d78f 110{
39b8d525 111 unsigned long *sp = (unsigned long *)(reg29 & ~3);
e889d78f
AN
112 unsigned long addr;
113
114 printk("Call Trace:");
115#ifdef CONFIG_KALLSYMS
116 printk("\n");
117#endif
10220c88
TB
118 while (!kstack_end(sp)) {
119 unsigned long __user *p =
120 (unsigned long __user *)(unsigned long)sp++;
121 if (__get_user(addr, p)) {
122 printk(" (Bad stack address)");
123 break;
39b8d525 124 }
10220c88
TB
125 if (__kernel_text_address(addr))
126 print_ip_sym(addr);
e889d78f 127 }
10220c88 128 printk("\n");
e889d78f
AN
129}
130
f66686f7 131#ifdef CONFIG_KALLSYMS
1df0f0ff 132int raw_show_trace;
f66686f7
AN
133static int __init set_raw_show_trace(char *str)
134{
135 raw_show_trace = 1;
136 return 1;
137}
138__setup("raw_show_trace", set_raw_show_trace);
1df0f0ff 139#endif
4d157d5e 140
eae23f2c 141static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
f66686f7 142{
4d157d5e
FBH
143 unsigned long sp = regs->regs[29];
144 unsigned long ra = regs->regs[31];
f66686f7 145 unsigned long pc = regs->cp0_epc;
f66686f7 146
e909be82
VW
147 if (!task)
148 task = current;
149
81a76d71 150 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
87151ae3 151 show_raw_backtrace(sp);
f66686f7
AN
152 return;
153 }
154 printk("Call Trace:\n");
4d157d5e 155 do {
87151ae3 156 print_ip_sym(pc);
1924600c 157 pc = unwind_stack(task, &sp, pc, &ra);
4d157d5e 158 } while (pc);
bcf084de 159 pr_cont("\n");
f66686f7 160}
f66686f7 161
1da177e4
LT
162/*
163 * This routine abuses get_user()/put_user() to reference pointers
164 * with at least a bit of error checking ...
165 */
eae23f2c
RB
166static void show_stacktrace(struct task_struct *task,
167 const struct pt_regs *regs)
1da177e4
LT
168{
169 const int field = 2 * sizeof(unsigned long);
170 long stackdata;
171 int i;
5e0373b8 172 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
1da177e4
LT
173
174 printk("Stack :");
175 i = 0;
176 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
fe4e09e7
MR
177 if (i && ((i % (64 / field)) == 0)) {
178 pr_cont("\n");
179 printk(" ");
180 }
1da177e4 181 if (i > 39) {
fe4e09e7 182 pr_cont(" ...");
1da177e4
LT
183 break;
184 }
185
186 if (__get_user(stackdata, sp++)) {
fe4e09e7 187 pr_cont(" (Bad stack address)");
1da177e4
LT
188 break;
189 }
190
fe4e09e7 191 pr_cont(" %0*lx", field, stackdata);
1da177e4
LT
192 i++;
193 }
fe4e09e7 194 pr_cont("\n");
87151ae3 195 show_backtrace(task, regs);
f66686f7
AN
196}
197
f66686f7
AN
198void show_stack(struct task_struct *task, unsigned long *sp)
199{
200 struct pt_regs regs;
1e77863a 201 mm_segment_t old_fs = get_fs();
85423636
JH
202
203 regs.cp0_status = KSU_KERNEL;
f66686f7
AN
204 if (sp) {
205 regs.regs[29] = (unsigned long)sp;
206 regs.regs[31] = 0;
207 regs.cp0_epc = 0;
208 } else {
209 if (task && task != current) {
210 regs.regs[29] = task->thread.reg29;
211 regs.regs[31] = 0;
212 regs.cp0_epc = task->thread.reg31;
5dd11d5d
JW
213#ifdef CONFIG_KGDB_KDB
214 } else if (atomic_read(&kgdb_active) != -1 &&
215 kdb_current_regs) {
216 memcpy(&regs, kdb_current_regs, sizeof(regs));
217#endif /* CONFIG_KGDB_KDB */
f66686f7
AN
218 } else {
219 prepare_frametrace(&regs);
220 }
221 }
1e77863a
JH
222 /*
223 * show_stack() deals exclusively with kernel mode, so be sure to access
224 * the stack in the kernel (not user) address space.
225 */
226 set_fs(KERNEL_DS);
f66686f7 227 show_stacktrace(task, &regs);
1e77863a 228 set_fs(old_fs);
1da177e4
LT
229}
230
e1bb8289 231static void show_code(unsigned int __user *pc)
1da177e4
LT
232{
233 long i;
39b8d525 234 unsigned short __user *pc16 = NULL;
1da177e4 235
41000c58 236 printk("Code:");
1da177e4 237
39b8d525
RB
238 if ((unsigned long)pc & 1)
239 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
1da177e4
LT
240 for(i = -3 ; i < 6 ; i++) {
241 unsigned int insn;
39b8d525 242 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
41000c58 243 pr_cont(" (Bad address in epc)\n");
1da177e4
LT
244 break;
245 }
41000c58 246 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
1da177e4 247 }
41000c58 248 pr_cont("\n");
1da177e4
LT
249}
250
eae23f2c 251static void __show_regs(const struct pt_regs *regs)
1da177e4
LT
252{
253 const int field = 2 * sizeof(unsigned long);
254 unsigned int cause = regs->cp0_cause;
37dd3818 255 unsigned int exccode;
1da177e4
LT
256 int i;
257
a43cb95d 258 show_regs_print_info(KERN_DEFAULT);
1da177e4
LT
259
260 /*
261 * Saved main processor registers
262 */
263 for (i = 0; i < 32; ) {
264 if ((i % 4) == 0)
265 printk("$%2d :", i);
266 if (i == 0)
752f5499 267 pr_cont(" %0*lx", field, 0UL);
1da177e4 268 else if (i == 26 || i == 27)
752f5499 269 pr_cont(" %*s", field, "");
1da177e4 270 else
752f5499 271 pr_cont(" %0*lx", field, regs->regs[i]);
1da177e4
LT
272
273 i++;
274 if ((i % 4) == 0)
752f5499 275 pr_cont("\n");
1da177e4
LT
276 }
277
9693a853
FBH
278#ifdef CONFIG_CPU_HAS_SMARTMIPS
279 printk("Acx : %0*lx\n", field, regs->acx);
280#endif
b6d18e77
PB
281 if (MIPS_ISA_REV < 6) {
282 printk("Hi : %0*lx\n", field, regs->hi);
283 printk("Lo : %0*lx\n", field, regs->lo);
284 }
1da177e4
LT
285
286 /*
287 * Saved cp0 registers
288 */
b012cffe
RB
289 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
290 (void *) regs->cp0_epc);
b012cffe
RB
291 printk("ra : %0*lx %pS\n", field, regs->regs[31],
292 (void *) regs->regs[31]);
1da177e4 293
70342287 294 printk("Status: %08x ", (uint32_t) regs->cp0_status);
1da177e4 295
1990e542 296 if (cpu_has_3kex) {
3b2396d9 297 if (regs->cp0_status & ST0_KUO)
752f5499 298 pr_cont("KUo ");
3b2396d9 299 if (regs->cp0_status & ST0_IEO)
752f5499 300 pr_cont("IEo ");
3b2396d9 301 if (regs->cp0_status & ST0_KUP)
752f5499 302 pr_cont("KUp ");
3b2396d9 303 if (regs->cp0_status & ST0_IEP)
752f5499 304 pr_cont("IEp ");
3b2396d9 305 if (regs->cp0_status & ST0_KUC)
752f5499 306 pr_cont("KUc ");
3b2396d9 307 if (regs->cp0_status & ST0_IEC)
752f5499 308 pr_cont("IEc ");
1990e542 309 } else if (cpu_has_4kex) {
3b2396d9 310 if (regs->cp0_status & ST0_KX)
752f5499 311 pr_cont("KX ");
3b2396d9 312 if (regs->cp0_status & ST0_SX)
752f5499 313 pr_cont("SX ");
3b2396d9 314 if (regs->cp0_status & ST0_UX)
752f5499 315 pr_cont("UX ");
3b2396d9
MR
316 switch (regs->cp0_status & ST0_KSU) {
317 case KSU_USER:
752f5499 318 pr_cont("USER ");
3b2396d9
MR
319 break;
320 case KSU_SUPERVISOR:
752f5499 321 pr_cont("SUPERVISOR ");
3b2396d9
MR
322 break;
323 case KSU_KERNEL:
752f5499 324 pr_cont("KERNEL ");
3b2396d9
MR
325 break;
326 default:
752f5499 327 pr_cont("BAD_MODE ");
3b2396d9
MR
328 break;
329 }
330 if (regs->cp0_status & ST0_ERL)
752f5499 331 pr_cont("ERL ");
3b2396d9 332 if (regs->cp0_status & ST0_EXL)
752f5499 333 pr_cont("EXL ");
3b2396d9 334 if (regs->cp0_status & ST0_IE)
752f5499 335 pr_cont("IE ");
1da177e4 336 }
752f5499 337 pr_cont("\n");
1da177e4 338
37dd3818
PG
339 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
340 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
1da177e4 341
37dd3818 342 if (1 <= exccode && exccode <= 5)
1da177e4
LT
343 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
344
9966db25
RB
345 printk("PrId : %08x (%s)\n", read_c0_prid(),
346 cpu_name_string());
1da177e4
LT
347}
348
eae23f2c
RB
349/*
350 * FIXME: really the generic show_regs should take a const pointer argument.
351 */
352void show_regs(struct pt_regs *regs)
353{
49881542 354 __show_regs(regs);
5a267832 355 dump_stack();
eae23f2c
RB
356}
357
c1bf207d 358void show_registers(struct pt_regs *regs)
1da177e4 359{
39b8d525 360 const int field = 2 * sizeof(unsigned long);
83e4da1e 361 mm_segment_t old_fs = get_fs();
39b8d525 362
eae23f2c 363 __show_regs(regs);
1da177e4 364 print_modules();
39b8d525
RB
365 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
366 current->comm, current->pid, current_thread_info(), current,
367 field, current_thread_info()->tp_value);
368 if (cpu_has_userlocal) {
369 unsigned long tls;
370
371 tls = read_c0_userlocal();
372 if (tls != current_thread_info()->tp_value)
373 printk("*HwTLS: %0*lx\n", field, tls);
374 }
375
83e4da1e
LY
376 if (!user_mode(regs))
377 /* Necessary for getting the correct stack content */
378 set_fs(KERNEL_DS);
f66686f7 379 show_stacktrace(current, regs);
e1bb8289 380 show_code((unsigned int __user *) regs->cp0_epc);
1da177e4 381 printk("\n");
83e4da1e 382 set_fs(old_fs);
1da177e4
LT
383}
384
4d85f6af 385static DEFINE_RAW_SPINLOCK(die_lock);
1da177e4 386
70dc6f04 387void __noreturn die(const char *str, struct pt_regs *regs)
1da177e4
LT
388{
389 static int die_counter;
ce384d83 390 int sig = SIGSEGV;
1da177e4 391
8742cd23
NL
392 oops_enter();
393
e3b28831 394 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
dc73e4c1 395 SIGSEGV) == NOTIFY_STOP)
10423c91 396 sig = 0;
5dd11d5d 397
1da177e4 398 console_verbose();
4d85f6af 399 raw_spin_lock_irq(&die_lock);
41c594ab 400 bust_spinlocks(1);
ce384d83 401
178086c8 402 printk("%s[#%d]:\n", str, ++die_counter);
1da177e4 403 show_registers(regs);
373d4d09 404 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
4d85f6af 405 raw_spin_unlock_irq(&die_lock);
d4fd1989 406
8742cd23
NL
407 oops_exit();
408
d4fd1989
MB
409 if (in_interrupt())
410 panic("Fatal exception in interrupt");
411
99a7a234 412 if (panic_on_oops)
d4fd1989 413 panic("Fatal exception");
d4fd1989 414
7aa1c8f4
RB
415 if (regs && kexec_should_crash(current))
416 crash_kexec(regs);
417
ce384d83 418 do_exit(sig);
1da177e4
LT
419}
420
0510617b
TB
421extern struct exception_table_entry __start___dbe_table[];
422extern struct exception_table_entry __stop___dbe_table[];
1da177e4 423
b6dcec9b
RB
424__asm__(
425" .section __dbe_table, \"a\"\n"
426" .previous \n");
1da177e4
LT
427
428/* Given an address, look for it in the exception tables. */
429static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
430{
431 const struct exception_table_entry *e;
432
a94c33dd
TM
433 e = search_extable(__start___dbe_table,
434 __stop___dbe_table - __start___dbe_table, addr);
1da177e4
LT
435 if (!e)
436 e = search_module_dbetables(addr);
437 return e;
438}
439
440asmlinkage void do_be(struct pt_regs *regs)
441{
442 const int field = 2 * sizeof(unsigned long);
443 const struct exception_table_entry *fixup = NULL;
444 int data = regs->cp0_cause & 4;
445 int action = MIPS_BE_FATAL;
c3fc5cd5 446 enum ctx_state prev_state;
1da177e4 447
c3fc5cd5 448 prev_state = exception_enter();
70342287 449 /* XXX For now. Fixme, this searches the wrong table ... */
1da177e4
LT
450 if (data && !user_mode(regs))
451 fixup = search_dbe_tables(exception_epc(regs));
452
453 if (fixup)
454 action = MIPS_BE_FIXUP;
455
456 if (board_be_handler)
28fc582c 457 action = board_be_handler(regs, fixup != NULL);
dabdc185
PB
458 else
459 mips_cm_error_report();
1da177e4
LT
460
461 switch (action) {
462 case MIPS_BE_DISCARD:
c3fc5cd5 463 goto out;
1da177e4
LT
464 case MIPS_BE_FIXUP:
465 if (fixup) {
466 regs->cp0_epc = fixup->nextinsn;
c3fc5cd5 467 goto out;
1da177e4
LT
468 }
469 break;
470 default:
471 break;
472 }
473
474 /*
475 * Assume it would be too dangerous to continue ...
476 */
477 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
478 data ? "Data" : "Instruction",
479 field, regs->cp0_epc, field, regs->regs[31]);
e3b28831 480 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
dc73e4c1 481 SIGBUS) == NOTIFY_STOP)
c3fc5cd5 482 goto out;
88547001 483
1da177e4
LT
484 die_if_kernel("Oops", regs);
485 force_sig(SIGBUS, current);
c3fc5cd5
RB
486
487out:
488 exception_exit(prev_state);
1da177e4
LT
489}
490
1da177e4 491/*
60b0d655 492 * ll/sc, rdhwr, sync emulation
1da177e4
LT
493 */
494
495#define OPCODE 0xfc000000
496#define BASE 0x03e00000
497#define RT 0x001f0000
498#define OFFSET 0x0000ffff
499#define LL 0xc0000000
500#define SC 0xe0000000
60b0d655 501#define SPEC0 0x00000000
3c37026d
RB
502#define SPEC3 0x7c000000
503#define RD 0x0000f800
504#define FUNC 0x0000003f
60b0d655 505#define SYNC 0x0000000f
3c37026d 506#define RDHWR 0x0000003b
1da177e4 507
2a0b24f5
SH
508/* microMIPS definitions */
509#define MM_POOL32A_FUNC 0xfc00ffff
510#define MM_RDHWR 0x00006b3c
511#define MM_RS 0x001f0000
512#define MM_RT 0x03e00000
513
1da177e4
LT
514/*
515 * The ll_bit is cleared by r*_switch.S
516 */
517
f1e39a4a
RB
518unsigned int ll_bit;
519struct task_struct *ll_task;
1da177e4 520
60b0d655 521static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
1da177e4 522{
fe00f943 523 unsigned long value, __user *vaddr;
1da177e4 524 long offset;
1da177e4
LT
525
526 /*
527 * analyse the ll instruction that just caused a ri exception
528 * and put the referenced address to addr.
529 */
530
531 /* sign extend offset */
532 offset = opcode & OFFSET;
533 offset <<= 16;
534 offset >>= 16;
535
fe00f943 536 vaddr = (unsigned long __user *)
b9688310 537 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4 538
60b0d655
MR
539 if ((unsigned long)vaddr & 3)
540 return SIGBUS;
541 if (get_user(value, vaddr))
542 return SIGSEGV;
1da177e4
LT
543
544 preempt_disable();
545
546 if (ll_task == NULL || ll_task == current) {
547 ll_bit = 1;
548 } else {
549 ll_bit = 0;
550 }
551 ll_task = current;
552
553 preempt_enable();
554
555 regs->regs[(opcode & RT) >> 16] = value;
556
60b0d655 557 return 0;
1da177e4
LT
558}
559
60b0d655 560static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
1da177e4 561{
fe00f943
RB
562 unsigned long __user *vaddr;
563 unsigned long reg;
1da177e4 564 long offset;
1da177e4
LT
565
566 /*
567 * analyse the sc instruction that just caused a ri exception
568 * and put the referenced address to addr.
569 */
570
571 /* sign extend offset */
572 offset = opcode & OFFSET;
573 offset <<= 16;
574 offset >>= 16;
575
fe00f943 576 vaddr = (unsigned long __user *)
b9688310 577 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4
LT
578 reg = (opcode & RT) >> 16;
579
60b0d655
MR
580 if ((unsigned long)vaddr & 3)
581 return SIGBUS;
1da177e4
LT
582
583 preempt_disable();
584
585 if (ll_bit == 0 || ll_task != current) {
586 regs->regs[reg] = 0;
587 preempt_enable();
60b0d655 588 return 0;
1da177e4
LT
589 }
590
591 preempt_enable();
592
60b0d655
MR
593 if (put_user(regs->regs[reg], vaddr))
594 return SIGSEGV;
1da177e4
LT
595
596 regs->regs[reg] = 1;
597
60b0d655 598 return 0;
1da177e4
LT
599}
600
601/*
602 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
603 * opcodes are supposed to result in coprocessor unusable exceptions if
604 * executed on ll/sc-less processors. That's the theory. In practice a
605 * few processors such as NEC's VR4100 throw reserved instruction exceptions
606 * instead, so we're doing the emulation thing in both exception handlers.
607 */
60b0d655 608static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
1da177e4 609{
7f788d2d
DCZ
610 if ((opcode & OPCODE) == LL) {
611 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 612 1, regs, 0);
60b0d655 613 return simulate_ll(regs, opcode);
7f788d2d
DCZ
614 }
615 if ((opcode & OPCODE) == SC) {
616 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 617 1, regs, 0);
60b0d655 618 return simulate_sc(regs, opcode);
7f788d2d 619 }
1da177e4 620
60b0d655 621 return -1; /* Must be something else ... */
1da177e4
LT
622}
623
3c37026d
RB
624/*
625 * Simulate trapping 'rdhwr' instructions to provide user accessible
1f5826bd 626 * registers not implemented in hardware.
3c37026d 627 */
2a0b24f5 628static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
3c37026d 629{
dc8f6029 630 struct thread_info *ti = task_thread_info(current);
3c37026d 631
2a0b24f5
SH
632 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
633 1, regs, 0);
634 switch (rd) {
aff565aa 635 case MIPS_HWR_CPUNUM: /* CPU number */
2a0b24f5
SH
636 regs->regs[rt] = smp_processor_id();
637 return 0;
aff565aa 638 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
2a0b24f5
SH
639 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
640 current_cpu_data.icache.linesz);
641 return 0;
aff565aa 642 case MIPS_HWR_CC: /* Read count register */
2a0b24f5
SH
643 regs->regs[rt] = read_c0_count();
644 return 0;
aff565aa 645 case MIPS_HWR_CCRES: /* Count register resolution */
69f24d17 646 switch (current_cpu_type()) {
2a0b24f5
SH
647 case CPU_20KC:
648 case CPU_25KF:
649 regs->regs[rt] = 1;
650 break;
651 default:
652 regs->regs[rt] = 2;
653 }
654 return 0;
aff565aa 655 case MIPS_HWR_ULR: /* Read UserLocal register */
2a0b24f5
SH
656 regs->regs[rt] = ti->tp_value;
657 return 0;
658 default:
659 return -1;
660 }
661}
662
663static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
664{
3c37026d
RB
665 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
666 int rd = (opcode & RD) >> 11;
667 int rt = (opcode & RT) >> 16;
2a0b24f5
SH
668
669 simulate_rdhwr(regs, rd, rt);
670 return 0;
671 }
672
673 /* Not ours. */
674 return -1;
675}
676
7aa70471 677static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
2a0b24f5
SH
678{
679 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
680 int rd = (opcode & MM_RS) >> 16;
681 int rt = (opcode & MM_RT) >> 21;
682 simulate_rdhwr(regs, rd, rt);
683 return 0;
3c37026d
RB
684 }
685
56ebd51b 686 /* Not ours. */
60b0d655
MR
687 return -1;
688}
e5679882 689
60b0d655
MR
690static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
691{
7f788d2d
DCZ
692 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
693 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 694 1, regs, 0);
60b0d655 695 return 0;
7f788d2d 696 }
60b0d655
MR
697
698 return -1; /* Must be something else ... */
3c37026d
RB
699}
700
1da177e4
LT
701asmlinkage void do_ov(struct pt_regs *regs)
702{
c3fc5cd5 703 enum ctx_state prev_state;
1da177e4 704
c3fc5cd5 705 prev_state = exception_enter();
36ccf1c0
RB
706 die_if_kernel("Integer overflow", regs);
707
f43a54a0 708 force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc, current);
c3fc5cd5 709 exception_exit(prev_state);
1da177e4
LT
710}
711
5328f742
PB
712#ifdef CONFIG_MIPS_FP_SUPPORT
713
5a1aca44
MR
714/*
715 * Send SIGFPE according to FCSR Cause bits, which must have already
716 * been masked against Enable bits. This is impotant as Inexact can
717 * happen together with Overflow or Underflow, and `ptrace' can set
718 * any bits.
719 */
720void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
721 struct task_struct *tsk)
722{
0bb0a114 723 int si_code = FPE_FLTUNK;
5a1aca44
MR
724
725 if (fcr31 & FPU_CSR_INV_X)
f43a54a0 726 si_code = FPE_FLTINV;
5a1aca44 727 else if (fcr31 & FPU_CSR_DIV_X)
f43a54a0 728 si_code = FPE_FLTDIV;
5a1aca44 729 else if (fcr31 & FPU_CSR_OVF_X)
f43a54a0 730 si_code = FPE_FLTOVF;
5a1aca44 731 else if (fcr31 & FPU_CSR_UDF_X)
f43a54a0 732 si_code = FPE_FLTUND;
5a1aca44 733 else if (fcr31 & FPU_CSR_INE_X)
f43a54a0 734 si_code = FPE_FLTRES;
b123718b 735
f43a54a0 736 force_sig_fault(SIGFPE, si_code, fault_addr, tsk);
5a1aca44
MR
737}
738
304acb71 739int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
515b029d 740{
f43a54a0 741 int si_code;
bcfc8f0d 742 struct vm_area_struct *vma;
304acb71
MR
743
744 switch (sig) {
745 case 0:
746 return 0;
ad70c13a 747
304acb71 748 case SIGFPE:
5a1aca44 749 force_fcr31_sig(fcr31, fault_addr, current);
515b029d 750 return 1;
304acb71
MR
751
752 case SIGBUS:
f43a54a0 753 force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr, current);
304acb71
MR
754 return 1;
755
756 case SIGSEGV:
304acb71 757 down_read(&current->mm->mmap_sem);
bcfc8f0d
PJ
758 vma = find_vma(current->mm, (unsigned long)fault_addr);
759 if (vma && (vma->vm_start <= (unsigned long)fault_addr))
f43a54a0 760 si_code = SEGV_ACCERR;
304acb71 761 else
f43a54a0 762 si_code = SEGV_MAPERR;
304acb71 763 up_read(&current->mm->mmap_sem);
f43a54a0 764 force_sig_fault(SIGSEGV, si_code, fault_addr, current);
304acb71
MR
765 return 1;
766
767 default:
515b029d
DD
768 force_sig(sig, current);
769 return 1;
515b029d
DD
770 }
771}
772
4227a2d4
PB
773static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
774 unsigned long old_epc, unsigned long old_ra)
775{
776 union mips_instruction inst = { .word = opcode };
304acb71
MR
777 void __user *fault_addr;
778 unsigned long fcr31;
4227a2d4
PB
779 int sig;
780
781 /* If it's obviously not an FP instruction, skip it */
782 switch (inst.i_format.opcode) {
783 case cop1_op:
784 case cop1x_op:
785 case lwc1_op:
786 case ldc1_op:
787 case swc1_op:
788 case sdc1_op:
789 break;
790
791 default:
792 return -1;
793 }
794
795 /*
796 * do_ri skipped over the instruction via compute_return_epc, undo
797 * that for the FPU emulator.
798 */
799 regs->cp0_epc = old_epc;
800 regs->regs[31] = old_ra;
801
4227a2d4
PB
802 /* Run the emulator */
803 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
804 &fault_addr);
805
443c4403 806 /*
5a1aca44
MR
807 * We can't allow the emulated instruction to leave any
808 * enabled Cause bits set in $fcr31.
443c4403 809 */
5a1aca44
MR
810 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
811 current->thread.fpu.fcr31 &= ~fcr31;
4227a2d4
PB
812
813 /* Restore the hardware register state */
814 own_fpu(1);
815
304acb71
MR
816 /* Send a signal if required. */
817 process_fpemu_return(sig, fault_addr, fcr31);
818
4227a2d4
PB
819 return 0;
820}
821
1da177e4
LT
822/*
823 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
824 */
825asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
826{
c3fc5cd5 827 enum ctx_state prev_state;
304acb71
MR
828 void __user *fault_addr;
829 int sig;
948a34cf 830
c3fc5cd5 831 prev_state = exception_enter();
e3b28831 832 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
dc73e4c1 833 SIGFPE) == NOTIFY_STOP)
c3fc5cd5 834 goto out;
64bedffe
JH
835
836 /* Clear FCSR.Cause before enabling interrupts */
5a1aca44 837 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
64bedffe
JH
838 local_irq_enable();
839
57725f9e
CD
840 die_if_kernel("FP exception in kernel code", regs);
841
1da177e4 842 if (fcr31 & FPU_CSR_UNI_X) {
1da177e4 843 /*
a3dddd56 844 * Unimplemented operation exception. If we've got the full
1da177e4
LT
845 * software emulator on-board, let's use it...
846 *
847 * Force FPU to dump state into task/thread context. We're
848 * moving a lot of data here for what is probably a single
849 * instruction, but the alternative is to pre-decode the FP
850 * register operands before invoking the emulator, which seems
851 * a bit extreme for what should be an infrequent event.
852 */
1da177e4
LT
853
854 /* Run the emulator */
515b029d
DD
855 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
856 &fault_addr);
1da177e4
LT
857
858 /*
5a1aca44
MR
859 * We can't allow the emulated instruction to leave any
860 * enabled Cause bits set in $fcr31.
1da177e4 861 */
5a1aca44
MR
862 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
863 current->thread.fpu.fcr31 &= ~fcr31;
1da177e4
LT
864
865 /* Restore the hardware register state */
70342287 866 own_fpu(1); /* Using the FPU again. */
304acb71
MR
867 } else {
868 sig = SIGFPE;
869 fault_addr = (void __user *) regs->cp0_epc;
ed2d72c1 870 }
1da177e4 871
304acb71
MR
872 /* Send a signal if required. */
873 process_fpemu_return(sig, fault_addr, fcr31);
c3fc5cd5
RB
874
875out:
876 exception_exit(prev_state);
1da177e4
LT
877}
878
5328f742
PB
879/*
880 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
881 * emulated more than some threshold number of instructions, force migration to
882 * a "CPU" that has FP support.
883 */
884static void mt_ase_fp_affinity(void)
885{
886#ifdef CONFIG_MIPS_MT_FPAFF
887 if (mt_fpemul_threshold > 0 &&
888 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
889 /*
890 * If there's no FPU present, or if the application has already
891 * restricted the allowed set to exclude any CPUs with FPUs,
892 * we'll skip the procedure.
893 */
894 if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
895 cpumask_t tmask;
896
897 current->thread.user_cpus_allowed
898 = current->cpus_allowed;
899 cpumask_and(&tmask, &current->cpus_allowed,
900 &mt_fpu_cpumask);
901 set_cpus_allowed_ptr(current, &tmask);
902 set_thread_flag(TIF_FPUBOUND);
903 }
904 }
905#endif /* CONFIG_MIPS_MT_FPAFF */
906}
907
908#else /* !CONFIG_MIPS_FP_SUPPORT */
909
910static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
911 unsigned long old_epc, unsigned long old_ra)
912{
913 return -1;
914}
915
916#endif /* !CONFIG_MIPS_FP_SUPPORT */
917
3b143cca 918void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
df270051 919 const char *str)
1da177e4 920{
df270051 921 char b[40];
1da177e4 922
5dd11d5d 923#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
e3b28831
RB
924 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
925 SIGTRAP) == NOTIFY_STOP)
5dd11d5d
JW
926 return;
927#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
928
e3b28831 929 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
dc73e4c1 930 SIGTRAP) == NOTIFY_STOP)
88547001
JW
931 return;
932
1da177e4 933 /*
df270051
RB
934 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
935 * insns, even for trap and break codes that indicate arithmetic
936 * failures. Weird ...
1da177e4
LT
937 * But should we continue the brokenness??? --macro
938 */
df270051
RB
939 switch (code) {
940 case BRK_OVERFLOW:
941 case BRK_DIVZERO:
942 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
943 die_if_kernel(b, regs);
f43a54a0
EB
944 force_sig_fault(SIGFPE,
945 code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
946 (void __user *) regs->cp0_epc, current);
1da177e4 947 break;
63dc68a8 948 case BRK_BUG:
df270051
RB
949 die_if_kernel("Kernel bug detected", regs);
950 force_sig(SIGTRAP, current);
63dc68a8 951 break;
ba3049ed
RB
952 case BRK_MEMU:
953 /*
1f443779
MR
954 * This breakpoint code is used by the FPU emulator to retake
955 * control of the CPU after executing the instruction from the
956 * delay slot of an emulated branch.
ba3049ed
RB
957 *
958 * Terminate if exception was recognized as a delay slot return
959 * otherwise handle as normal.
960 */
961 if (do_dsemulret(regs))
962 return;
963
964 die_if_kernel("Math emu break/trap", regs);
965 force_sig(SIGTRAP, current);
966 break;
1da177e4 967 default:
df270051
RB
968 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
969 die_if_kernel(b, regs);
3b143cca 970 if (si_code) {
f43a54a0 971 force_sig_fault(SIGTRAP, si_code, NULL, current);
3b143cca
MR
972 } else {
973 force_sig(SIGTRAP, current);
974 }
1da177e4 975 }
df270051
RB
976}
977
978asmlinkage void do_bp(struct pt_regs *regs)
979{
f6a31da5 980 unsigned long epc = msk_isa16_mode(exception_epc(regs));
df270051 981 unsigned int opcode, bcode;
c3fc5cd5 982 enum ctx_state prev_state;
078dde5e
LY
983 mm_segment_t seg;
984
985 seg = get_fs();
986 if (!user_mode(regs))
987 set_fs(KERNEL_DS);
2a0b24f5 988
c3fc5cd5 989 prev_state = exception_enter();
e3b28831 990 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
2a0b24f5 991 if (get_isa16_mode(regs->cp0_epc)) {
f6a31da5
MR
992 u16 instr[2];
993
994 if (__get_user(instr[0], (u16 __user *)epc))
995 goto out_sigsegv;
996
997 if (!cpu_has_mmips) {
b08a9c95 998 /* MIPS16e mode */
68893e00 999 bcode = (instr[0] >> 5) & 0x3f;
f6a31da5
MR
1000 } else if (mm_insn_16bit(instr[0])) {
1001 /* 16-bit microMIPS BREAK */
1002 bcode = instr[0] & 0xf;
1003 } else {
1004 /* 32-bit microMIPS BREAK */
1005 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
2a0b24f5 1006 goto out_sigsegv;
f6a31da5
MR
1007 opcode = (instr[0] << 16) | instr[1];
1008 bcode = (opcode >> 6) & ((1 << 20) - 1);
2a0b24f5
SH
1009 }
1010 } else {
f6a31da5 1011 if (__get_user(opcode, (unsigned int __user *)epc))
2a0b24f5 1012 goto out_sigsegv;
f6a31da5 1013 bcode = (opcode >> 6) & ((1 << 20) - 1);
2a0b24f5 1014 }
df270051
RB
1015
1016 /*
1017 * There is the ancient bug in the MIPS assemblers that the break
1018 * code starts left to bit 16 instead to bit 6 in the opcode.
1019 * Gas is bug-compatible, but not always, grrr...
1020 * We handle both cases with a simple heuristics. --macro
1021 */
df270051 1022 if (bcode >= (1 << 10))
c9875032 1023 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
df270051 1024
c1bf207d
DD
1025 /*
1026 * notify the kprobe handlers, if instruction is likely to
1027 * pertain to them.
1028 */
1029 switch (bcode) {
40e084a5
RB
1030 case BRK_UPROBE:
1031 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1032 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1033 goto out;
1034 else
1035 break;
1036 case BRK_UPROBE_XOL:
1037 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1038 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1039 goto out;
1040 else
1041 break;
c1bf207d 1042 case BRK_KPROBE_BP:
dc73e4c1 1043 if (notify_die(DIE_BREAK, "debug", regs, bcode,
e3b28831 1044 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
c3fc5cd5 1045 goto out;
c1bf207d
DD
1046 else
1047 break;
1048 case BRK_KPROBE_SSTEPBP:
dc73e4c1 1049 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
e3b28831 1050 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
c3fc5cd5 1051 goto out;
c1bf207d
DD
1052 else
1053 break;
1054 default:
1055 break;
1056 }
1057
3b143cca 1058 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
c3fc5cd5
RB
1059
1060out:
078dde5e 1061 set_fs(seg);
c3fc5cd5 1062 exception_exit(prev_state);
90fccb13 1063 return;
e5679882
RB
1064
1065out_sigsegv:
1066 force_sig(SIGSEGV, current);
c3fc5cd5 1067 goto out;
1da177e4
LT
1068}
1069
1070asmlinkage void do_tr(struct pt_regs *regs)
1071{
a9a6e7a0 1072 u32 opcode, tcode = 0;
c3fc5cd5 1073 enum ctx_state prev_state;
2a0b24f5 1074 u16 instr[2];
078dde5e 1075 mm_segment_t seg;
a9a6e7a0 1076 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1da177e4 1077
078dde5e
LY
1078 seg = get_fs();
1079 if (!user_mode(regs))
736706be 1080 set_fs(KERNEL_DS);
078dde5e 1081
c3fc5cd5 1082 prev_state = exception_enter();
e3b28831 1083 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
a9a6e7a0
MR
1084 if (get_isa16_mode(regs->cp0_epc)) {
1085 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1086 __get_user(instr[1], (u16 __user *)(epc + 2)))
2a0b24f5 1087 goto out_sigsegv;
a9a6e7a0
MR
1088 opcode = (instr[0] << 16) | instr[1];
1089 /* Immediate versions don't provide a code. */
1090 if (!(opcode & OPCODE))
1091 tcode = (opcode >> 12) & ((1 << 4) - 1);
1092 } else {
1093 if (__get_user(opcode, (u32 __user *)epc))
1094 goto out_sigsegv;
1095 /* Immediate versions don't provide a code. */
1096 if (!(opcode & OPCODE))
1097 tcode = (opcode >> 6) & ((1 << 10) - 1);
2a0b24f5 1098 }
1da177e4 1099
3b143cca 1100 do_trap_or_bp(regs, tcode, 0, "Trap");
c3fc5cd5
RB
1101
1102out:
078dde5e 1103 set_fs(seg);
c3fc5cd5 1104 exception_exit(prev_state);
90fccb13 1105 return;
e5679882
RB
1106
1107out_sigsegv:
1108 force_sig(SIGSEGV, current);
c3fc5cd5 1109 goto out;
1da177e4
LT
1110}
1111
1112asmlinkage void do_ri(struct pt_regs *regs)
1113{
60b0d655
MR
1114 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1115 unsigned long old_epc = regs->cp0_epc;
2a0b24f5 1116 unsigned long old31 = regs->regs[31];
c3fc5cd5 1117 enum ctx_state prev_state;
60b0d655
MR
1118 unsigned int opcode = 0;
1119 int status = -1;
1da177e4 1120
b0a668fb
LY
1121 /*
1122 * Avoid any kernel code. Just emulate the R2 instruction
1123 * as quickly as possible.
1124 */
1125 if (mipsr2_emulation && cpu_has_mips_r6 &&
4a7c2371
MR
1126 likely(user_mode(regs)) &&
1127 likely(get_user(opcode, epc) >= 0)) {
304acb71
MR
1128 unsigned long fcr31 = 0;
1129
1130 status = mipsr2_decoder(regs, opcode, &fcr31);
4a7c2371
MR
1131 switch (status) {
1132 case 0:
1133 case SIGEMT:
4a7c2371
MR
1134 return;
1135 case SIGILL:
1136 goto no_r2_instr;
1137 default:
1138 process_fpemu_return(status,
304acb71
MR
1139 &current->thread.cp0_baduaddr,
1140 fcr31);
4a7c2371 1141 return;
b0a668fb
LY
1142 }
1143 }
1144
1145no_r2_instr:
1146
c3fc5cd5 1147 prev_state = exception_enter();
e3b28831 1148 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
b0a668fb 1149
e3b28831 1150 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
dc73e4c1 1151 SIGILL) == NOTIFY_STOP)
c3fc5cd5 1152 goto out;
88547001 1153
60b0d655 1154 die_if_kernel("Reserved instruction in kernel code", regs);
1da177e4 1155
60b0d655 1156 if (unlikely(compute_return_epc(regs) < 0))
c3fc5cd5 1157 goto out;
3c37026d 1158
3d50a7fb 1159 if (!get_isa16_mode(regs->cp0_epc)) {
2a0b24f5
SH
1160 if (unlikely(get_user(opcode, epc) < 0))
1161 status = SIGSEGV;
60b0d655 1162
2a0b24f5
SH
1163 if (!cpu_has_llsc && status < 0)
1164 status = simulate_llsc(regs, opcode);
1165
1166 if (status < 0)
1167 status = simulate_rdhwr_normal(regs, opcode);
1168
1169 if (status < 0)
1170 status = simulate_sync(regs, opcode);
4227a2d4
PB
1171
1172 if (status < 0)
1173 status = simulate_fp(regs, opcode, old_epc, old31);
3d50a7fb
MR
1174 } else if (cpu_has_mmips) {
1175 unsigned short mmop[2] = { 0 };
1176
1177 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1178 status = SIGSEGV;
1179 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1180 status = SIGSEGV;
1181 opcode = mmop[0];
1182 opcode = (opcode << 16) | mmop[1];
1183
1184 if (status < 0)
1185 status = simulate_rdhwr_mm(regs, opcode);
2a0b24f5 1186 }
60b0d655
MR
1187
1188 if (status < 0)
1189 status = SIGILL;
1190
1191 if (unlikely(status > 0)) {
1192 regs->cp0_epc = old_epc; /* Undo skip-over. */
2a0b24f5 1193 regs->regs[31] = old31;
60b0d655
MR
1194 force_sig(status, current);
1195 }
c3fc5cd5
RB
1196
1197out:
1198 exception_exit(prev_state);
1da177e4
LT
1199}
1200
69f3a7de
RB
1201/*
1202 * No lock; only written during early bootup by CPU 0.
1203 */
1204static RAW_NOTIFIER_HEAD(cu2_chain);
1205
1206int __ref register_cu2_notifier(struct notifier_block *nb)
1207{
1208 return raw_notifier_chain_register(&cu2_chain, nb);
1209}
1210
1211int cu2_notifier_call_chain(unsigned long val, void *v)
1212{
1213 return raw_notifier_call_chain(&cu2_chain, val, v);
1214}
1215
1216static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
70342287 1217 void *data)
69f3a7de
RB
1218{
1219 struct pt_regs *regs = data;
1220
83bee792 1221 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
69f3a7de 1222 "instruction", regs);
83bee792 1223 force_sig(SIGILL, current);
69f3a7de
RB
1224
1225 return NOTIFY_OK;
1226}
1227
5328f742
PB
1228#ifdef CONFIG_MIPS_FP_SUPPORT
1229
1db1af84
PB
1230static int enable_restore_fp_context(int msa)
1231{
c9017757 1232 int err, was_fpu_owner, prior_msa;
cc97ab23 1233 bool first_fp;
1db1af84 1234
cc97ab23
PB
1235 /* Initialize context if it hasn't been used already */
1236 first_fp = init_fp_ctx(current);
1db1af84 1237
cc97ab23 1238 if (first_fp) {
762a1f43 1239 preempt_disable();
cc97ab23 1240 err = own_fpu_inatomic(1);
c9017757 1241 if (msa && !err) {
1db1af84 1242 enable_msa();
732c0c3c
PB
1243 set_thread_flag(TIF_USEDMSA);
1244 set_thread_flag(TIF_MSA_CTX_LIVE);
c9017757 1245 }
762a1f43 1246 preempt_enable();
1db1af84
PB
1247 return err;
1248 }
1249
1250 /*
1251 * This task has formerly used the FP context.
1252 *
1253 * If this thread has no live MSA vector context then we can simply
1254 * restore the scalar FP context. If it has live MSA vector context
1255 * (that is, it has or may have used MSA since last performing a
1256 * function call) then we'll need to restore the vector context. This
1257 * applies even if we're currently only executing a scalar FP
1258 * instruction. This is because if we were to later execute an MSA
1259 * instruction then we'd either have to:
1260 *
1261 * - Restore the vector context & clobber any registers modified by
1262 * scalar FP instructions between now & then.
1263 *
1264 * or
1265 *
1266 * - Not restore the vector context & lose the most significant bits
1267 * of all vector registers.
1268 *
1269 * Neither of those options is acceptable. We cannot restore the least
1270 * significant bits of the registers now & only restore the most
1271 * significant bits later because the most significant bits of any
1272 * vector registers whose aliased FP register is modified now will have
1273 * been zeroed. We'd have no way to know that when restoring the vector
1274 * context & thus may load an outdated value for the most significant
1275 * bits of a vector register.
1276 */
1277 if (!msa && !thread_msa_context_live())
1278 return own_fpu(1);
1279
1280 /*
1281 * This task is using or has previously used MSA. Thus we require
1282 * that Status.FR == 1.
1283 */
762a1f43 1284 preempt_disable();
1db1af84 1285 was_fpu_owner = is_fpu_owner();
762a1f43 1286 err = own_fpu_inatomic(0);
1db1af84 1287 if (err)
762a1f43 1288 goto out;
1db1af84
PB
1289
1290 enable_msa();
1291 write_msa_csr(current->thread.fpu.msacsr);
1292 set_thread_flag(TIF_USEDMSA);
1293
1294 /*
1295 * If this is the first time that the task is using MSA and it has
1296 * previously used scalar FP in this time slice then we already nave
c9017757
PB
1297 * FP context which we shouldn't clobber. We do however need to clear
1298 * the upper 64b of each vector register so that this task has no
1299 * opportunity to see data left behind by another.
1db1af84 1300 */
c9017757
PB
1301 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1302 if (!prior_msa && was_fpu_owner) {
e49d3848 1303 init_msa_upper();
762a1f43
PB
1304
1305 goto out;
c9017757 1306 }
1db1af84 1307
c9017757
PB
1308 if (!prior_msa) {
1309 /*
1310 * Restore the least significant 64b of each vector register
1311 * from the existing scalar FP context.
1312 */
1313 _restore_fp(current);
b8340673 1314
c9017757
PB
1315 /*
1316 * The task has not formerly used MSA, so clear the upper 64b
1317 * of each vector register such that it cannot see data left
1318 * behind by another task.
1319 */
e49d3848 1320 init_msa_upper();
c9017757
PB
1321 } else {
1322 /* We need to restore the vector context. */
1323 restore_msa(current);
b8340673 1324
c9017757
PB
1325 /* Restore the scalar FP control & status register */
1326 if (!was_fpu_owner)
d76e9b9f
JH
1327 write_32bit_cp1_register(CP1_STATUS,
1328 current->thread.fpu.fcr31);
c9017757 1329 }
762a1f43
PB
1330
1331out:
1332 preempt_enable();
1333
1db1af84
PB
1334 return 0;
1335}
1336
5328f742
PB
1337#else /* !CONFIG_MIPS_FP_SUPPORT */
1338
1339static int enable_restore_fp_context(int msa)
1340{
1341 return SIGILL;
1342}
1343
1344#endif /* CONFIG_MIPS_FP_SUPPORT */
1345
1da177e4
LT
1346asmlinkage void do_cpu(struct pt_regs *regs)
1347{
c3fc5cd5 1348 enum ctx_state prev_state;
60b0d655 1349 unsigned int __user *epc;
2a0b24f5 1350 unsigned long old_epc, old31;
60b0d655 1351 unsigned int opcode;
1da177e4 1352 unsigned int cpid;
5328f742 1353 int status;
1da177e4 1354
c3fc5cd5 1355 prev_state = exception_enter();
1da177e4
LT
1356 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1357
83bee792
J
1358 if (cpid != 2)
1359 die_if_kernel("do_cpu invoked from kernel context!", regs);
1360
1da177e4
LT
1361 switch (cpid) {
1362 case 0:
60b0d655
MR
1363 epc = (unsigned int __user *)exception_epc(regs);
1364 old_epc = regs->cp0_epc;
2a0b24f5 1365 old31 = regs->regs[31];
60b0d655
MR
1366 opcode = 0;
1367 status = -1;
1da177e4 1368
60b0d655 1369 if (unlikely(compute_return_epc(regs) < 0))
27e28e8e 1370 break;
3c37026d 1371
10f6d99f 1372 if (!get_isa16_mode(regs->cp0_epc)) {
2a0b24f5
SH
1373 if (unlikely(get_user(opcode, epc) < 0))
1374 status = SIGSEGV;
1375
1376 if (!cpu_has_llsc && status < 0)
1377 status = simulate_llsc(regs, opcode);
2a0b24f5 1378 }
60b0d655
MR
1379
1380 if (status < 0)
1381 status = SIGILL;
1382
1383 if (unlikely(status > 0)) {
1384 regs->cp0_epc = old_epc; /* Undo skip-over. */
2a0b24f5 1385 regs->regs[31] = old31;
60b0d655
MR
1386 force_sig(status, current);
1387 }
1388
27e28e8e 1389 break;
1da177e4 1390
5328f742 1391#ifdef CONFIG_MIPS_FP_SUPPORT
051ff44a
MR
1392 case 3:
1393 /*
2d83fea7
MR
1394 * The COP3 opcode space and consequently the CP0.Status.CU3
1395 * bit and the CP0.Cause.CE=3 encoding have been removed as
1396 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1397 * up the space has been reused for COP1X instructions, that
1398 * are enabled by the CP0.Status.CU1 bit and consequently
1399 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1400 * exceptions. Some FPU-less processors that implement one
1401 * of these ISAs however use this code erroneously for COP1X
1402 * instructions. Therefore we redirect this trap to the FP
1403 * emulator too.
051ff44a 1404 */
2d83fea7 1405 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
27e28e8e 1406 force_sig(SIGILL, current);
051ff44a 1407 break;
27e28e8e 1408 }
051ff44a
MR
1409 /* Fall through. */
1410
5328f742
PB
1411 case 1: {
1412 void __user *fault_addr;
1413 unsigned long fcr31;
1414 int err, sig;
1415
1db1af84 1416 err = enable_restore_fp_context(0);
1da177e4 1417
304acb71
MR
1418 if (raw_cpu_has_fpu && !err)
1419 break;
1da177e4 1420
304acb71
MR
1421 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1422 &fault_addr);
304acb71
MR
1423
1424 /*
1425 * We can't allow the emulated instruction to leave
5a1aca44 1426 * any enabled Cause bits set in $fcr31.
304acb71 1427 */
5a1aca44
MR
1428 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1429 current->thread.fpu.fcr31 &= ~fcr31;
304acb71
MR
1430
1431 /* Send a signal if required. */
1432 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1433 mt_ase_fp_affinity();
1da177e4 1434
27e28e8e 1435 break;
5328f742
PB
1436 }
1437#else /* CONFIG_MIPS_FP_SUPPORT */
1438 case 1:
1439 case 3:
1440 force_sig(SIGILL, current);
1441 break;
1442#endif /* CONFIG_MIPS_FP_SUPPORT */
1da177e4
LT
1443
1444 case 2:
69f3a7de 1445 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
27e28e8e 1446 break;
1da177e4
LT
1447 }
1448
c3fc5cd5 1449 exception_exit(prev_state);
1da177e4
LT
1450}
1451
64bedffe 1452asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
2bcb3fbc
PB
1453{
1454 enum ctx_state prev_state;
1455
1456 prev_state = exception_enter();
e3b28831 1457 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
64bedffe 1458 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
e3b28831 1459 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
64bedffe
JH
1460 goto out;
1461
1462 /* Clear MSACSR.Cause before enabling interrupts */
1463 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1464 local_irq_enable();
1465
2bcb3fbc
PB
1466 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1467 force_sig(SIGFPE, current);
64bedffe 1468out:
2bcb3fbc
PB
1469 exception_exit(prev_state);
1470}
1471
1db1af84
PB
1472asmlinkage void do_msa(struct pt_regs *regs)
1473{
1474 enum ctx_state prev_state;
1475 int err;
1476
1477 prev_state = exception_enter();
1478
1479 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1480 force_sig(SIGILL, current);
1481 goto out;
1482 }
1483
1484 die_if_kernel("do_msa invoked from kernel context!", regs);
1485
1486 err = enable_restore_fp_context(1);
1487 if (err)
1488 force_sig(SIGILL, current);
1489out:
1490 exception_exit(prev_state);
1491}
1492
1da177e4
LT
1493asmlinkage void do_mdmx(struct pt_regs *regs)
1494{
c3fc5cd5
RB
1495 enum ctx_state prev_state;
1496
1497 prev_state = exception_enter();
1da177e4 1498 force_sig(SIGILL, current);
c3fc5cd5 1499 exception_exit(prev_state);
1da177e4
LT
1500}
1501
8bc6d05b
DD
1502/*
1503 * Called with interrupts disabled.
1504 */
1da177e4
LT
1505asmlinkage void do_watch(struct pt_regs *regs)
1506{
c3fc5cd5 1507 enum ctx_state prev_state;
b67b2b70 1508
c3fc5cd5 1509 prev_state = exception_enter();
1da177e4 1510 /*
b67b2b70
DD
1511 * Clear WP (bit 22) bit of cause register so we don't loop
1512 * forever.
1da177e4 1513 */
e233c733 1514 clear_c0_cause(CAUSEF_WP);
b67b2b70
DD
1515
1516 /*
1517 * If the current thread has the watch registers loaded, save
1518 * their values and send SIGTRAP. Otherwise another thread
1519 * left the registers set, clear them and continue.
1520 */
1521 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1522 mips_read_watch_registers();
8bc6d05b 1523 local_irq_enable();
f43a54a0 1524 force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL, current);
8bc6d05b 1525 } else {
b67b2b70 1526 mips_clear_watch_registers();
8bc6d05b
DD
1527 local_irq_enable();
1528 }
c3fc5cd5 1529 exception_exit(prev_state);
1da177e4
LT
1530}
1531
1532asmlinkage void do_mcheck(struct pt_regs *regs)
1533{
cac4bcbc 1534 int multi_match = regs->cp0_status & ST0_TS;
c3fc5cd5 1535 enum ctx_state prev_state;
55c723e1 1536 mm_segment_t old_fs = get_fs();
cac4bcbc 1537
c3fc5cd5 1538 prev_state = exception_enter();
1da177e4 1539 show_regs(regs);
cac4bcbc
RB
1540
1541 if (multi_match) {
3c865dd9
JH
1542 dump_tlb_regs();
1543 pr_info("\n");
cac4bcbc
RB
1544 dump_tlb_all();
1545 }
1546
55c723e1
JH
1547 if (!user_mode(regs))
1548 set_fs(KERNEL_DS);
1549
e1bb8289 1550 show_code((unsigned int __user *) regs->cp0_epc);
cac4bcbc 1551
55c723e1
JH
1552 set_fs(old_fs);
1553
1da177e4
LT
1554 /*
1555 * Some chips may have other causes of machine check (e.g. SB1
1556 * graduation timer)
1557 */
1558 panic("Caught Machine Check exception - %scaused by multiple "
1559 "matching entries in the TLB.",
cac4bcbc 1560 (multi_match) ? "" : "not ");
1da177e4
LT
1561}
1562
340ee4b9
RB
1563asmlinkage void do_mt(struct pt_regs *regs)
1564{
41c594ab
RB
1565 int subcode;
1566
41c594ab
RB
1567 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1568 >> VPECONTROL_EXCPT_SHIFT;
1569 switch (subcode) {
1570 case 0:
e35a5e35 1571 printk(KERN_DEBUG "Thread Underflow\n");
41c594ab
RB
1572 break;
1573 case 1:
e35a5e35 1574 printk(KERN_DEBUG "Thread Overflow\n");
41c594ab
RB
1575 break;
1576 case 2:
e35a5e35 1577 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
41c594ab
RB
1578 break;
1579 case 3:
e35a5e35 1580 printk(KERN_DEBUG "Gating Storage Exception\n");
41c594ab
RB
1581 break;
1582 case 4:
e35a5e35 1583 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
41c594ab
RB
1584 break;
1585 case 5:
f232c7e8 1586 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
41c594ab
RB
1587 break;
1588 default:
e35a5e35 1589 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
41c594ab
RB
1590 subcode);
1591 break;
1592 }
340ee4b9
RB
1593 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1594
1595 force_sig(SIGILL, current);
1596}
1597
1598
e50c0a8f
RB
1599asmlinkage void do_dsp(struct pt_regs *regs)
1600{
1601 if (cpu_has_dsp)
ab75dc02 1602 panic("Unexpected DSP exception");
e50c0a8f
RB
1603
1604 force_sig(SIGILL, current);
1605}
1606
1da177e4
LT
1607asmlinkage void do_reserved(struct pt_regs *regs)
1608{
1609 /*
70342287 1610 * Game over - no way to handle this if it ever occurs. Most probably
1da177e4
LT
1611 * caused by a new unknown cpu type or after another deadly
1612 * hard/software error.
1613 */
1614 show_regs(regs);
1615 panic("Caught reserved exception %ld - should not happen.",
1616 (regs->cp0_cause & 0x7f) >> 2);
1617}
1618
39b8d525
RB
1619static int __initdata l1parity = 1;
1620static int __init nol1parity(char *s)
1621{
1622 l1parity = 0;
1623 return 1;
1624}
1625__setup("nol1par", nol1parity);
1626static int __initdata l2parity = 1;
1627static int __init nol2parity(char *s)
1628{
1629 l2parity = 0;
1630 return 1;
1631}
1632__setup("nol2par", nol2parity);
1633
1da177e4
LT
1634/*
1635 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1636 * it different ways.
1637 */
1638static inline void parity_protection_init(void)
1639{
35e6de38
PB
1640#define ERRCTL_PE 0x80000000
1641#define ERRCTL_L2P 0x00800000
1642
1643 if (mips_cm_revision() >= CM_REV_CM3) {
1644 ulong gcr_ectl, cp0_ectl;
1645
1646 /*
1647 * With CM3 systems we need to ensure that the L1 & L2
1648 * parity enables are set to the same value, since this
1649 * is presumed by the hardware engineers.
1650 *
1651 * If the user disabled either of L1 or L2 ECC checking,
1652 * disable both.
1653 */
1654 l1parity &= l2parity;
1655 l2parity &= l1parity;
1656
1657 /* Probe L1 ECC support */
1658 cp0_ectl = read_c0_ecc();
1659 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1660 back_to_back_c0_hazard();
1661 cp0_ectl = read_c0_ecc();
1662
1663 /* Probe L2 ECC support */
1664 gcr_ectl = read_gcr_err_control();
1665
93c5bba5 1666 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
35e6de38
PB
1667 !(cp0_ectl & ERRCTL_PE)) {
1668 /*
1669 * One of L1 or L2 ECC checking isn't supported,
1670 * so we cannot enable either.
1671 */
1672 l1parity = l2parity = 0;
1673 }
1674
1675 /* Configure L1 ECC checking */
1676 if (l1parity)
1677 cp0_ectl |= ERRCTL_PE;
1678 else
1679 cp0_ectl &= ~ERRCTL_PE;
1680 write_c0_ecc(cp0_ectl);
1681 back_to_back_c0_hazard();
1682 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1683
1684 /* Configure L2 ECC checking */
1685 if (l2parity)
93c5bba5 1686 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
35e6de38 1687 else
93c5bba5 1688 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
35e6de38
PB
1689 write_gcr_err_control(gcr_ectl);
1690 gcr_ectl = read_gcr_err_control();
93c5bba5 1691 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
35e6de38
PB
1692 WARN_ON(!!gcr_ectl != l2parity);
1693
1694 pr_info("Cache parity protection %sabled\n",
1695 l1parity ? "en" : "dis");
1696 return;
1697 }
1698
10cc3529 1699 switch (current_cpu_type()) {
1da177e4 1700 case CPU_24K:
98a41de9 1701 case CPU_34K:
39b8d525
RB
1702 case CPU_74K:
1703 case CPU_1004K:
442e14a2 1704 case CPU_1074K:
26ab96df 1705 case CPU_INTERAPTIV:
708ac4b8 1706 case CPU_PROAPTIV:
aced4cbd 1707 case CPU_P5600:
4695089f 1708 case CPU_QEMU_GENERIC:
1091bfa2 1709 case CPU_P6600:
39b8d525 1710 {
39b8d525
RB
1711 unsigned long errctl;
1712 unsigned int l1parity_present, l2parity_present;
1713
1714 errctl = read_c0_ecc();
1715 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1716
1717 /* probe L1 parity support */
1718 write_c0_ecc(errctl | ERRCTL_PE);
1719 back_to_back_c0_hazard();
1720 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1721
1722 /* probe L2 parity support */
1723 write_c0_ecc(errctl|ERRCTL_L2P);
1724 back_to_back_c0_hazard();
1725 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1726
1727 if (l1parity_present && l2parity_present) {
1728 if (l1parity)
1729 errctl |= ERRCTL_PE;
1730 if (l1parity ^ l2parity)
1731 errctl |= ERRCTL_L2P;
1732 } else if (l1parity_present) {
1733 if (l1parity)
1734 errctl |= ERRCTL_PE;
1735 } else if (l2parity_present) {
1736 if (l2parity)
1737 errctl |= ERRCTL_L2P;
1738 } else {
1739 /* No parity available */
1740 }
1741
1742 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1743
1744 write_c0_ecc(errctl);
1745 back_to_back_c0_hazard();
1746 errctl = read_c0_ecc();
1747 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1748
1749 if (l1parity_present)
1750 printk(KERN_INFO "Cache parity protection %sabled\n",
1751 (errctl & ERRCTL_PE) ? "en" : "dis");
1752
1753 if (l2parity_present) {
1754 if (l1parity_present && l1parity)
1755 errctl ^= ERRCTL_L2P;
1756 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1757 (errctl & ERRCTL_L2P) ? "en" : "dis");
1758 }
1759 }
1760 break;
1761
1da177e4 1762 case CPU_5KC:
78d4803f 1763 case CPU_5KE:
2fa36399 1764 case CPU_LOONGSON1:
14f18b7f
RB
1765 write_c0_ecc(0x80000000);
1766 back_to_back_c0_hazard();
1767 /* Set the PE bit (bit 31) in the c0_errctl register. */
1768 printk(KERN_INFO "Cache parity protection %sabled\n",
1769 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1da177e4
LT
1770 break;
1771 case CPU_20KC:
1772 case CPU_25KF:
1773 /* Clear the DE bit (bit 16) in the c0_status register. */
1774 printk(KERN_INFO "Enable cache parity protection for "
1775 "MIPS 20KC/25KF CPUs.\n");
1776 clear_c0_status(ST0_DE);
1777 break;
1778 default:
1779 break;
1780 }
1781}
1782
1783asmlinkage void cache_parity_error(void)
1784{
1785 const int field = 2 * sizeof(unsigned long);
1786 unsigned int reg_val;
1787
1788 /* For the moment, report the problem and hang. */
1789 printk("Cache error exception:\n");
1790 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1791 reg_val = read_c0_cacheerr();
1792 printk("c0_cacheerr == %08x\n", reg_val);
1793
1794 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1795 reg_val & (1<<30) ? "secondary" : "primary",
1796 reg_val & (1<<31) ? "data" : "insn");
9c7d5768 1797 if ((cpu_has_mips_r2_r6) &&
721a9205 1798 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
6de20451
LY
1799 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1800 reg_val & (1<<29) ? "ED " : "",
1801 reg_val & (1<<28) ? "ET " : "",
1802 reg_val & (1<<27) ? "ES " : "",
1803 reg_val & (1<<26) ? "EE " : "",
1804 reg_val & (1<<25) ? "EB " : "",
1805 reg_val & (1<<24) ? "EI " : "",
1806 reg_val & (1<<23) ? "E1 " : "",
1807 reg_val & (1<<22) ? "E0 " : "");
1808 } else {
1809 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1810 reg_val & (1<<29) ? "ED " : "",
1811 reg_val & (1<<28) ? "ET " : "",
1812 reg_val & (1<<26) ? "EE " : "",
1813 reg_val & (1<<25) ? "EB " : "",
1814 reg_val & (1<<24) ? "EI " : "",
1815 reg_val & (1<<23) ? "E1 " : "",
1816 reg_val & (1<<22) ? "E0 " : "");
1817 }
1da177e4
LT
1818 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1819
ec917c2c 1820#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1da177e4
LT
1821 if (reg_val & (1<<22))
1822 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1823
1824 if (reg_val & (1<<23))
1825 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1826#endif
1827
1828 panic("Can't handle the cache error!");
1829}
1830
75b5b5e0
LY
1831asmlinkage void do_ftlb(void)
1832{
1833 const int field = 2 * sizeof(unsigned long);
1834 unsigned int reg_val;
1835
1836 /* For the moment, report the problem and hang. */
9c7d5768 1837 if ((cpu_has_mips_r2_r6) &&
b2edcfc8
HC
1838 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1839 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
75b5b5e0
LY
1840 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1841 read_c0_ecc());
1842 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1843 reg_val = read_c0_cacheerr();
1844 pr_err("c0_cacheerr == %08x\n", reg_val);
1845
1846 if ((reg_val & 0xc0000000) == 0xc0000000) {
1847 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1848 } else {
1849 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1850 reg_val & (1<<30) ? "secondary" : "primary",
1851 reg_val & (1<<31) ? "data" : "insn");
1852 }
1853 } else {
1854 pr_err("FTLB error exception\n");
1855 }
1856 /* Just print the cacheerr bits for now */
1857 cache_parity_error();
1858}
1859
1da177e4
LT
1860/*
1861 * SDBBP EJTAG debug exception handler.
1862 * We skip the instruction and return to the next instruction.
1863 */
1864void ejtag_exception_handler(struct pt_regs *regs)
1865{
1866 const int field = 2 * sizeof(unsigned long);
2a0b24f5 1867 unsigned long depc, old_epc, old_ra;
1da177e4
LT
1868 unsigned int debug;
1869
70ae6126 1870 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1da177e4
LT
1871 depc = read_c0_depc();
1872 debug = read_c0_debug();
70ae6126 1873 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1da177e4
LT
1874 if (debug & 0x80000000) {
1875 /*
1876 * In branch delay slot.
1877 * We cheat a little bit here and use EPC to calculate the
1878 * debug return address (DEPC). EPC is restored after the
1879 * calculation.
1880 */
1881 old_epc = regs->cp0_epc;
2a0b24f5 1882 old_ra = regs->regs[31];
1da177e4 1883 regs->cp0_epc = depc;
2a0b24f5 1884 compute_return_epc(regs);
1da177e4
LT
1885 depc = regs->cp0_epc;
1886 regs->cp0_epc = old_epc;
2a0b24f5 1887 regs->regs[31] = old_ra;
1da177e4
LT
1888 } else
1889 depc += 4;
1890 write_c0_depc(depc);
1891
1892#if 0
70ae6126 1893 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1da177e4
LT
1894 write_c0_debug(debug | 0x100);
1895#endif
1896}
1897
1898/*
1899 * NMI exception handler.
34bd92e2 1900 * No lock; only written during early bootup by CPU 0.
1da177e4 1901 */
34bd92e2
KC
1902static RAW_NOTIFIER_HEAD(nmi_chain);
1903
1904int register_nmi_notifier(struct notifier_block *nb)
1905{
1906 return raw_notifier_chain_register(&nmi_chain, nb);
1907}
1908
ff2d8b19 1909void __noreturn nmi_exception_handler(struct pt_regs *regs)
1da177e4 1910{
83e4da1e
LY
1911 char str[100];
1912
7963b3f1 1913 nmi_enter();
34bd92e2 1914 raw_notifier_call_chain(&nmi_chain, 0, regs);
41c594ab 1915 bust_spinlocks(1);
83e4da1e
LY
1916 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1917 smp_processor_id(), regs->cp0_epc);
1918 regs->cp0_epc = read_c0_errorepc();
1919 die(str, regs);
7963b3f1 1920 nmi_exit();
1da177e4
LT
1921}
1922
e01402b1
RB
1923#define VECTORSPACING 0x100 /* for EI/VI mode */
1924
1925unsigned long ebase;
878edf01 1926EXPORT_SYMBOL_GPL(ebase);
1da177e4 1927unsigned long exception_handlers[32];
e01402b1 1928unsigned long vi_handlers[64];
1da177e4 1929
2d1b6e95 1930void __init *set_except_vector(int n, void *addr)
1da177e4
LT
1931{
1932 unsigned long handler = (unsigned long) addr;
b22d1b6a 1933 unsigned long old_handler;
1da177e4 1934
2a0b24f5
SH
1935#ifdef CONFIG_CPU_MICROMIPS
1936 /*
1937 * Only the TLB handlers are cache aligned with an even
1938 * address. All other handlers are on an odd address and
1939 * require no modification. Otherwise, MIPS32 mode will
1940 * be entered when handling any TLB exceptions. That
1941 * would be bad...since we must stay in microMIPS mode.
1942 */
1943 if (!(handler & 0x1))
1944 handler |= 1;
1945#endif
b22d1b6a 1946 old_handler = xchg(&exception_handlers[n], handler);
1da177e4 1947
1da177e4 1948 if (n == 0 && cpu_has_divec) {
2a0b24f5
SH
1949#ifdef CONFIG_CPU_MICROMIPS
1950 unsigned long jump_mask = ~((1 << 27) - 1);
1951#else
92bbe1b9 1952 unsigned long jump_mask = ~((1 << 28) - 1);
2a0b24f5 1953#endif
92bbe1b9
FF
1954 u32 *buf = (u32 *)(ebase + 0x200);
1955 unsigned int k0 = 26;
1956 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1957 uasm_i_j(&buf, handler & ~jump_mask);
1958 uasm_i_nop(&buf);
1959 } else {
1960 UASM_i_LA(&buf, k0, handler);
1961 uasm_i_jr(&buf, k0);
1962 uasm_i_nop(&buf);
1963 }
1964 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
e01402b1
RB
1965 }
1966 return (void *)old_handler;
1967}
1968
86a1708a 1969static void do_default_vi(void)
6ba07e59
AN
1970{
1971 show_regs(get_irq_regs());
1972 panic("Caught unexpected vectored interrupt.");
1973}
1974
ef300e42 1975static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
e01402b1
RB
1976{
1977 unsigned long handler;
1978 unsigned long old_handler = vi_handlers[n];
f6771dbb 1979 int srssets = current_cpu_data.srsets;
2a0b24f5 1980 u16 *h;
e01402b1
RB
1981 unsigned char *b;
1982
b72b7092 1983 BUG_ON(!cpu_has_veic && !cpu_has_vint);
e01402b1
RB
1984
1985 if (addr == NULL) {
1986 handler = (unsigned long) do_default_vi;
1987 srs = 0;
41c594ab 1988 } else
e01402b1 1989 handler = (unsigned long) addr;
2a0b24f5 1990 vi_handlers[n] = handler;
e01402b1
RB
1991
1992 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1993
f6771dbb 1994 if (srs >= srssets)
e01402b1
RB
1995 panic("Shadow register set %d not supported", srs);
1996
1997 if (cpu_has_veic) {
1998 if (board_bind_eic_interrupt)
49a89efb 1999 board_bind_eic_interrupt(n, srs);
41c594ab 2000 } else if (cpu_has_vint) {
e01402b1 2001 /* SRSMap is only defined if shadow sets are implemented */
f6771dbb 2002 if (srssets > 1)
49a89efb 2003 change_c0_srsmap(0xf << n*4, srs << n*4);
e01402b1
RB
2004 }
2005
2006 if (srs == 0) {
2007 /*
2008 * If no shadow set is selected then use the default handler
2a0b24f5 2009 * that does normal register saving and standard interrupt exit
e01402b1 2010 */
e01402b1
RB
2011 extern char except_vec_vi, except_vec_vi_lui;
2012 extern char except_vec_vi_ori, except_vec_vi_end;
c65a5480 2013 extern char rollback_except_vec_vi;
f94d9a8e 2014 char *vec_start = using_rollback_handler() ?
c65a5480 2015 &rollback_except_vec_vi : &except_vec_vi;
2a0b24f5
SH
2016#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2017 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2018 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2019#else
c65a5480
AN
2020 const int lui_offset = &except_vec_vi_lui - vec_start;
2021 const int ori_offset = &except_vec_vi_ori - vec_start;
2a0b24f5
SH
2022#endif
2023 const int handler_len = &except_vec_vi_end - vec_start;
e01402b1
RB
2024
2025 if (handler_len > VECTORSPACING) {
2026 /*
2027 * Sigh... panicing won't help as the console
2028 * is probably not configured :(
2029 */
49a89efb 2030 panic("VECTORSPACING too small");
e01402b1
RB
2031 }
2032
2a0b24f5
SH
2033 set_handler(((unsigned long)b - ebase), vec_start,
2034#ifdef CONFIG_CPU_MICROMIPS
2035 (handler_len - 1));
2036#else
2037 handler_len);
2038#endif
2a0b24f5
SH
2039 h = (u16 *)(b + lui_offset);
2040 *h = (handler >> 16) & 0xffff;
2041 h = (u16 *)(b + ori_offset);
2042 *h = (handler & 0xffff);
e0cee3ee
TB
2043 local_flush_icache_range((unsigned long)b,
2044 (unsigned long)(b+handler_len));
e01402b1
RB
2045 }
2046 else {
2047 /*
2a0b24f5
SH
2048 * In other cases jump directly to the interrupt handler. It
2049 * is the handler's responsibility to save registers if required
2050 * (eg hi/lo) and return from the exception using "eret".
e01402b1 2051 */
2a0b24f5
SH
2052 u32 insn;
2053
2054 h = (u16 *)b;
2055 /* j handler */
2056#ifdef CONFIG_CPU_MICROMIPS
2057 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2058#else
2059 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2060#endif
2061 h[0] = (insn >> 16) & 0xffff;
2062 h[1] = insn & 0xffff;
2063 h[2] = 0;
2064 h[3] = 0;
e0cee3ee
TB
2065 local_flush_icache_range((unsigned long)b,
2066 (unsigned long)(b+8));
1da177e4 2067 }
e01402b1 2068
1da177e4
LT
2069 return (void *)old_handler;
2070}
2071
ef300e42 2072void *set_vi_handler(int n, vi_handler_t addr)
e01402b1 2073{
ff3eab2a 2074 return set_vi_srs_handler(n, addr, 0);
e01402b1 2075}
f41ae0b2 2076
1da177e4
LT
2077extern void tlb_init(void);
2078
42f77542
RB
2079/*
2080 * Timer interrupt
2081 */
2082int cp0_compare_irq;
68b6352c 2083EXPORT_SYMBOL_GPL(cp0_compare_irq);
010c108d 2084int cp0_compare_irq_shift;
42f77542
RB
2085
2086/*
2087 * Performance counter IRQ or -1 if shared with timer
2088 */
2089int cp0_perfcount_irq;
2090EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2091
8f7ff027
JH
2092/*
2093 * Fast debug channel IRQ or -1 if not present
2094 */
2095int cp0_fdc_irq;
2096EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2097
078a55fc 2098static int noulri;
bdc94eb4
CD
2099
2100static int __init ulri_disable(char *s)
2101{
2102 pr_info("Disabling ulri\n");
2103 noulri = 1;
2104
2105 return 1;
2106}
2107__setup("noulri", ulri_disable);
2108
ae4ce454
JH
2109/* configure STATUS register */
2110static void configure_status(void)
1da177e4 2111{
1da177e4
LT
2112 /*
2113 * Disable coprocessors and select 32-bit or 64-bit addressing
2114 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2115 * flag that some firmware may have left set and the TS bit (for
2116 * IP27). Set XX for ISA IV code to work.
2117 */
ae4ce454 2118 unsigned int status_set = ST0_CU0;
875d43e7 2119#ifdef CONFIG_64BIT
1da177e4
LT
2120 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2121#endif
adb37892 2122 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1da177e4 2123 status_set |= ST0_XX;
bbaf238b
CD
2124 if (cpu_has_dsp)
2125 status_set |= ST0_MX;
2126
b38c7399 2127 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1da177e4 2128 status_set);
ae4ce454
JH
2129}
2130
b937ff62
JH
2131unsigned int hwrena;
2132EXPORT_SYMBOL_GPL(hwrena);
2133
ae4ce454
JH
2134/* configure HWRENA register */
2135static void configure_hwrena(void)
2136{
b937ff62 2137 hwrena = cpu_hwrena_impl_bits;
1da177e4 2138
9c7d5768 2139 if (cpu_has_mips_r2_r6)
aff565aa
JH
2140 hwrena |= MIPS_HWRENA_CPUNUM |
2141 MIPS_HWRENA_SYNCISTEP |
2142 MIPS_HWRENA_CC |
2143 MIPS_HWRENA_CCRES;
a3692020 2144
18d693b3 2145 if (!noulri && cpu_has_userlocal)
aff565aa 2146 hwrena |= MIPS_HWRENA_ULR;
a3692020 2147
18d693b3
KC
2148 if (hwrena)
2149 write_c0_hwrena(hwrena);
ae4ce454 2150}
e01402b1 2151
ae4ce454
JH
2152static void configure_exception_vector(void)
2153{
e01402b1 2154 if (cpu_has_veic || cpu_has_vint) {
9fb4c2b9 2155 unsigned long sr = set_c0_status(ST0_BEV);
4b22c693
MR
2156 /* If available, use WG to set top bits of EBASE */
2157 if (cpu_has_ebase_wg) {
2158#ifdef CONFIG_64BIT
2159 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2160#else
2161 write_c0_ebase(ebase | MIPS_EBASE_WG);
2162#endif
2163 }
49a89efb 2164 write_c0_ebase(ebase);
9fb4c2b9 2165 write_c0_status(sr);
e01402b1 2166 /* Setting vector spacing enables EI/VI mode */
49a89efb 2167 change_c0_intctl(0x3e0, VECTORSPACING);
e01402b1 2168 }
d03d0a57
RB
2169 if (cpu_has_divec) {
2170 if (cpu_has_mipsmt) {
2171 unsigned int vpflags = dvpe();
2172 set_c0_cause(CAUSEF_IV);
2173 evpe(vpflags);
2174 } else
2175 set_c0_cause(CAUSEF_IV);
2176 }
ae4ce454
JH
2177}
2178
2179void per_cpu_trap_init(bool is_boot_cpu)
2180{
2181 unsigned int cpu = smp_processor_id();
ae4ce454
JH
2182
2183 configure_status();
2184 configure_hwrena();
2185
ae4ce454 2186 configure_exception_vector();
3b1d4ed5
RB
2187
2188 /*
2189 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2190 *
2191 * o read IntCtl.IPTI to determine the timer interrupt
2192 * o read IntCtl.IPPCI to determine the performance counter interrupt
8f7ff027 2193 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
3b1d4ed5 2194 */
9c7d5768 2195 if (cpu_has_mips_r2_r6) {
04d83f94
MC
2196 /*
2197 * We shouldn't trust a secondary core has a sane EBASE register
2198 * so use the one calculated by the boot CPU.
2199 */
4b22c693
MR
2200 if (!is_boot_cpu) {
2201 /* If available, use WG to set top bits of EBASE */
2202 if (cpu_has_ebase_wg) {
2203#ifdef CONFIG_64BIT
2204 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2205#else
2206 write_c0_ebase(ebase | MIPS_EBASE_WG);
2207#endif
2208 }
04d83f94 2209 write_c0_ebase(ebase);
4b22c693 2210 }
04d83f94 2211
010c108d
DV
2212 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2213 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2214 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
8f7ff027
JH
2215 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2216 if (!cp0_fdc_irq)
2217 cp0_fdc_irq = -1;
2218
c3e838a2
CD
2219 } else {
2220 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
c6a4ebb9 2221 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
c3e838a2 2222 cp0_perfcount_irq = -1;
8f7ff027 2223 cp0_fdc_irq = -1;
3b1d4ed5
RB
2224 }
2225
c8790d65
PB
2226 if (cpu_has_mmid)
2227 cpu_data[cpu].asid_cache = 0;
2228 else if (!cpu_data[cpu].asid_cache)
4edf00a4 2229 cpu_data[cpu].asid_cache = asid_first_version(cpu);
1da177e4 2230
f1f10076 2231 mmgrab(&init_mm);
1da177e4
LT
2232 current->active_mm = &init_mm;
2233 BUG_ON(current->mm);
2234 enter_lazy_tlb(&init_mm, current);
2235
761b4493
MC
2236 /* Boot CPU's cache setup in setup_arch(). */
2237 if (!is_boot_cpu)
2238 cpu_cache_init();
2239 tlb_init();
3d8bfdd0 2240 TLBMISS_HANDLER_SETUP();
1da177e4
LT
2241}
2242
e01402b1 2243/* Install CPU exception handler */
078a55fc 2244void set_handler(unsigned long offset, void *addr, unsigned long size)
e01402b1 2245{
2a0b24f5
SH
2246#ifdef CONFIG_CPU_MICROMIPS
2247 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2248#else
e01402b1 2249 memcpy((void *)(ebase + offset), addr, size);
2a0b24f5 2250#endif
e0cee3ee 2251 local_flush_icache_range(ebase + offset, ebase + offset + size);
e01402b1
RB
2252}
2253
06324664
KC
2254static const char panic_null_cerr[] =
2255 "Trying to set NULL cache error exception handler\n";
641e97f3 2256
42fe7ee3
RB
2257/*
2258 * Install uncached CPU exception handler.
2259 * This is suitable only for the cache error exception which is the only
2260 * exception handler that is being run uncached.
2261 */
078a55fc 2262void set_uncached_handler(unsigned long offset, void *addr,
234fcd14 2263 unsigned long size)
e01402b1 2264{
4f81b01a 2265 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
e01402b1 2266
641e97f3
RB
2267 if (!addr)
2268 panic(panic_null_cerr);
2269
e01402b1
RB
2270 memcpy((void *)(uncached_ebase + offset), addr, size);
2271}
2272
5b10496b
AN
2273static int __initdata rdhwr_noopt;
2274static int __init set_rdhwr_noopt(char *str)
2275{
2276 rdhwr_noopt = 1;
2277 return 1;
2278}
2279
2280__setup("rdhwr_noopt", set_rdhwr_noopt);
2281
1da177e4
LT
2282void __init trap_init(void)
2283{
2a0b24f5 2284 extern char except_vec3_generic;
1da177e4 2285 extern char except_vec4;
2a0b24f5 2286 extern char except_vec3_r4000;
1da177e4 2287 unsigned long i;
c65a5480
AN
2288
2289 check_wait();
1da177e4 2290
9fb4c2b9
CD
2291 if (cpu_has_veic || cpu_has_vint) {
2292 unsigned long size = 0x200 + VECTORSPACING*64;
c195e079
JH
2293 phys_addr_t ebase_pa;
2294
9fb4c2b9 2295 ebase = (unsigned long)
9415673e 2296 memblock_alloc(size, 1 << fls(size));
8a7f97b9
MR
2297 if (!ebase)
2298 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2299 __func__, size, 1 << fls(size));
c195e079
JH
2300
2301 /*
2302 * Try to ensure ebase resides in KSeg0 if possible.
2303 *
2304 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2305 * hitting a poorly defined exception base for Cache Errors.
2306 * The allocation is likely to be in the low 512MB of physical,
2307 * in which case we should be able to convert to KSeg0.
2308 *
2309 * EVA is special though as it allows segments to be rearranged
2310 * and to become uncached during cache error handling.
2311 */
2312 ebase_pa = __pa(ebase);
2313 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2314 ebase = CKSEG0ADDR(ebase_pa);
9fb4c2b9 2315 } else {
a13c9962
PB
2316 ebase = CAC_BASE;
2317
18022894
JH
2318 if (cpu_has_mips_r2_r6) {
2319 if (cpu_has_ebase_wg) {
2320#ifdef CONFIG_64BIT
2321 ebase = (read_c0_ebase_64() & ~0xfff);
2322#else
2323 ebase = (read_c0_ebase() & ~0xfff);
2324#endif
2325 } else {
2326 ebase += (read_c0_ebase() & 0x3ffff000);
2327 }
2328 }
566f74f6 2329 }
e01402b1 2330
c6213c6c
SH
2331 if (cpu_has_mmips) {
2332 unsigned int config3 = read_c0_config3();
2333
2334 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2335 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2336 else
2337 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2338 }
2339
6fb97eff
KC
2340 if (board_ebase_setup)
2341 board_ebase_setup();
6650df3c 2342 per_cpu_trap_init(true);
25517ed4 2343 memblock_set_bottom_up(false);
1da177e4
LT
2344
2345 /*
2346 * Copy the generic exception handlers to their final destination.
92a76f6d 2347 * This will be overridden later as suitable for a particular
1da177e4
LT
2348 * configuration.
2349 */
e01402b1 2350 set_handler(0x180, &except_vec3_generic, 0x80);
1da177e4
LT
2351
2352 /*
2353 * Setup default vectors
2354 */
2355 for (i = 0; i <= 31; i++)
2356 set_except_vector(i, handle_reserved);
2357
2358 /*
2359 * Copy the EJTAG debug exception vector handler code to it's final
2360 * destination.
2361 */
e01402b1 2362 if (cpu_has_ejtag && board_ejtag_handler_setup)
49a89efb 2363 board_ejtag_handler_setup();
1da177e4
LT
2364
2365 /*
2366 * Only some CPUs have the watch exceptions.
2367 */
2368 if (cpu_has_watch)
1b505def 2369 set_except_vector(EXCCODE_WATCH, handle_watch);
1da177e4
LT
2370
2371 /*
e01402b1 2372 * Initialise interrupt handlers
1da177e4 2373 */
e01402b1
RB
2374 if (cpu_has_veic || cpu_has_vint) {
2375 int nvec = cpu_has_veic ? 64 : 8;
2376 for (i = 0; i < nvec; i++)
ff3eab2a 2377 set_vi_handler(i, NULL);
e01402b1
RB
2378 }
2379 else if (cpu_has_divec)
2380 set_handler(0x200, &except_vec4, 0x8);
1da177e4
LT
2381
2382 /*
2383 * Some CPUs can enable/disable for cache parity detection, but does
2384 * it different ways.
2385 */
2386 parity_protection_init();
2387
2388 /*
2389 * The Data Bus Errors / Instruction Bus Errors are signaled
2390 * by external hardware. Therefore these two exceptions
2391 * may have board specific handlers.
2392 */
2393 if (board_be_init)
2394 board_be_init();
2395
1b505def
JH
2396 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2397 rollback_handle_int : handle_int);
2398 set_except_vector(EXCCODE_MOD, handle_tlbm);
2399 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2400 set_except_vector(EXCCODE_TLBS, handle_tlbs);
1da177e4 2401
1b505def
JH
2402 set_except_vector(EXCCODE_ADEL, handle_adel);
2403 set_except_vector(EXCCODE_ADES, handle_ades);
1da177e4 2404
1b505def
JH
2405 set_except_vector(EXCCODE_IBE, handle_ibe);
2406 set_except_vector(EXCCODE_DBE, handle_dbe);
1da177e4 2407
1b505def
JH
2408 set_except_vector(EXCCODE_SYS, handle_sys);
2409 set_except_vector(EXCCODE_BP, handle_bp);
5a341331
HC
2410
2411 if (rdhwr_noopt)
2412 set_except_vector(EXCCODE_RI, handle_ri);
2413 else {
2414 if (cpu_has_vtag_icache)
2415 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2416 else if (current_cpu_type() == CPU_LOONGSON3)
2417 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2418 else
2419 set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2420 }
2421
1b505def
JH
2422 set_except_vector(EXCCODE_CPU, handle_cpu);
2423 set_except_vector(EXCCODE_OV, handle_ov);
2424 set_except_vector(EXCCODE_TR, handle_tr);
2425 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
1da177e4 2426
e01402b1
RB
2427 if (board_nmi_handler_setup)
2428 board_nmi_handler_setup();
2429
e50c0a8f 2430 if (cpu_has_fpu && !cpu_has_nofpuex)
1b505def 2431 set_except_vector(EXCCODE_FPE, handle_fpe);
e50c0a8f 2432
1b505def 2433 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
5890f70f
LY
2434
2435 if (cpu_has_rixiex) {
1b505def
JH
2436 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2437 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
5890f70f
LY
2438 }
2439
1b505def
JH
2440 set_except_vector(EXCCODE_MSADIS, handle_msa);
2441 set_except_vector(EXCCODE_MDMX, handle_mdmx);
e50c0a8f
RB
2442
2443 if (cpu_has_mcheck)
1b505def 2444 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
e50c0a8f 2445
340ee4b9 2446 if (cpu_has_mipsmt)
1b505def 2447 set_except_vector(EXCCODE_THREAD, handle_mt);
340ee4b9 2448
1b505def 2449 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
e50c0a8f 2450
fcbf1dfd
DD
2451 if (board_cache_error_setup)
2452 board_cache_error_setup();
2453
e50c0a8f
RB
2454 if (cpu_has_vce)
2455 /* Special exception: R4[04]00 uses also the divec space. */
2a0b24f5 2456 set_handler(0x180, &except_vec3_r4000, 0x100);
e50c0a8f 2457 else if (cpu_has_4kex)
2a0b24f5 2458 set_handler(0x180, &except_vec3_generic, 0x80);
e50c0a8f 2459 else
2a0b24f5 2460 set_handler(0x080, &except_vec3_generic, 0x80);
e50c0a8f 2461
e0cee3ee 2462 local_flush_icache_range(ebase, ebase + 0x400);
0510617b
TB
2463
2464 sort_extable(__start___dbe_table, __stop___dbe_table);
69f3a7de 2465
4483b159 2466 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
1da177e4 2467}
ae4ce454
JH
2468
2469static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2470 void *v)
2471{
2472 switch (cmd) {
2473 case CPU_PM_ENTER_FAILED:
2474 case CPU_PM_EXIT:
2475 configure_status();
2476 configure_hwrena();
2477 configure_exception_vector();
2478
2479 /* Restore register with CPU number for TLB handlers */
2480 TLBMISS_HANDLER_RESTORE();
2481
2482 break;
2483 }
2484
2485 return NOTIFY_OK;
2486}
2487
2488static struct notifier_block trap_pm_notifier_block = {
2489 .notifier_call = trap_pm_notifier,
2490};
2491
2492static int __init trap_pm_init(void)
2493{
2494 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2495}
2496arch_initcall(trap_pm_init);