]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/mips/kernel/traps.c
Replace <asm/uaccess.h> with <linux/uaccess.h> globally
[mirror_ubuntu-zesty-kernel.git] / arch / mips / kernel / traps.c
CommitLineData
1da177e4
LT
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
36ccf1c0 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
1da177e4
LT
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
60b0d655 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
2a0b24f5 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
b08a9c95 13 * Copyright (C) 2014, Imagination Technologies Ltd.
1da177e4 14 */
ed2d72c1 15#include <linux/bitops.h>
8e8a52ed 16#include <linux/bug.h>
60b0d655 17#include <linux/compiler.h>
c3fc5cd5 18#include <linux/context_tracking.h>
ae4ce454 19#include <linux/cpu_pm.h>
7aa1c8f4 20#include <linux/kexec.h>
1da177e4 21#include <linux/init.h>
8742cd23 22#include <linux/kernel.h>
f9ded569 23#include <linux/module.h>
9f3b8081 24#include <linux/extable.h>
1da177e4 25#include <linux/mm.h>
1da177e4
LT
26#include <linux/sched.h>
27#include <linux/smp.h>
1da177e4
LT
28#include <linux/spinlock.h>
29#include <linux/kallsyms.h>
e01402b1 30#include <linux/bootmem.h>
d4fd1989 31#include <linux/interrupt.h>
39b8d525 32#include <linux/ptrace.h>
88547001
JW
33#include <linux/kgdb.h>
34#include <linux/kdebug.h>
c1bf207d 35#include <linux/kprobes.h>
69f3a7de 36#include <linux/notifier.h>
5dd11d5d 37#include <linux/kdb.h>
ca4d3e67 38#include <linux/irq.h>
7f788d2d 39#include <linux/perf_event.h>
1da177e4 40
a13c9962 41#include <asm/addrspace.h>
1da177e4
LT
42#include <asm/bootinfo.h>
43#include <asm/branch.h>
44#include <asm/break.h>
69f3a7de 45#include <asm/cop2.h>
1da177e4 46#include <asm/cpu.h>
69f24d17 47#include <asm/cpu-type.h>
e50c0a8f 48#include <asm/dsp.h>
1da177e4 49#include <asm/fpu.h>
ba3049ed 50#include <asm/fpu_emulator.h>
bdc92d74 51#include <asm/idle.h>
dabdc185 52#include <asm/mips-cm.h>
b0a668fb 53#include <asm/mips-r2-to-r6-emul.h>
340ee4b9
RB
54#include <asm/mipsregs.h>
55#include <asm/mipsmtregs.h>
1da177e4 56#include <asm/module.h>
1db1af84 57#include <asm/msa.h>
1da177e4
LT
58#include <asm/pgtable.h>
59#include <asm/ptrace.h>
60#include <asm/sections.h>
3b143cca 61#include <asm/siginfo.h>
1da177e4
LT
62#include <asm/tlbdebug.h>
63#include <asm/traps.h>
7c0f6ba6 64#include <linux/uaccess.h>
b67b2b70 65#include <asm/watch.h>
1da177e4 66#include <asm/mmu_context.h>
1da177e4 67#include <asm/types.h>
1df0f0ff 68#include <asm/stacktrace.h>
92bbe1b9 69#include <asm/uasm.h>
1da177e4 70
c65a5480 71extern void check_wait(void);
c65a5480 72extern asmlinkage void rollback_handle_int(void);
e4ac58af 73extern asmlinkage void handle_int(void);
86a1708a
RB
74extern u32 handle_tlbl[];
75extern u32 handle_tlbs[];
76extern u32 handle_tlbm[];
1da177e4
LT
77extern asmlinkage void handle_adel(void);
78extern asmlinkage void handle_ades(void);
79extern asmlinkage void handle_ibe(void);
80extern asmlinkage void handle_dbe(void);
81extern asmlinkage void handle_sys(void);
82extern asmlinkage void handle_bp(void);
83extern asmlinkage void handle_ri(void);
5b10496b
AN
84extern asmlinkage void handle_ri_rdhwr_vivt(void);
85extern asmlinkage void handle_ri_rdhwr(void);
1da177e4
LT
86extern asmlinkage void handle_cpu(void);
87extern asmlinkage void handle_ov(void);
88extern asmlinkage void handle_tr(void);
2bcb3fbc 89extern asmlinkage void handle_msa_fpe(void);
1da177e4 90extern asmlinkage void handle_fpe(void);
75b5b5e0 91extern asmlinkage void handle_ftlb(void);
1db1af84 92extern asmlinkage void handle_msa(void);
1da177e4
LT
93extern asmlinkage void handle_mdmx(void);
94extern asmlinkage void handle_watch(void);
340ee4b9 95extern asmlinkage void handle_mt(void);
e50c0a8f 96extern asmlinkage void handle_dsp(void);
1da177e4
LT
97extern asmlinkage void handle_mcheck(void);
98extern asmlinkage void handle_reserved(void);
5890f70f 99extern void tlb_do_page_fault_0(void);
1da177e4 100
1da177e4
LT
101void (*board_be_init)(void);
102int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
e01402b1
RB
103void (*board_nmi_handler_setup)(void);
104void (*board_ejtag_handler_setup)(void);
105void (*board_bind_eic_interrupt)(int irq, int regset);
6fb97eff 106void (*board_ebase_setup)(void);
078a55fc 107void(*board_cache_error_setup)(void);
1da177e4 108
4d157d5e 109static void show_raw_backtrace(unsigned long reg29)
e889d78f 110{
39b8d525 111 unsigned long *sp = (unsigned long *)(reg29 & ~3);
e889d78f
AN
112 unsigned long addr;
113
114 printk("Call Trace:");
115#ifdef CONFIG_KALLSYMS
116 printk("\n");
117#endif
10220c88
TB
118 while (!kstack_end(sp)) {
119 unsigned long __user *p =
120 (unsigned long __user *)(unsigned long)sp++;
121 if (__get_user(addr, p)) {
122 printk(" (Bad stack address)");
123 break;
39b8d525 124 }
10220c88
TB
125 if (__kernel_text_address(addr))
126 print_ip_sym(addr);
e889d78f 127 }
10220c88 128 printk("\n");
e889d78f
AN
129}
130
f66686f7 131#ifdef CONFIG_KALLSYMS
1df0f0ff 132int raw_show_trace;
f66686f7
AN
133static int __init set_raw_show_trace(char *str)
134{
135 raw_show_trace = 1;
136 return 1;
137}
138__setup("raw_show_trace", set_raw_show_trace);
1df0f0ff 139#endif
4d157d5e 140
eae23f2c 141static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
f66686f7 142{
4d157d5e
FBH
143 unsigned long sp = regs->regs[29];
144 unsigned long ra = regs->regs[31];
f66686f7 145 unsigned long pc = regs->cp0_epc;
f66686f7 146
e909be82
VW
147 if (!task)
148 task = current;
149
81a76d71 150 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
87151ae3 151 show_raw_backtrace(sp);
f66686f7
AN
152 return;
153 }
154 printk("Call Trace:\n");
4d157d5e 155 do {
87151ae3 156 print_ip_sym(pc);
1924600c 157 pc = unwind_stack(task, &sp, pc, &ra);
4d157d5e 158 } while (pc);
bcf084de 159 pr_cont("\n");
f66686f7 160}
f66686f7 161
1da177e4
LT
162/*
163 * This routine abuses get_user()/put_user() to reference pointers
164 * with at least a bit of error checking ...
165 */
eae23f2c
RB
166static void show_stacktrace(struct task_struct *task,
167 const struct pt_regs *regs)
1da177e4
LT
168{
169 const int field = 2 * sizeof(unsigned long);
170 long stackdata;
171 int i;
5e0373b8 172 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
1da177e4
LT
173
174 printk("Stack :");
175 i = 0;
176 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
fe4e09e7
MR
177 if (i && ((i % (64 / field)) == 0)) {
178 pr_cont("\n");
179 printk(" ");
180 }
1da177e4 181 if (i > 39) {
fe4e09e7 182 pr_cont(" ...");
1da177e4
LT
183 break;
184 }
185
186 if (__get_user(stackdata, sp++)) {
fe4e09e7 187 pr_cont(" (Bad stack address)");
1da177e4
LT
188 break;
189 }
190
fe4e09e7 191 pr_cont(" %0*lx", field, stackdata);
1da177e4
LT
192 i++;
193 }
fe4e09e7 194 pr_cont("\n");
87151ae3 195 show_backtrace(task, regs);
f66686f7
AN
196}
197
f66686f7
AN
198void show_stack(struct task_struct *task, unsigned long *sp)
199{
200 struct pt_regs regs;
1e77863a 201 mm_segment_t old_fs = get_fs();
f66686f7
AN
202 if (sp) {
203 regs.regs[29] = (unsigned long)sp;
204 regs.regs[31] = 0;
205 regs.cp0_epc = 0;
206 } else {
207 if (task && task != current) {
208 regs.regs[29] = task->thread.reg29;
209 regs.regs[31] = 0;
210 regs.cp0_epc = task->thread.reg31;
5dd11d5d
JW
211#ifdef CONFIG_KGDB_KDB
212 } else if (atomic_read(&kgdb_active) != -1 &&
213 kdb_current_regs) {
214 memcpy(&regs, kdb_current_regs, sizeof(regs));
215#endif /* CONFIG_KGDB_KDB */
f66686f7
AN
216 } else {
217 prepare_frametrace(&regs);
218 }
219 }
1e77863a
JH
220 /*
221 * show_stack() deals exclusively with kernel mode, so be sure to access
222 * the stack in the kernel (not user) address space.
223 */
224 set_fs(KERNEL_DS);
f66686f7 225 show_stacktrace(task, &regs);
1e77863a 226 set_fs(old_fs);
1da177e4
LT
227}
228
e1bb8289 229static void show_code(unsigned int __user *pc)
1da177e4
LT
230{
231 long i;
39b8d525 232 unsigned short __user *pc16 = NULL;
1da177e4 233
41000c58 234 printk("Code:");
1da177e4 235
39b8d525
RB
236 if ((unsigned long)pc & 1)
237 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
1da177e4
LT
238 for(i = -3 ; i < 6 ; i++) {
239 unsigned int insn;
39b8d525 240 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
41000c58 241 pr_cont(" (Bad address in epc)\n");
1da177e4
LT
242 break;
243 }
41000c58 244 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
1da177e4 245 }
41000c58 246 pr_cont("\n");
1da177e4
LT
247}
248
eae23f2c 249static void __show_regs(const struct pt_regs *regs)
1da177e4
LT
250{
251 const int field = 2 * sizeof(unsigned long);
252 unsigned int cause = regs->cp0_cause;
37dd3818 253 unsigned int exccode;
1da177e4
LT
254 int i;
255
a43cb95d 256 show_regs_print_info(KERN_DEFAULT);
1da177e4
LT
257
258 /*
259 * Saved main processor registers
260 */
261 for (i = 0; i < 32; ) {
262 if ((i % 4) == 0)
263 printk("$%2d :", i);
264 if (i == 0)
752f5499 265 pr_cont(" %0*lx", field, 0UL);
1da177e4 266 else if (i == 26 || i == 27)
752f5499 267 pr_cont(" %*s", field, "");
1da177e4 268 else
752f5499 269 pr_cont(" %0*lx", field, regs->regs[i]);
1da177e4
LT
270
271 i++;
272 if ((i % 4) == 0)
752f5499 273 pr_cont("\n");
1da177e4
LT
274 }
275
9693a853
FBH
276#ifdef CONFIG_CPU_HAS_SMARTMIPS
277 printk("Acx : %0*lx\n", field, regs->acx);
278#endif
1da177e4
LT
279 printk("Hi : %0*lx\n", field, regs->hi);
280 printk("Lo : %0*lx\n", field, regs->lo);
281
282 /*
283 * Saved cp0 registers
284 */
b012cffe
RB
285 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
286 (void *) regs->cp0_epc);
b012cffe
RB
287 printk("ra : %0*lx %pS\n", field, regs->regs[31],
288 (void *) regs->regs[31]);
1da177e4 289
70342287 290 printk("Status: %08x ", (uint32_t) regs->cp0_status);
1da177e4 291
1990e542 292 if (cpu_has_3kex) {
3b2396d9 293 if (regs->cp0_status & ST0_KUO)
752f5499 294 pr_cont("KUo ");
3b2396d9 295 if (regs->cp0_status & ST0_IEO)
752f5499 296 pr_cont("IEo ");
3b2396d9 297 if (regs->cp0_status & ST0_KUP)
752f5499 298 pr_cont("KUp ");
3b2396d9 299 if (regs->cp0_status & ST0_IEP)
752f5499 300 pr_cont("IEp ");
3b2396d9 301 if (regs->cp0_status & ST0_KUC)
752f5499 302 pr_cont("KUc ");
3b2396d9 303 if (regs->cp0_status & ST0_IEC)
752f5499 304 pr_cont("IEc ");
1990e542 305 } else if (cpu_has_4kex) {
3b2396d9 306 if (regs->cp0_status & ST0_KX)
752f5499 307 pr_cont("KX ");
3b2396d9 308 if (regs->cp0_status & ST0_SX)
752f5499 309 pr_cont("SX ");
3b2396d9 310 if (regs->cp0_status & ST0_UX)
752f5499 311 pr_cont("UX ");
3b2396d9
MR
312 switch (regs->cp0_status & ST0_KSU) {
313 case KSU_USER:
752f5499 314 pr_cont("USER ");
3b2396d9
MR
315 break;
316 case KSU_SUPERVISOR:
752f5499 317 pr_cont("SUPERVISOR ");
3b2396d9
MR
318 break;
319 case KSU_KERNEL:
752f5499 320 pr_cont("KERNEL ");
3b2396d9
MR
321 break;
322 default:
752f5499 323 pr_cont("BAD_MODE ");
3b2396d9
MR
324 break;
325 }
326 if (regs->cp0_status & ST0_ERL)
752f5499 327 pr_cont("ERL ");
3b2396d9 328 if (regs->cp0_status & ST0_EXL)
752f5499 329 pr_cont("EXL ");
3b2396d9 330 if (regs->cp0_status & ST0_IE)
752f5499 331 pr_cont("IE ");
1da177e4 332 }
752f5499 333 pr_cont("\n");
1da177e4 334
37dd3818
PG
335 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
336 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
1da177e4 337
37dd3818 338 if (1 <= exccode && exccode <= 5)
1da177e4
LT
339 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
340
9966db25
RB
341 printk("PrId : %08x (%s)\n", read_c0_prid(),
342 cpu_name_string());
1da177e4
LT
343}
344
eae23f2c
RB
345/*
346 * FIXME: really the generic show_regs should take a const pointer argument.
347 */
348void show_regs(struct pt_regs *regs)
349{
350 __show_regs((struct pt_regs *)regs);
351}
352
c1bf207d 353void show_registers(struct pt_regs *regs)
1da177e4 354{
39b8d525 355 const int field = 2 * sizeof(unsigned long);
83e4da1e 356 mm_segment_t old_fs = get_fs();
39b8d525 357
eae23f2c 358 __show_regs(regs);
1da177e4 359 print_modules();
39b8d525
RB
360 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
361 current->comm, current->pid, current_thread_info(), current,
362 field, current_thread_info()->tp_value);
363 if (cpu_has_userlocal) {
364 unsigned long tls;
365
366 tls = read_c0_userlocal();
367 if (tls != current_thread_info()->tp_value)
368 printk("*HwTLS: %0*lx\n", field, tls);
369 }
370
83e4da1e
LY
371 if (!user_mode(regs))
372 /* Necessary for getting the correct stack content */
373 set_fs(KERNEL_DS);
f66686f7 374 show_stacktrace(current, regs);
e1bb8289 375 show_code((unsigned int __user *) regs->cp0_epc);
1da177e4 376 printk("\n");
83e4da1e 377 set_fs(old_fs);
1da177e4
LT
378}
379
4d85f6af 380static DEFINE_RAW_SPINLOCK(die_lock);
1da177e4 381
70dc6f04 382void __noreturn die(const char *str, struct pt_regs *regs)
1da177e4
LT
383{
384 static int die_counter;
ce384d83 385 int sig = SIGSEGV;
1da177e4 386
8742cd23
NL
387 oops_enter();
388
e3b28831 389 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
dc73e4c1 390 SIGSEGV) == NOTIFY_STOP)
10423c91 391 sig = 0;
5dd11d5d 392
1da177e4 393 console_verbose();
4d85f6af 394 raw_spin_lock_irq(&die_lock);
41c594ab 395 bust_spinlocks(1);
ce384d83 396
178086c8 397 printk("%s[#%d]:\n", str, ++die_counter);
1da177e4 398 show_registers(regs);
373d4d09 399 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
4d85f6af 400 raw_spin_unlock_irq(&die_lock);
d4fd1989 401
8742cd23
NL
402 oops_exit();
403
d4fd1989
MB
404 if (in_interrupt())
405 panic("Fatal exception in interrupt");
406
99a7a234 407 if (panic_on_oops)
d4fd1989 408 panic("Fatal exception");
d4fd1989 409
7aa1c8f4
RB
410 if (regs && kexec_should_crash(current))
411 crash_kexec(regs);
412
ce384d83 413 do_exit(sig);
1da177e4
LT
414}
415
0510617b
TB
416extern struct exception_table_entry __start___dbe_table[];
417extern struct exception_table_entry __stop___dbe_table[];
1da177e4 418
b6dcec9b
RB
419__asm__(
420" .section __dbe_table, \"a\"\n"
421" .previous \n");
1da177e4
LT
422
423/* Given an address, look for it in the exception tables. */
424static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
425{
426 const struct exception_table_entry *e;
427
428 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
429 if (!e)
430 e = search_module_dbetables(addr);
431 return e;
432}
433
434asmlinkage void do_be(struct pt_regs *regs)
435{
436 const int field = 2 * sizeof(unsigned long);
437 const struct exception_table_entry *fixup = NULL;
438 int data = regs->cp0_cause & 4;
439 int action = MIPS_BE_FATAL;
c3fc5cd5 440 enum ctx_state prev_state;
1da177e4 441
c3fc5cd5 442 prev_state = exception_enter();
70342287 443 /* XXX For now. Fixme, this searches the wrong table ... */
1da177e4
LT
444 if (data && !user_mode(regs))
445 fixup = search_dbe_tables(exception_epc(regs));
446
447 if (fixup)
448 action = MIPS_BE_FIXUP;
449
450 if (board_be_handler)
28fc582c 451 action = board_be_handler(regs, fixup != NULL);
dabdc185
PB
452 else
453 mips_cm_error_report();
1da177e4
LT
454
455 switch (action) {
456 case MIPS_BE_DISCARD:
c3fc5cd5 457 goto out;
1da177e4
LT
458 case MIPS_BE_FIXUP:
459 if (fixup) {
460 regs->cp0_epc = fixup->nextinsn;
c3fc5cd5 461 goto out;
1da177e4
LT
462 }
463 break;
464 default:
465 break;
466 }
467
468 /*
469 * Assume it would be too dangerous to continue ...
470 */
471 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
472 data ? "Data" : "Instruction",
473 field, regs->cp0_epc, field, regs->regs[31]);
e3b28831 474 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
dc73e4c1 475 SIGBUS) == NOTIFY_STOP)
c3fc5cd5 476 goto out;
88547001 477
1da177e4
LT
478 die_if_kernel("Oops", regs);
479 force_sig(SIGBUS, current);
c3fc5cd5
RB
480
481out:
482 exception_exit(prev_state);
1da177e4
LT
483}
484
1da177e4 485/*
60b0d655 486 * ll/sc, rdhwr, sync emulation
1da177e4
LT
487 */
488
489#define OPCODE 0xfc000000
490#define BASE 0x03e00000
491#define RT 0x001f0000
492#define OFFSET 0x0000ffff
493#define LL 0xc0000000
494#define SC 0xe0000000
60b0d655 495#define SPEC0 0x00000000
3c37026d
RB
496#define SPEC3 0x7c000000
497#define RD 0x0000f800
498#define FUNC 0x0000003f
60b0d655 499#define SYNC 0x0000000f
3c37026d 500#define RDHWR 0x0000003b
1da177e4 501
2a0b24f5
SH
502/* microMIPS definitions */
503#define MM_POOL32A_FUNC 0xfc00ffff
504#define MM_RDHWR 0x00006b3c
505#define MM_RS 0x001f0000
506#define MM_RT 0x03e00000
507
1da177e4
LT
508/*
509 * The ll_bit is cleared by r*_switch.S
510 */
511
f1e39a4a
RB
512unsigned int ll_bit;
513struct task_struct *ll_task;
1da177e4 514
60b0d655 515static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
1da177e4 516{
fe00f943 517 unsigned long value, __user *vaddr;
1da177e4 518 long offset;
1da177e4
LT
519
520 /*
521 * analyse the ll instruction that just caused a ri exception
522 * and put the referenced address to addr.
523 */
524
525 /* sign extend offset */
526 offset = opcode & OFFSET;
527 offset <<= 16;
528 offset >>= 16;
529
fe00f943 530 vaddr = (unsigned long __user *)
b9688310 531 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4 532
60b0d655
MR
533 if ((unsigned long)vaddr & 3)
534 return SIGBUS;
535 if (get_user(value, vaddr))
536 return SIGSEGV;
1da177e4
LT
537
538 preempt_disable();
539
540 if (ll_task == NULL || ll_task == current) {
541 ll_bit = 1;
542 } else {
543 ll_bit = 0;
544 }
545 ll_task = current;
546
547 preempt_enable();
548
549 regs->regs[(opcode & RT) >> 16] = value;
550
60b0d655 551 return 0;
1da177e4
LT
552}
553
60b0d655 554static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
1da177e4 555{
fe00f943
RB
556 unsigned long __user *vaddr;
557 unsigned long reg;
1da177e4 558 long offset;
1da177e4
LT
559
560 /*
561 * analyse the sc instruction that just caused a ri exception
562 * and put the referenced address to addr.
563 */
564
565 /* sign extend offset */
566 offset = opcode & OFFSET;
567 offset <<= 16;
568 offset >>= 16;
569
fe00f943 570 vaddr = (unsigned long __user *)
b9688310 571 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4
LT
572 reg = (opcode & RT) >> 16;
573
60b0d655
MR
574 if ((unsigned long)vaddr & 3)
575 return SIGBUS;
1da177e4
LT
576
577 preempt_disable();
578
579 if (ll_bit == 0 || ll_task != current) {
580 regs->regs[reg] = 0;
581 preempt_enable();
60b0d655 582 return 0;
1da177e4
LT
583 }
584
585 preempt_enable();
586
60b0d655
MR
587 if (put_user(regs->regs[reg], vaddr))
588 return SIGSEGV;
1da177e4
LT
589
590 regs->regs[reg] = 1;
591
60b0d655 592 return 0;
1da177e4
LT
593}
594
595/*
596 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
597 * opcodes are supposed to result in coprocessor unusable exceptions if
598 * executed on ll/sc-less processors. That's the theory. In practice a
599 * few processors such as NEC's VR4100 throw reserved instruction exceptions
600 * instead, so we're doing the emulation thing in both exception handlers.
601 */
60b0d655 602static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
1da177e4 603{
7f788d2d
DCZ
604 if ((opcode & OPCODE) == LL) {
605 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 606 1, regs, 0);
60b0d655 607 return simulate_ll(regs, opcode);
7f788d2d
DCZ
608 }
609 if ((opcode & OPCODE) == SC) {
610 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 611 1, regs, 0);
60b0d655 612 return simulate_sc(regs, opcode);
7f788d2d 613 }
1da177e4 614
60b0d655 615 return -1; /* Must be something else ... */
1da177e4
LT
616}
617
3c37026d
RB
618/*
619 * Simulate trapping 'rdhwr' instructions to provide user accessible
1f5826bd 620 * registers not implemented in hardware.
3c37026d 621 */
2a0b24f5 622static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
3c37026d 623{
dc8f6029 624 struct thread_info *ti = task_thread_info(current);
3c37026d 625
2a0b24f5
SH
626 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
627 1, regs, 0);
628 switch (rd) {
aff565aa 629 case MIPS_HWR_CPUNUM: /* CPU number */
2a0b24f5
SH
630 regs->regs[rt] = smp_processor_id();
631 return 0;
aff565aa 632 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
2a0b24f5
SH
633 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
634 current_cpu_data.icache.linesz);
635 return 0;
aff565aa 636 case MIPS_HWR_CC: /* Read count register */
2a0b24f5
SH
637 regs->regs[rt] = read_c0_count();
638 return 0;
aff565aa 639 case MIPS_HWR_CCRES: /* Count register resolution */
69f24d17 640 switch (current_cpu_type()) {
2a0b24f5
SH
641 case CPU_20KC:
642 case CPU_25KF:
643 regs->regs[rt] = 1;
644 break;
645 default:
646 regs->regs[rt] = 2;
647 }
648 return 0;
aff565aa 649 case MIPS_HWR_ULR: /* Read UserLocal register */
2a0b24f5
SH
650 regs->regs[rt] = ti->tp_value;
651 return 0;
652 default:
653 return -1;
654 }
655}
656
657static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
658{
3c37026d
RB
659 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
660 int rd = (opcode & RD) >> 11;
661 int rt = (opcode & RT) >> 16;
2a0b24f5
SH
662
663 simulate_rdhwr(regs, rd, rt);
664 return 0;
665 }
666
667 /* Not ours. */
668 return -1;
669}
670
7aa70471 671static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
2a0b24f5
SH
672{
673 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
674 int rd = (opcode & MM_RS) >> 16;
675 int rt = (opcode & MM_RT) >> 21;
676 simulate_rdhwr(regs, rd, rt);
677 return 0;
3c37026d
RB
678 }
679
56ebd51b 680 /* Not ours. */
60b0d655
MR
681 return -1;
682}
e5679882 683
60b0d655
MR
684static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
685{
7f788d2d
DCZ
686 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
687 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 688 1, regs, 0);
60b0d655 689 return 0;
7f788d2d 690 }
60b0d655
MR
691
692 return -1; /* Must be something else ... */
3c37026d
RB
693}
694
1da177e4
LT
695asmlinkage void do_ov(struct pt_regs *regs)
696{
c3fc5cd5 697 enum ctx_state prev_state;
e723e3f7
MR
698 siginfo_t info = {
699 .si_signo = SIGFPE,
700 .si_code = FPE_INTOVF,
701 .si_addr = (void __user *)regs->cp0_epc,
702 };
1da177e4 703
c3fc5cd5 704 prev_state = exception_enter();
36ccf1c0
RB
705 die_if_kernel("Integer overflow", regs);
706
1da177e4 707 force_sig_info(SIGFPE, &info, current);
c3fc5cd5 708 exception_exit(prev_state);
1da177e4
LT
709}
710
5a1aca44
MR
711/*
712 * Send SIGFPE according to FCSR Cause bits, which must have already
713 * been masked against Enable bits. This is impotant as Inexact can
714 * happen together with Overflow or Underflow, and `ptrace' can set
715 * any bits.
716 */
717void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
718 struct task_struct *tsk)
719{
720 struct siginfo si = { .si_addr = fault_addr, .si_signo = SIGFPE };
721
722 if (fcr31 & FPU_CSR_INV_X)
723 si.si_code = FPE_FLTINV;
724 else if (fcr31 & FPU_CSR_DIV_X)
725 si.si_code = FPE_FLTDIV;
726 else if (fcr31 & FPU_CSR_OVF_X)
727 si.si_code = FPE_FLTOVF;
728 else if (fcr31 & FPU_CSR_UDF_X)
729 si.si_code = FPE_FLTUND;
730 else if (fcr31 & FPU_CSR_INE_X)
731 si.si_code = FPE_FLTRES;
732 else
733 si.si_code = __SI_FAULT;
734 force_sig_info(SIGFPE, &si, tsk);
735}
736
304acb71 737int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
515b029d 738{
304acb71 739 struct siginfo si = { 0 };
bcfc8f0d 740 struct vm_area_struct *vma;
304acb71
MR
741
742 switch (sig) {
743 case 0:
744 return 0;
ad70c13a 745
304acb71 746 case SIGFPE:
5a1aca44 747 force_fcr31_sig(fcr31, fault_addr, current);
515b029d 748 return 1;
304acb71
MR
749
750 case SIGBUS:
751 si.si_addr = fault_addr;
752 si.si_signo = sig;
753 si.si_code = BUS_ADRERR;
754 force_sig_info(sig, &si, current);
755 return 1;
756
757 case SIGSEGV:
758 si.si_addr = fault_addr;
759 si.si_signo = sig;
760 down_read(&current->mm->mmap_sem);
bcfc8f0d
PJ
761 vma = find_vma(current->mm, (unsigned long)fault_addr);
762 if (vma && (vma->vm_start <= (unsigned long)fault_addr))
304acb71
MR
763 si.si_code = SEGV_ACCERR;
764 else
765 si.si_code = SEGV_MAPERR;
766 up_read(&current->mm->mmap_sem);
767 force_sig_info(sig, &si, current);
768 return 1;
769
770 default:
515b029d
DD
771 force_sig(sig, current);
772 return 1;
515b029d
DD
773 }
774}
775
4227a2d4
PB
776static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
777 unsigned long old_epc, unsigned long old_ra)
778{
779 union mips_instruction inst = { .word = opcode };
304acb71
MR
780 void __user *fault_addr;
781 unsigned long fcr31;
4227a2d4
PB
782 int sig;
783
784 /* If it's obviously not an FP instruction, skip it */
785 switch (inst.i_format.opcode) {
786 case cop1_op:
787 case cop1x_op:
788 case lwc1_op:
789 case ldc1_op:
790 case swc1_op:
791 case sdc1_op:
792 break;
793
794 default:
795 return -1;
796 }
797
798 /*
799 * do_ri skipped over the instruction via compute_return_epc, undo
800 * that for the FPU emulator.
801 */
802 regs->cp0_epc = old_epc;
803 regs->regs[31] = old_ra;
804
805 /* Save the FP context to struct thread_struct */
806 lose_fpu(1);
807
808 /* Run the emulator */
809 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
810 &fault_addr);
811
443c4403 812 /*
5a1aca44
MR
813 * We can't allow the emulated instruction to leave any
814 * enabled Cause bits set in $fcr31.
443c4403 815 */
5a1aca44
MR
816 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
817 current->thread.fpu.fcr31 &= ~fcr31;
4227a2d4
PB
818
819 /* Restore the hardware register state */
820 own_fpu(1);
821
304acb71
MR
822 /* Send a signal if required. */
823 process_fpemu_return(sig, fault_addr, fcr31);
824
4227a2d4
PB
825 return 0;
826}
827
1da177e4
LT
828/*
829 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
830 */
831asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
832{
c3fc5cd5 833 enum ctx_state prev_state;
304acb71
MR
834 void __user *fault_addr;
835 int sig;
948a34cf 836
c3fc5cd5 837 prev_state = exception_enter();
e3b28831 838 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
dc73e4c1 839 SIGFPE) == NOTIFY_STOP)
c3fc5cd5 840 goto out;
64bedffe
JH
841
842 /* Clear FCSR.Cause before enabling interrupts */
5a1aca44 843 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
64bedffe
JH
844 local_irq_enable();
845
57725f9e
CD
846 die_if_kernel("FP exception in kernel code", regs);
847
1da177e4 848 if (fcr31 & FPU_CSR_UNI_X) {
1da177e4 849 /*
a3dddd56 850 * Unimplemented operation exception. If we've got the full
1da177e4
LT
851 * software emulator on-board, let's use it...
852 *
853 * Force FPU to dump state into task/thread context. We're
854 * moving a lot of data here for what is probably a single
855 * instruction, but the alternative is to pre-decode the FP
856 * register operands before invoking the emulator, which seems
857 * a bit extreme for what should be an infrequent event.
858 */
cd21dfcf 859 /* Ensure 'resume' not overwrite saved fp context again. */
53dc8028 860 lose_fpu(1);
1da177e4
LT
861
862 /* Run the emulator */
515b029d
DD
863 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
864 &fault_addr);
1da177e4
LT
865
866 /*
5a1aca44
MR
867 * We can't allow the emulated instruction to leave any
868 * enabled Cause bits set in $fcr31.
1da177e4 869 */
5a1aca44
MR
870 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
871 current->thread.fpu.fcr31 &= ~fcr31;
1da177e4
LT
872
873 /* Restore the hardware register state */
70342287 874 own_fpu(1); /* Using the FPU again. */
304acb71
MR
875 } else {
876 sig = SIGFPE;
877 fault_addr = (void __user *) regs->cp0_epc;
ed2d72c1 878 }
1da177e4 879
304acb71
MR
880 /* Send a signal if required. */
881 process_fpemu_return(sig, fault_addr, fcr31);
c3fc5cd5
RB
882
883out:
884 exception_exit(prev_state);
1da177e4
LT
885}
886
3b143cca 887void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
df270051 888 const char *str)
1da177e4 889{
e723e3f7 890 siginfo_t info = { 0 };
df270051 891 char b[40];
1da177e4 892
5dd11d5d 893#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
e3b28831
RB
894 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
895 SIGTRAP) == NOTIFY_STOP)
5dd11d5d
JW
896 return;
897#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
898
e3b28831 899 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
dc73e4c1 900 SIGTRAP) == NOTIFY_STOP)
88547001
JW
901 return;
902
1da177e4 903 /*
df270051
RB
904 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
905 * insns, even for trap and break codes that indicate arithmetic
906 * failures. Weird ...
1da177e4
LT
907 * But should we continue the brokenness??? --macro
908 */
df270051
RB
909 switch (code) {
910 case BRK_OVERFLOW:
911 case BRK_DIVZERO:
912 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
913 die_if_kernel(b, regs);
914 if (code == BRK_DIVZERO)
1da177e4
LT
915 info.si_code = FPE_INTDIV;
916 else
917 info.si_code = FPE_INTOVF;
918 info.si_signo = SIGFPE;
fe00f943 919 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
920 force_sig_info(SIGFPE, &info, current);
921 break;
63dc68a8 922 case BRK_BUG:
df270051
RB
923 die_if_kernel("Kernel bug detected", regs);
924 force_sig(SIGTRAP, current);
63dc68a8 925 break;
ba3049ed
RB
926 case BRK_MEMU:
927 /*
1f443779
MR
928 * This breakpoint code is used by the FPU emulator to retake
929 * control of the CPU after executing the instruction from the
930 * delay slot of an emulated branch.
ba3049ed
RB
931 *
932 * Terminate if exception was recognized as a delay slot return
933 * otherwise handle as normal.
934 */
935 if (do_dsemulret(regs))
936 return;
937
938 die_if_kernel("Math emu break/trap", regs);
939 force_sig(SIGTRAP, current);
940 break;
1da177e4 941 default:
df270051
RB
942 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
943 die_if_kernel(b, regs);
3b143cca
MR
944 if (si_code) {
945 info.si_signo = SIGTRAP;
946 info.si_code = si_code;
947 force_sig_info(SIGTRAP, &info, current);
948 } else {
949 force_sig(SIGTRAP, current);
950 }
1da177e4 951 }
df270051
RB
952}
953
954asmlinkage void do_bp(struct pt_regs *regs)
955{
f6a31da5 956 unsigned long epc = msk_isa16_mode(exception_epc(regs));
df270051 957 unsigned int opcode, bcode;
c3fc5cd5 958 enum ctx_state prev_state;
078dde5e
LY
959 mm_segment_t seg;
960
961 seg = get_fs();
962 if (!user_mode(regs))
963 set_fs(KERNEL_DS);
2a0b24f5 964
c3fc5cd5 965 prev_state = exception_enter();
e3b28831 966 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
2a0b24f5 967 if (get_isa16_mode(regs->cp0_epc)) {
f6a31da5
MR
968 u16 instr[2];
969
970 if (__get_user(instr[0], (u16 __user *)epc))
971 goto out_sigsegv;
972
973 if (!cpu_has_mmips) {
b08a9c95 974 /* MIPS16e mode */
68893e00 975 bcode = (instr[0] >> 5) & 0x3f;
f6a31da5
MR
976 } else if (mm_insn_16bit(instr[0])) {
977 /* 16-bit microMIPS BREAK */
978 bcode = instr[0] & 0xf;
979 } else {
980 /* 32-bit microMIPS BREAK */
981 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
2a0b24f5 982 goto out_sigsegv;
f6a31da5
MR
983 opcode = (instr[0] << 16) | instr[1];
984 bcode = (opcode >> 6) & ((1 << 20) - 1);
2a0b24f5
SH
985 }
986 } else {
f6a31da5 987 if (__get_user(opcode, (unsigned int __user *)epc))
2a0b24f5 988 goto out_sigsegv;
f6a31da5 989 bcode = (opcode >> 6) & ((1 << 20) - 1);
2a0b24f5 990 }
df270051
RB
991
992 /*
993 * There is the ancient bug in the MIPS assemblers that the break
994 * code starts left to bit 16 instead to bit 6 in the opcode.
995 * Gas is bug-compatible, but not always, grrr...
996 * We handle both cases with a simple heuristics. --macro
997 */
df270051 998 if (bcode >= (1 << 10))
c9875032 999 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
df270051 1000
c1bf207d
DD
1001 /*
1002 * notify the kprobe handlers, if instruction is likely to
1003 * pertain to them.
1004 */
1005 switch (bcode) {
40e084a5
RB
1006 case BRK_UPROBE:
1007 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1008 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1009 goto out;
1010 else
1011 break;
1012 case BRK_UPROBE_XOL:
1013 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1014 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1015 goto out;
1016 else
1017 break;
c1bf207d 1018 case BRK_KPROBE_BP:
dc73e4c1 1019 if (notify_die(DIE_BREAK, "debug", regs, bcode,
e3b28831 1020 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
c3fc5cd5 1021 goto out;
c1bf207d
DD
1022 else
1023 break;
1024 case BRK_KPROBE_SSTEPBP:
dc73e4c1 1025 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
e3b28831 1026 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
c3fc5cd5 1027 goto out;
c1bf207d
DD
1028 else
1029 break;
1030 default:
1031 break;
1032 }
1033
3b143cca 1034 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
c3fc5cd5
RB
1035
1036out:
078dde5e 1037 set_fs(seg);
c3fc5cd5 1038 exception_exit(prev_state);
90fccb13 1039 return;
e5679882
RB
1040
1041out_sigsegv:
1042 force_sig(SIGSEGV, current);
c3fc5cd5 1043 goto out;
1da177e4
LT
1044}
1045
1046asmlinkage void do_tr(struct pt_regs *regs)
1047{
a9a6e7a0 1048 u32 opcode, tcode = 0;
c3fc5cd5 1049 enum ctx_state prev_state;
2a0b24f5 1050 u16 instr[2];
078dde5e 1051 mm_segment_t seg;
a9a6e7a0 1052 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1da177e4 1053
078dde5e
LY
1054 seg = get_fs();
1055 if (!user_mode(regs))
1056 set_fs(get_ds());
1057
c3fc5cd5 1058 prev_state = exception_enter();
e3b28831 1059 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
a9a6e7a0
MR
1060 if (get_isa16_mode(regs->cp0_epc)) {
1061 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1062 __get_user(instr[1], (u16 __user *)(epc + 2)))
2a0b24f5 1063 goto out_sigsegv;
a9a6e7a0
MR
1064 opcode = (instr[0] << 16) | instr[1];
1065 /* Immediate versions don't provide a code. */
1066 if (!(opcode & OPCODE))
1067 tcode = (opcode >> 12) & ((1 << 4) - 1);
1068 } else {
1069 if (__get_user(opcode, (u32 __user *)epc))
1070 goto out_sigsegv;
1071 /* Immediate versions don't provide a code. */
1072 if (!(opcode & OPCODE))
1073 tcode = (opcode >> 6) & ((1 << 10) - 1);
2a0b24f5 1074 }
1da177e4 1075
3b143cca 1076 do_trap_or_bp(regs, tcode, 0, "Trap");
c3fc5cd5
RB
1077
1078out:
078dde5e 1079 set_fs(seg);
c3fc5cd5 1080 exception_exit(prev_state);
90fccb13 1081 return;
e5679882
RB
1082
1083out_sigsegv:
1084 force_sig(SIGSEGV, current);
c3fc5cd5 1085 goto out;
1da177e4
LT
1086}
1087
1088asmlinkage void do_ri(struct pt_regs *regs)
1089{
60b0d655
MR
1090 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1091 unsigned long old_epc = regs->cp0_epc;
2a0b24f5 1092 unsigned long old31 = regs->regs[31];
c3fc5cd5 1093 enum ctx_state prev_state;
60b0d655
MR
1094 unsigned int opcode = 0;
1095 int status = -1;
1da177e4 1096
b0a668fb
LY
1097 /*
1098 * Avoid any kernel code. Just emulate the R2 instruction
1099 * as quickly as possible.
1100 */
1101 if (mipsr2_emulation && cpu_has_mips_r6 &&
4a7c2371
MR
1102 likely(user_mode(regs)) &&
1103 likely(get_user(opcode, epc) >= 0)) {
304acb71
MR
1104 unsigned long fcr31 = 0;
1105
1106 status = mipsr2_decoder(regs, opcode, &fcr31);
4a7c2371
MR
1107 switch (status) {
1108 case 0:
1109 case SIGEMT:
1110 task_thread_info(current)->r2_emul_return = 1;
1111 return;
1112 case SIGILL:
1113 goto no_r2_instr;
1114 default:
1115 process_fpemu_return(status,
304acb71
MR
1116 &current->thread.cp0_baduaddr,
1117 fcr31);
4a7c2371
MR
1118 task_thread_info(current)->r2_emul_return = 1;
1119 return;
b0a668fb
LY
1120 }
1121 }
1122
1123no_r2_instr:
1124
c3fc5cd5 1125 prev_state = exception_enter();
e3b28831 1126 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
b0a668fb 1127
e3b28831 1128 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
dc73e4c1 1129 SIGILL) == NOTIFY_STOP)
c3fc5cd5 1130 goto out;
88547001 1131
60b0d655 1132 die_if_kernel("Reserved instruction in kernel code", regs);
1da177e4 1133
60b0d655 1134 if (unlikely(compute_return_epc(regs) < 0))
c3fc5cd5 1135 goto out;
3c37026d 1136
3d50a7fb 1137 if (!get_isa16_mode(regs->cp0_epc)) {
2a0b24f5
SH
1138 if (unlikely(get_user(opcode, epc) < 0))
1139 status = SIGSEGV;
60b0d655 1140
2a0b24f5
SH
1141 if (!cpu_has_llsc && status < 0)
1142 status = simulate_llsc(regs, opcode);
1143
1144 if (status < 0)
1145 status = simulate_rdhwr_normal(regs, opcode);
1146
1147 if (status < 0)
1148 status = simulate_sync(regs, opcode);
4227a2d4
PB
1149
1150 if (status < 0)
1151 status = simulate_fp(regs, opcode, old_epc, old31);
3d50a7fb
MR
1152 } else if (cpu_has_mmips) {
1153 unsigned short mmop[2] = { 0 };
1154
1155 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1156 status = SIGSEGV;
1157 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1158 status = SIGSEGV;
1159 opcode = mmop[0];
1160 opcode = (opcode << 16) | mmop[1];
1161
1162 if (status < 0)
1163 status = simulate_rdhwr_mm(regs, opcode);
2a0b24f5 1164 }
60b0d655
MR
1165
1166 if (status < 0)
1167 status = SIGILL;
1168
1169 if (unlikely(status > 0)) {
1170 regs->cp0_epc = old_epc; /* Undo skip-over. */
2a0b24f5 1171 regs->regs[31] = old31;
60b0d655
MR
1172 force_sig(status, current);
1173 }
c3fc5cd5
RB
1174
1175out:
1176 exception_exit(prev_state);
1da177e4
LT
1177}
1178
d223a861
RB
1179/*
1180 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1181 * emulated more than some threshold number of instructions, force migration to
1182 * a "CPU" that has FP support.
1183 */
1184static void mt_ase_fp_affinity(void)
1185{
1186#ifdef CONFIG_MIPS_MT_FPAFF
1187 if (mt_fpemul_threshold > 0 &&
1188 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1189 /*
1190 * If there's no FPU present, or if the application has already
1191 * restricted the allowed set to exclude any CPUs with FPUs,
1192 * we'll skip the procedure.
1193 */
8dd92891 1194 if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
d223a861
RB
1195 cpumask_t tmask;
1196
9cc12363
KK
1197 current->thread.user_cpus_allowed
1198 = current->cpus_allowed;
8dd92891
RR
1199 cpumask_and(&tmask, &current->cpus_allowed,
1200 &mt_fpu_cpumask);
ed1bbdef 1201 set_cpus_allowed_ptr(current, &tmask);
293c5bd1 1202 set_thread_flag(TIF_FPUBOUND);
d223a861
RB
1203 }
1204 }
1205#endif /* CONFIG_MIPS_MT_FPAFF */
1206}
1207
69f3a7de
RB
1208/*
1209 * No lock; only written during early bootup by CPU 0.
1210 */
1211static RAW_NOTIFIER_HEAD(cu2_chain);
1212
1213int __ref register_cu2_notifier(struct notifier_block *nb)
1214{
1215 return raw_notifier_chain_register(&cu2_chain, nb);
1216}
1217
1218int cu2_notifier_call_chain(unsigned long val, void *v)
1219{
1220 return raw_notifier_call_chain(&cu2_chain, val, v);
1221}
1222
1223static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
70342287 1224 void *data)
69f3a7de
RB
1225{
1226 struct pt_regs *regs = data;
1227
83bee792 1228 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
69f3a7de 1229 "instruction", regs);
83bee792 1230 force_sig(SIGILL, current);
69f3a7de
RB
1231
1232 return NOTIFY_OK;
1233}
1234
9791554b
PB
1235static int wait_on_fp_mode_switch(atomic_t *p)
1236{
1237 /*
1238 * The FP mode for this task is currently being switched. That may
1239 * involve modifications to the format of this tasks FP context which
1240 * make it unsafe to proceed with execution for the moment. Instead,
1241 * schedule some other task.
1242 */
1243 schedule();
1244 return 0;
1245}
1246
1db1af84
PB
1247static int enable_restore_fp_context(int msa)
1248{
c9017757 1249 int err, was_fpu_owner, prior_msa;
1db1af84 1250
9791554b
PB
1251 /*
1252 * If an FP mode switch is currently underway, wait for it to
1253 * complete before proceeding.
1254 */
1255 wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1256 wait_on_fp_mode_switch, TASK_KILLABLE);
1257
1db1af84
PB
1258 if (!used_math()) {
1259 /* First time FP context user. */
762a1f43 1260 preempt_disable();
1db1af84 1261 err = init_fpu();
c9017757 1262 if (msa && !err) {
1db1af84 1263 enable_msa();
e49d3848 1264 init_msa_upper();
732c0c3c
PB
1265 set_thread_flag(TIF_USEDMSA);
1266 set_thread_flag(TIF_MSA_CTX_LIVE);
c9017757 1267 }
762a1f43 1268 preempt_enable();
1db1af84
PB
1269 if (!err)
1270 set_used_math();
1271 return err;
1272 }
1273
1274 /*
1275 * This task has formerly used the FP context.
1276 *
1277 * If this thread has no live MSA vector context then we can simply
1278 * restore the scalar FP context. If it has live MSA vector context
1279 * (that is, it has or may have used MSA since last performing a
1280 * function call) then we'll need to restore the vector context. This
1281 * applies even if we're currently only executing a scalar FP
1282 * instruction. This is because if we were to later execute an MSA
1283 * instruction then we'd either have to:
1284 *
1285 * - Restore the vector context & clobber any registers modified by
1286 * scalar FP instructions between now & then.
1287 *
1288 * or
1289 *
1290 * - Not restore the vector context & lose the most significant bits
1291 * of all vector registers.
1292 *
1293 * Neither of those options is acceptable. We cannot restore the least
1294 * significant bits of the registers now & only restore the most
1295 * significant bits later because the most significant bits of any
1296 * vector registers whose aliased FP register is modified now will have
1297 * been zeroed. We'd have no way to know that when restoring the vector
1298 * context & thus may load an outdated value for the most significant
1299 * bits of a vector register.
1300 */
1301 if (!msa && !thread_msa_context_live())
1302 return own_fpu(1);
1303
1304 /*
1305 * This task is using or has previously used MSA. Thus we require
1306 * that Status.FR == 1.
1307 */
762a1f43 1308 preempt_disable();
1db1af84 1309 was_fpu_owner = is_fpu_owner();
762a1f43 1310 err = own_fpu_inatomic(0);
1db1af84 1311 if (err)
762a1f43 1312 goto out;
1db1af84
PB
1313
1314 enable_msa();
1315 write_msa_csr(current->thread.fpu.msacsr);
1316 set_thread_flag(TIF_USEDMSA);
1317
1318 /*
1319 * If this is the first time that the task is using MSA and it has
1320 * previously used scalar FP in this time slice then we already nave
c9017757
PB
1321 * FP context which we shouldn't clobber. We do however need to clear
1322 * the upper 64b of each vector register so that this task has no
1323 * opportunity to see data left behind by another.
1db1af84 1324 */
c9017757
PB
1325 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1326 if (!prior_msa && was_fpu_owner) {
e49d3848 1327 init_msa_upper();
762a1f43
PB
1328
1329 goto out;
c9017757 1330 }
1db1af84 1331
c9017757
PB
1332 if (!prior_msa) {
1333 /*
1334 * Restore the least significant 64b of each vector register
1335 * from the existing scalar FP context.
1336 */
1337 _restore_fp(current);
b8340673 1338
c9017757
PB
1339 /*
1340 * The task has not formerly used MSA, so clear the upper 64b
1341 * of each vector register such that it cannot see data left
1342 * behind by another task.
1343 */
e49d3848 1344 init_msa_upper();
c9017757
PB
1345 } else {
1346 /* We need to restore the vector context. */
1347 restore_msa(current);
b8340673 1348
c9017757
PB
1349 /* Restore the scalar FP control & status register */
1350 if (!was_fpu_owner)
d76e9b9f
JH
1351 write_32bit_cp1_register(CP1_STATUS,
1352 current->thread.fpu.fcr31);
c9017757 1353 }
762a1f43
PB
1354
1355out:
1356 preempt_enable();
1357
1db1af84
PB
1358 return 0;
1359}
1360
1da177e4
LT
1361asmlinkage void do_cpu(struct pt_regs *regs)
1362{
c3fc5cd5 1363 enum ctx_state prev_state;
60b0d655 1364 unsigned int __user *epc;
2a0b24f5 1365 unsigned long old_epc, old31;
304acb71 1366 void __user *fault_addr;
60b0d655 1367 unsigned int opcode;
304acb71 1368 unsigned long fcr31;
1da177e4 1369 unsigned int cpid;
597ce172 1370 int status, err;
304acb71 1371 int sig;
1da177e4 1372
c3fc5cd5 1373 prev_state = exception_enter();
1da177e4
LT
1374 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1375
83bee792
J
1376 if (cpid != 2)
1377 die_if_kernel("do_cpu invoked from kernel context!", regs);
1378
1da177e4
LT
1379 switch (cpid) {
1380 case 0:
60b0d655
MR
1381 epc = (unsigned int __user *)exception_epc(regs);
1382 old_epc = regs->cp0_epc;
2a0b24f5 1383 old31 = regs->regs[31];
60b0d655
MR
1384 opcode = 0;
1385 status = -1;
1da177e4 1386
60b0d655 1387 if (unlikely(compute_return_epc(regs) < 0))
27e28e8e 1388 break;
3c37026d 1389
10f6d99f 1390 if (!get_isa16_mode(regs->cp0_epc)) {
2a0b24f5
SH
1391 if (unlikely(get_user(opcode, epc) < 0))
1392 status = SIGSEGV;
1393
1394 if (!cpu_has_llsc && status < 0)
1395 status = simulate_llsc(regs, opcode);
2a0b24f5 1396 }
60b0d655
MR
1397
1398 if (status < 0)
1399 status = SIGILL;
1400
1401 if (unlikely(status > 0)) {
1402 regs->cp0_epc = old_epc; /* Undo skip-over. */
2a0b24f5 1403 regs->regs[31] = old31;
60b0d655
MR
1404 force_sig(status, current);
1405 }
1406
27e28e8e 1407 break;
1da177e4 1408
051ff44a
MR
1409 case 3:
1410 /*
2d83fea7
MR
1411 * The COP3 opcode space and consequently the CP0.Status.CU3
1412 * bit and the CP0.Cause.CE=3 encoding have been removed as
1413 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1414 * up the space has been reused for COP1X instructions, that
1415 * are enabled by the CP0.Status.CU1 bit and consequently
1416 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1417 * exceptions. Some FPU-less processors that implement one
1418 * of these ISAs however use this code erroneously for COP1X
1419 * instructions. Therefore we redirect this trap to the FP
1420 * emulator too.
051ff44a 1421 */
2d83fea7 1422 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
27e28e8e 1423 force_sig(SIGILL, current);
051ff44a 1424 break;
27e28e8e 1425 }
051ff44a
MR
1426 /* Fall through. */
1427
1da177e4 1428 case 1:
1db1af84 1429 err = enable_restore_fp_context(0);
1da177e4 1430
304acb71
MR
1431 if (raw_cpu_has_fpu && !err)
1432 break;
1da177e4 1433
304acb71
MR
1434 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1435 &fault_addr);
304acb71
MR
1436
1437 /*
1438 * We can't allow the emulated instruction to leave
5a1aca44 1439 * any enabled Cause bits set in $fcr31.
304acb71 1440 */
5a1aca44
MR
1441 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1442 current->thread.fpu.fcr31 &= ~fcr31;
304acb71
MR
1443
1444 /* Send a signal if required. */
1445 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1446 mt_ase_fp_affinity();
1da177e4 1447
27e28e8e 1448 break;
1da177e4
LT
1449
1450 case 2:
69f3a7de 1451 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
27e28e8e 1452 break;
1da177e4
LT
1453 }
1454
c3fc5cd5 1455 exception_exit(prev_state);
1da177e4
LT
1456}
1457
64bedffe 1458asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
2bcb3fbc
PB
1459{
1460 enum ctx_state prev_state;
1461
1462 prev_state = exception_enter();
e3b28831 1463 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
64bedffe 1464 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
e3b28831 1465 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
64bedffe
JH
1466 goto out;
1467
1468 /* Clear MSACSR.Cause before enabling interrupts */
1469 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1470 local_irq_enable();
1471
2bcb3fbc
PB
1472 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1473 force_sig(SIGFPE, current);
64bedffe 1474out:
2bcb3fbc
PB
1475 exception_exit(prev_state);
1476}
1477
1db1af84
PB
1478asmlinkage void do_msa(struct pt_regs *regs)
1479{
1480 enum ctx_state prev_state;
1481 int err;
1482
1483 prev_state = exception_enter();
1484
1485 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1486 force_sig(SIGILL, current);
1487 goto out;
1488 }
1489
1490 die_if_kernel("do_msa invoked from kernel context!", regs);
1491
1492 err = enable_restore_fp_context(1);
1493 if (err)
1494 force_sig(SIGILL, current);
1495out:
1496 exception_exit(prev_state);
1497}
1498
1da177e4
LT
1499asmlinkage void do_mdmx(struct pt_regs *regs)
1500{
c3fc5cd5
RB
1501 enum ctx_state prev_state;
1502
1503 prev_state = exception_enter();
1da177e4 1504 force_sig(SIGILL, current);
c3fc5cd5 1505 exception_exit(prev_state);
1da177e4
LT
1506}
1507
8bc6d05b
DD
1508/*
1509 * Called with interrupts disabled.
1510 */
1da177e4
LT
1511asmlinkage void do_watch(struct pt_regs *regs)
1512{
3b143cca 1513 siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
c3fc5cd5 1514 enum ctx_state prev_state;
b67b2b70 1515
c3fc5cd5 1516 prev_state = exception_enter();
1da177e4 1517 /*
b67b2b70
DD
1518 * Clear WP (bit 22) bit of cause register so we don't loop
1519 * forever.
1da177e4 1520 */
e233c733 1521 clear_c0_cause(CAUSEF_WP);
b67b2b70
DD
1522
1523 /*
1524 * If the current thread has the watch registers loaded, save
1525 * their values and send SIGTRAP. Otherwise another thread
1526 * left the registers set, clear them and continue.
1527 */
1528 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1529 mips_read_watch_registers();
8bc6d05b 1530 local_irq_enable();
3b143cca 1531 force_sig_info(SIGTRAP, &info, current);
8bc6d05b 1532 } else {
b67b2b70 1533 mips_clear_watch_registers();
8bc6d05b
DD
1534 local_irq_enable();
1535 }
c3fc5cd5 1536 exception_exit(prev_state);
1da177e4
LT
1537}
1538
1539asmlinkage void do_mcheck(struct pt_regs *regs)
1540{
cac4bcbc 1541 int multi_match = regs->cp0_status & ST0_TS;
c3fc5cd5 1542 enum ctx_state prev_state;
55c723e1 1543 mm_segment_t old_fs = get_fs();
cac4bcbc 1544
c3fc5cd5 1545 prev_state = exception_enter();
1da177e4 1546 show_regs(regs);
cac4bcbc
RB
1547
1548 if (multi_match) {
3c865dd9
JH
1549 dump_tlb_regs();
1550 pr_info("\n");
cac4bcbc
RB
1551 dump_tlb_all();
1552 }
1553
55c723e1
JH
1554 if (!user_mode(regs))
1555 set_fs(KERNEL_DS);
1556
e1bb8289 1557 show_code((unsigned int __user *) regs->cp0_epc);
cac4bcbc 1558
55c723e1
JH
1559 set_fs(old_fs);
1560
1da177e4
LT
1561 /*
1562 * Some chips may have other causes of machine check (e.g. SB1
1563 * graduation timer)
1564 */
1565 panic("Caught Machine Check exception - %scaused by multiple "
1566 "matching entries in the TLB.",
cac4bcbc 1567 (multi_match) ? "" : "not ");
1da177e4
LT
1568}
1569
340ee4b9
RB
1570asmlinkage void do_mt(struct pt_regs *regs)
1571{
41c594ab
RB
1572 int subcode;
1573
41c594ab
RB
1574 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1575 >> VPECONTROL_EXCPT_SHIFT;
1576 switch (subcode) {
1577 case 0:
e35a5e35 1578 printk(KERN_DEBUG "Thread Underflow\n");
41c594ab
RB
1579 break;
1580 case 1:
e35a5e35 1581 printk(KERN_DEBUG "Thread Overflow\n");
41c594ab
RB
1582 break;
1583 case 2:
e35a5e35 1584 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
41c594ab
RB
1585 break;
1586 case 3:
e35a5e35 1587 printk(KERN_DEBUG "Gating Storage Exception\n");
41c594ab
RB
1588 break;
1589 case 4:
e35a5e35 1590 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
41c594ab
RB
1591 break;
1592 case 5:
f232c7e8 1593 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
41c594ab
RB
1594 break;
1595 default:
e35a5e35 1596 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
41c594ab
RB
1597 subcode);
1598 break;
1599 }
340ee4b9
RB
1600 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1601
1602 force_sig(SIGILL, current);
1603}
1604
1605
e50c0a8f
RB
1606asmlinkage void do_dsp(struct pt_regs *regs)
1607{
1608 if (cpu_has_dsp)
ab75dc02 1609 panic("Unexpected DSP exception");
e50c0a8f
RB
1610
1611 force_sig(SIGILL, current);
1612}
1613
1da177e4
LT
1614asmlinkage void do_reserved(struct pt_regs *regs)
1615{
1616 /*
70342287 1617 * Game over - no way to handle this if it ever occurs. Most probably
1da177e4
LT
1618 * caused by a new unknown cpu type or after another deadly
1619 * hard/software error.
1620 */
1621 show_regs(regs);
1622 panic("Caught reserved exception %ld - should not happen.",
1623 (regs->cp0_cause & 0x7f) >> 2);
1624}
1625
39b8d525
RB
1626static int __initdata l1parity = 1;
1627static int __init nol1parity(char *s)
1628{
1629 l1parity = 0;
1630 return 1;
1631}
1632__setup("nol1par", nol1parity);
1633static int __initdata l2parity = 1;
1634static int __init nol2parity(char *s)
1635{
1636 l2parity = 0;
1637 return 1;
1638}
1639__setup("nol2par", nol2parity);
1640
1da177e4
LT
1641/*
1642 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1643 * it different ways.
1644 */
1645static inline void parity_protection_init(void)
1646{
10cc3529 1647 switch (current_cpu_type()) {
1da177e4 1648 case CPU_24K:
98a41de9 1649 case CPU_34K:
39b8d525
RB
1650 case CPU_74K:
1651 case CPU_1004K:
442e14a2 1652 case CPU_1074K:
26ab96df 1653 case CPU_INTERAPTIV:
708ac4b8 1654 case CPU_PROAPTIV:
aced4cbd 1655 case CPU_P5600:
4695089f 1656 case CPU_QEMU_GENERIC:
4e88a862 1657 case CPU_I6400:
1091bfa2 1658 case CPU_P6600:
39b8d525
RB
1659 {
1660#define ERRCTL_PE 0x80000000
1661#define ERRCTL_L2P 0x00800000
1662 unsigned long errctl;
1663 unsigned int l1parity_present, l2parity_present;
1664
1665 errctl = read_c0_ecc();
1666 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1667
1668 /* probe L1 parity support */
1669 write_c0_ecc(errctl | ERRCTL_PE);
1670 back_to_back_c0_hazard();
1671 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1672
1673 /* probe L2 parity support */
1674 write_c0_ecc(errctl|ERRCTL_L2P);
1675 back_to_back_c0_hazard();
1676 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1677
1678 if (l1parity_present && l2parity_present) {
1679 if (l1parity)
1680 errctl |= ERRCTL_PE;
1681 if (l1parity ^ l2parity)
1682 errctl |= ERRCTL_L2P;
1683 } else if (l1parity_present) {
1684 if (l1parity)
1685 errctl |= ERRCTL_PE;
1686 } else if (l2parity_present) {
1687 if (l2parity)
1688 errctl |= ERRCTL_L2P;
1689 } else {
1690 /* No parity available */
1691 }
1692
1693 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1694
1695 write_c0_ecc(errctl);
1696 back_to_back_c0_hazard();
1697 errctl = read_c0_ecc();
1698 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1699
1700 if (l1parity_present)
1701 printk(KERN_INFO "Cache parity protection %sabled\n",
1702 (errctl & ERRCTL_PE) ? "en" : "dis");
1703
1704 if (l2parity_present) {
1705 if (l1parity_present && l1parity)
1706 errctl ^= ERRCTL_L2P;
1707 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1708 (errctl & ERRCTL_L2P) ? "en" : "dis");
1709 }
1710 }
1711 break;
1712
1da177e4 1713 case CPU_5KC:
78d4803f 1714 case CPU_5KE:
2fa36399 1715 case CPU_LOONGSON1:
14f18b7f
RB
1716 write_c0_ecc(0x80000000);
1717 back_to_back_c0_hazard();
1718 /* Set the PE bit (bit 31) in the c0_errctl register. */
1719 printk(KERN_INFO "Cache parity protection %sabled\n",
1720 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1da177e4
LT
1721 break;
1722 case CPU_20KC:
1723 case CPU_25KF:
1724 /* Clear the DE bit (bit 16) in the c0_status register. */
1725 printk(KERN_INFO "Enable cache parity protection for "
1726 "MIPS 20KC/25KF CPUs.\n");
1727 clear_c0_status(ST0_DE);
1728 break;
1729 default:
1730 break;
1731 }
1732}
1733
1734asmlinkage void cache_parity_error(void)
1735{
1736 const int field = 2 * sizeof(unsigned long);
1737 unsigned int reg_val;
1738
1739 /* For the moment, report the problem and hang. */
1740 printk("Cache error exception:\n");
1741 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1742 reg_val = read_c0_cacheerr();
1743 printk("c0_cacheerr == %08x\n", reg_val);
1744
1745 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1746 reg_val & (1<<30) ? "secondary" : "primary",
1747 reg_val & (1<<31) ? "data" : "insn");
9c7d5768 1748 if ((cpu_has_mips_r2_r6) &&
721a9205 1749 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
6de20451
LY
1750 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1751 reg_val & (1<<29) ? "ED " : "",
1752 reg_val & (1<<28) ? "ET " : "",
1753 reg_val & (1<<27) ? "ES " : "",
1754 reg_val & (1<<26) ? "EE " : "",
1755 reg_val & (1<<25) ? "EB " : "",
1756 reg_val & (1<<24) ? "EI " : "",
1757 reg_val & (1<<23) ? "E1 " : "",
1758 reg_val & (1<<22) ? "E0 " : "");
1759 } else {
1760 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1761 reg_val & (1<<29) ? "ED " : "",
1762 reg_val & (1<<28) ? "ET " : "",
1763 reg_val & (1<<26) ? "EE " : "",
1764 reg_val & (1<<25) ? "EB " : "",
1765 reg_val & (1<<24) ? "EI " : "",
1766 reg_val & (1<<23) ? "E1 " : "",
1767 reg_val & (1<<22) ? "E0 " : "");
1768 }
1da177e4
LT
1769 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1770
ec917c2c 1771#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1da177e4
LT
1772 if (reg_val & (1<<22))
1773 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1774
1775 if (reg_val & (1<<23))
1776 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1777#endif
1778
1779 panic("Can't handle the cache error!");
1780}
1781
75b5b5e0
LY
1782asmlinkage void do_ftlb(void)
1783{
1784 const int field = 2 * sizeof(unsigned long);
1785 unsigned int reg_val;
1786
1787 /* For the moment, report the problem and hang. */
9c7d5768 1788 if ((cpu_has_mips_r2_r6) &&
b2edcfc8
HC
1789 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1790 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
75b5b5e0
LY
1791 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1792 read_c0_ecc());
1793 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1794 reg_val = read_c0_cacheerr();
1795 pr_err("c0_cacheerr == %08x\n", reg_val);
1796
1797 if ((reg_val & 0xc0000000) == 0xc0000000) {
1798 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1799 } else {
1800 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1801 reg_val & (1<<30) ? "secondary" : "primary",
1802 reg_val & (1<<31) ? "data" : "insn");
1803 }
1804 } else {
1805 pr_err("FTLB error exception\n");
1806 }
1807 /* Just print the cacheerr bits for now */
1808 cache_parity_error();
1809}
1810
1da177e4
LT
1811/*
1812 * SDBBP EJTAG debug exception handler.
1813 * We skip the instruction and return to the next instruction.
1814 */
1815void ejtag_exception_handler(struct pt_regs *regs)
1816{
1817 const int field = 2 * sizeof(unsigned long);
2a0b24f5 1818 unsigned long depc, old_epc, old_ra;
1da177e4
LT
1819 unsigned int debug;
1820
70ae6126 1821 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1da177e4
LT
1822 depc = read_c0_depc();
1823 debug = read_c0_debug();
70ae6126 1824 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1da177e4
LT
1825 if (debug & 0x80000000) {
1826 /*
1827 * In branch delay slot.
1828 * We cheat a little bit here and use EPC to calculate the
1829 * debug return address (DEPC). EPC is restored after the
1830 * calculation.
1831 */
1832 old_epc = regs->cp0_epc;
2a0b24f5 1833 old_ra = regs->regs[31];
1da177e4 1834 regs->cp0_epc = depc;
2a0b24f5 1835 compute_return_epc(regs);
1da177e4
LT
1836 depc = regs->cp0_epc;
1837 regs->cp0_epc = old_epc;
2a0b24f5 1838 regs->regs[31] = old_ra;
1da177e4
LT
1839 } else
1840 depc += 4;
1841 write_c0_depc(depc);
1842
1843#if 0
70ae6126 1844 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1da177e4
LT
1845 write_c0_debug(debug | 0x100);
1846#endif
1847}
1848
1849/*
1850 * NMI exception handler.
34bd92e2 1851 * No lock; only written during early bootup by CPU 0.
1da177e4 1852 */
34bd92e2
KC
1853static RAW_NOTIFIER_HEAD(nmi_chain);
1854
1855int register_nmi_notifier(struct notifier_block *nb)
1856{
1857 return raw_notifier_chain_register(&nmi_chain, nb);
1858}
1859
ff2d8b19 1860void __noreturn nmi_exception_handler(struct pt_regs *regs)
1da177e4 1861{
83e4da1e
LY
1862 char str[100];
1863
7963b3f1 1864 nmi_enter();
34bd92e2 1865 raw_notifier_call_chain(&nmi_chain, 0, regs);
41c594ab 1866 bust_spinlocks(1);
83e4da1e
LY
1867 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1868 smp_processor_id(), regs->cp0_epc);
1869 regs->cp0_epc = read_c0_errorepc();
1870 die(str, regs);
7963b3f1 1871 nmi_exit();
1da177e4
LT
1872}
1873
e01402b1
RB
1874#define VECTORSPACING 0x100 /* for EI/VI mode */
1875
1876unsigned long ebase;
878edf01 1877EXPORT_SYMBOL_GPL(ebase);
1da177e4 1878unsigned long exception_handlers[32];
e01402b1 1879unsigned long vi_handlers[64];
1da177e4 1880
2d1b6e95 1881void __init *set_except_vector(int n, void *addr)
1da177e4
LT
1882{
1883 unsigned long handler = (unsigned long) addr;
b22d1b6a 1884 unsigned long old_handler;
1da177e4 1885
2a0b24f5
SH
1886#ifdef CONFIG_CPU_MICROMIPS
1887 /*
1888 * Only the TLB handlers are cache aligned with an even
1889 * address. All other handlers are on an odd address and
1890 * require no modification. Otherwise, MIPS32 mode will
1891 * be entered when handling any TLB exceptions. That
1892 * would be bad...since we must stay in microMIPS mode.
1893 */
1894 if (!(handler & 0x1))
1895 handler |= 1;
1896#endif
b22d1b6a 1897 old_handler = xchg(&exception_handlers[n], handler);
1da177e4 1898
1da177e4 1899 if (n == 0 && cpu_has_divec) {
2a0b24f5
SH
1900#ifdef CONFIG_CPU_MICROMIPS
1901 unsigned long jump_mask = ~((1 << 27) - 1);
1902#else
92bbe1b9 1903 unsigned long jump_mask = ~((1 << 28) - 1);
2a0b24f5 1904#endif
92bbe1b9
FF
1905 u32 *buf = (u32 *)(ebase + 0x200);
1906 unsigned int k0 = 26;
1907 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1908 uasm_i_j(&buf, handler & ~jump_mask);
1909 uasm_i_nop(&buf);
1910 } else {
1911 UASM_i_LA(&buf, k0, handler);
1912 uasm_i_jr(&buf, k0);
1913 uasm_i_nop(&buf);
1914 }
1915 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
e01402b1
RB
1916 }
1917 return (void *)old_handler;
1918}
1919
86a1708a 1920static void do_default_vi(void)
6ba07e59
AN
1921{
1922 show_regs(get_irq_regs());
1923 panic("Caught unexpected vectored interrupt.");
1924}
1925
ef300e42 1926static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
e01402b1
RB
1927{
1928 unsigned long handler;
1929 unsigned long old_handler = vi_handlers[n];
f6771dbb 1930 int srssets = current_cpu_data.srsets;
2a0b24f5 1931 u16 *h;
e01402b1
RB
1932 unsigned char *b;
1933
b72b7092 1934 BUG_ON(!cpu_has_veic && !cpu_has_vint);
e01402b1
RB
1935
1936 if (addr == NULL) {
1937 handler = (unsigned long) do_default_vi;
1938 srs = 0;
41c594ab 1939 } else
e01402b1 1940 handler = (unsigned long) addr;
2a0b24f5 1941 vi_handlers[n] = handler;
e01402b1
RB
1942
1943 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1944
f6771dbb 1945 if (srs >= srssets)
e01402b1
RB
1946 panic("Shadow register set %d not supported", srs);
1947
1948 if (cpu_has_veic) {
1949 if (board_bind_eic_interrupt)
49a89efb 1950 board_bind_eic_interrupt(n, srs);
41c594ab 1951 } else if (cpu_has_vint) {
e01402b1 1952 /* SRSMap is only defined if shadow sets are implemented */
f6771dbb 1953 if (srssets > 1)
49a89efb 1954 change_c0_srsmap(0xf << n*4, srs << n*4);
e01402b1
RB
1955 }
1956
1957 if (srs == 0) {
1958 /*
1959 * If no shadow set is selected then use the default handler
2a0b24f5 1960 * that does normal register saving and standard interrupt exit
e01402b1 1961 */
e01402b1
RB
1962 extern char except_vec_vi, except_vec_vi_lui;
1963 extern char except_vec_vi_ori, except_vec_vi_end;
c65a5480 1964 extern char rollback_except_vec_vi;
f94d9a8e 1965 char *vec_start = using_rollback_handler() ?
c65a5480 1966 &rollback_except_vec_vi : &except_vec_vi;
2a0b24f5
SH
1967#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1968 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1969 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1970#else
c65a5480
AN
1971 const int lui_offset = &except_vec_vi_lui - vec_start;
1972 const int ori_offset = &except_vec_vi_ori - vec_start;
2a0b24f5
SH
1973#endif
1974 const int handler_len = &except_vec_vi_end - vec_start;
e01402b1
RB
1975
1976 if (handler_len > VECTORSPACING) {
1977 /*
1978 * Sigh... panicing won't help as the console
1979 * is probably not configured :(
1980 */
49a89efb 1981 panic("VECTORSPACING too small");
e01402b1
RB
1982 }
1983
2a0b24f5
SH
1984 set_handler(((unsigned long)b - ebase), vec_start,
1985#ifdef CONFIG_CPU_MICROMIPS
1986 (handler_len - 1));
1987#else
1988 handler_len);
1989#endif
2a0b24f5
SH
1990 h = (u16 *)(b + lui_offset);
1991 *h = (handler >> 16) & 0xffff;
1992 h = (u16 *)(b + ori_offset);
1993 *h = (handler & 0xffff);
e0cee3ee
TB
1994 local_flush_icache_range((unsigned long)b,
1995 (unsigned long)(b+handler_len));
e01402b1
RB
1996 }
1997 else {
1998 /*
2a0b24f5
SH
1999 * In other cases jump directly to the interrupt handler. It
2000 * is the handler's responsibility to save registers if required
2001 * (eg hi/lo) and return from the exception using "eret".
e01402b1 2002 */
2a0b24f5
SH
2003 u32 insn;
2004
2005 h = (u16 *)b;
2006 /* j handler */
2007#ifdef CONFIG_CPU_MICROMIPS
2008 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2009#else
2010 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2011#endif
2012 h[0] = (insn >> 16) & 0xffff;
2013 h[1] = insn & 0xffff;
2014 h[2] = 0;
2015 h[3] = 0;
e0cee3ee
TB
2016 local_flush_icache_range((unsigned long)b,
2017 (unsigned long)(b+8));
1da177e4 2018 }
e01402b1 2019
1da177e4
LT
2020 return (void *)old_handler;
2021}
2022
ef300e42 2023void *set_vi_handler(int n, vi_handler_t addr)
e01402b1 2024{
ff3eab2a 2025 return set_vi_srs_handler(n, addr, 0);
e01402b1 2026}
f41ae0b2 2027
1da177e4
LT
2028extern void tlb_init(void);
2029
42f77542
RB
2030/*
2031 * Timer interrupt
2032 */
2033int cp0_compare_irq;
68b6352c 2034EXPORT_SYMBOL_GPL(cp0_compare_irq);
010c108d 2035int cp0_compare_irq_shift;
42f77542
RB
2036
2037/*
2038 * Performance counter IRQ or -1 if shared with timer
2039 */
2040int cp0_perfcount_irq;
2041EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2042
8f7ff027
JH
2043/*
2044 * Fast debug channel IRQ or -1 if not present
2045 */
2046int cp0_fdc_irq;
2047EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2048
078a55fc 2049static int noulri;
bdc94eb4
CD
2050
2051static int __init ulri_disable(char *s)
2052{
2053 pr_info("Disabling ulri\n");
2054 noulri = 1;
2055
2056 return 1;
2057}
2058__setup("noulri", ulri_disable);
2059
ae4ce454
JH
2060/* configure STATUS register */
2061static void configure_status(void)
1da177e4 2062{
1da177e4
LT
2063 /*
2064 * Disable coprocessors and select 32-bit or 64-bit addressing
2065 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2066 * flag that some firmware may have left set and the TS bit (for
2067 * IP27). Set XX for ISA IV code to work.
2068 */
ae4ce454 2069 unsigned int status_set = ST0_CU0;
875d43e7 2070#ifdef CONFIG_64BIT
1da177e4
LT
2071 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2072#endif
adb37892 2073 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1da177e4 2074 status_set |= ST0_XX;
bbaf238b
CD
2075 if (cpu_has_dsp)
2076 status_set |= ST0_MX;
2077
b38c7399 2078 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1da177e4 2079 status_set);
ae4ce454
JH
2080}
2081
b937ff62
JH
2082unsigned int hwrena;
2083EXPORT_SYMBOL_GPL(hwrena);
2084
ae4ce454
JH
2085/* configure HWRENA register */
2086static void configure_hwrena(void)
2087{
b937ff62 2088 hwrena = cpu_hwrena_impl_bits;
1da177e4 2089
9c7d5768 2090 if (cpu_has_mips_r2_r6)
aff565aa
JH
2091 hwrena |= MIPS_HWRENA_CPUNUM |
2092 MIPS_HWRENA_SYNCISTEP |
2093 MIPS_HWRENA_CC |
2094 MIPS_HWRENA_CCRES;
a3692020 2095
18d693b3 2096 if (!noulri && cpu_has_userlocal)
aff565aa 2097 hwrena |= MIPS_HWRENA_ULR;
a3692020 2098
18d693b3
KC
2099 if (hwrena)
2100 write_c0_hwrena(hwrena);
ae4ce454 2101}
e01402b1 2102
ae4ce454
JH
2103static void configure_exception_vector(void)
2104{
e01402b1 2105 if (cpu_has_veic || cpu_has_vint) {
9fb4c2b9 2106 unsigned long sr = set_c0_status(ST0_BEV);
4b22c693
MR
2107 /* If available, use WG to set top bits of EBASE */
2108 if (cpu_has_ebase_wg) {
2109#ifdef CONFIG_64BIT
2110 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2111#else
2112 write_c0_ebase(ebase | MIPS_EBASE_WG);
2113#endif
2114 }
49a89efb 2115 write_c0_ebase(ebase);
9fb4c2b9 2116 write_c0_status(sr);
e01402b1 2117 /* Setting vector spacing enables EI/VI mode */
49a89efb 2118 change_c0_intctl(0x3e0, VECTORSPACING);
e01402b1 2119 }
d03d0a57
RB
2120 if (cpu_has_divec) {
2121 if (cpu_has_mipsmt) {
2122 unsigned int vpflags = dvpe();
2123 set_c0_cause(CAUSEF_IV);
2124 evpe(vpflags);
2125 } else
2126 set_c0_cause(CAUSEF_IV);
2127 }
ae4ce454
JH
2128}
2129
2130void per_cpu_trap_init(bool is_boot_cpu)
2131{
2132 unsigned int cpu = smp_processor_id();
ae4ce454
JH
2133
2134 configure_status();
2135 configure_hwrena();
2136
ae4ce454 2137 configure_exception_vector();
3b1d4ed5
RB
2138
2139 /*
2140 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2141 *
2142 * o read IntCtl.IPTI to determine the timer interrupt
2143 * o read IntCtl.IPPCI to determine the performance counter interrupt
8f7ff027 2144 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
3b1d4ed5 2145 */
9c7d5768 2146 if (cpu_has_mips_r2_r6) {
04d83f94
MC
2147 /*
2148 * We shouldn't trust a secondary core has a sane EBASE register
2149 * so use the one calculated by the boot CPU.
2150 */
4b22c693
MR
2151 if (!is_boot_cpu) {
2152 /* If available, use WG to set top bits of EBASE */
2153 if (cpu_has_ebase_wg) {
2154#ifdef CONFIG_64BIT
2155 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2156#else
2157 write_c0_ebase(ebase | MIPS_EBASE_WG);
2158#endif
2159 }
04d83f94 2160 write_c0_ebase(ebase);
4b22c693 2161 }
04d83f94 2162
010c108d
DV
2163 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2164 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2165 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
8f7ff027
JH
2166 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2167 if (!cp0_fdc_irq)
2168 cp0_fdc_irq = -1;
2169
c3e838a2
CD
2170 } else {
2171 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
c6a4ebb9 2172 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
c3e838a2 2173 cp0_perfcount_irq = -1;
8f7ff027 2174 cp0_fdc_irq = -1;
3b1d4ed5
RB
2175 }
2176
48c4ac97 2177 if (!cpu_data[cpu].asid_cache)
4edf00a4 2178 cpu_data[cpu].asid_cache = asid_first_version(cpu);
1da177e4
LT
2179
2180 atomic_inc(&init_mm.mm_count);
2181 current->active_mm = &init_mm;
2182 BUG_ON(current->mm);
2183 enter_lazy_tlb(&init_mm, current);
2184
761b4493
MC
2185 /* Boot CPU's cache setup in setup_arch(). */
2186 if (!is_boot_cpu)
2187 cpu_cache_init();
2188 tlb_init();
3d8bfdd0 2189 TLBMISS_HANDLER_SETUP();
1da177e4
LT
2190}
2191
e01402b1 2192/* Install CPU exception handler */
078a55fc 2193void set_handler(unsigned long offset, void *addr, unsigned long size)
e01402b1 2194{
2a0b24f5
SH
2195#ifdef CONFIG_CPU_MICROMIPS
2196 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2197#else
e01402b1 2198 memcpy((void *)(ebase + offset), addr, size);
2a0b24f5 2199#endif
e0cee3ee 2200 local_flush_icache_range(ebase + offset, ebase + offset + size);
e01402b1
RB
2201}
2202
078a55fc 2203static char panic_null_cerr[] =
641e97f3
RB
2204 "Trying to set NULL cache error exception handler";
2205
42fe7ee3
RB
2206/*
2207 * Install uncached CPU exception handler.
2208 * This is suitable only for the cache error exception which is the only
2209 * exception handler that is being run uncached.
2210 */
078a55fc 2211void set_uncached_handler(unsigned long offset, void *addr,
234fcd14 2212 unsigned long size)
e01402b1 2213{
4f81b01a 2214 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
e01402b1 2215
641e97f3
RB
2216 if (!addr)
2217 panic(panic_null_cerr);
2218
e01402b1
RB
2219 memcpy((void *)(uncached_ebase + offset), addr, size);
2220}
2221
5b10496b
AN
2222static int __initdata rdhwr_noopt;
2223static int __init set_rdhwr_noopt(char *str)
2224{
2225 rdhwr_noopt = 1;
2226 return 1;
2227}
2228
2229__setup("rdhwr_noopt", set_rdhwr_noopt);
2230
1da177e4
LT
2231void __init trap_init(void)
2232{
2a0b24f5 2233 extern char except_vec3_generic;
1da177e4 2234 extern char except_vec4;
2a0b24f5 2235 extern char except_vec3_r4000;
1da177e4 2236 unsigned long i;
c65a5480
AN
2237
2238 check_wait();
1da177e4 2239
9fb4c2b9
CD
2240 if (cpu_has_veic || cpu_has_vint) {
2241 unsigned long size = 0x200 + VECTORSPACING*64;
c195e079
JH
2242 phys_addr_t ebase_pa;
2243
9fb4c2b9
CD
2244 ebase = (unsigned long)
2245 __alloc_bootmem(size, 1 << fls(size), 0);
c195e079
JH
2246
2247 /*
2248 * Try to ensure ebase resides in KSeg0 if possible.
2249 *
2250 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2251 * hitting a poorly defined exception base for Cache Errors.
2252 * The allocation is likely to be in the low 512MB of physical,
2253 * in which case we should be able to convert to KSeg0.
2254 *
2255 * EVA is special though as it allows segments to be rearranged
2256 * and to become uncached during cache error handling.
2257 */
2258 ebase_pa = __pa(ebase);
2259 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2260 ebase = CKSEG0ADDR(ebase_pa);
9fb4c2b9 2261 } else {
a13c9962
PB
2262 ebase = CAC_BASE;
2263
18022894
JH
2264 if (cpu_has_mips_r2_r6) {
2265 if (cpu_has_ebase_wg) {
2266#ifdef CONFIG_64BIT
2267 ebase = (read_c0_ebase_64() & ~0xfff);
2268#else
2269 ebase = (read_c0_ebase() & ~0xfff);
2270#endif
2271 } else {
2272 ebase += (read_c0_ebase() & 0x3ffff000);
2273 }
2274 }
566f74f6 2275 }
e01402b1 2276
c6213c6c
SH
2277 if (cpu_has_mmips) {
2278 unsigned int config3 = read_c0_config3();
2279
2280 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2281 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2282 else
2283 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2284 }
2285
6fb97eff
KC
2286 if (board_ebase_setup)
2287 board_ebase_setup();
6650df3c 2288 per_cpu_trap_init(true);
1da177e4
LT
2289
2290 /*
2291 * Copy the generic exception handlers to their final destination.
92a76f6d 2292 * This will be overridden later as suitable for a particular
1da177e4
LT
2293 * configuration.
2294 */
e01402b1 2295 set_handler(0x180, &except_vec3_generic, 0x80);
1da177e4
LT
2296
2297 /*
2298 * Setup default vectors
2299 */
2300 for (i = 0; i <= 31; i++)
2301 set_except_vector(i, handle_reserved);
2302
2303 /*
2304 * Copy the EJTAG debug exception vector handler code to it's final
2305 * destination.
2306 */
e01402b1 2307 if (cpu_has_ejtag && board_ejtag_handler_setup)
49a89efb 2308 board_ejtag_handler_setup();
1da177e4
LT
2309
2310 /*
2311 * Only some CPUs have the watch exceptions.
2312 */
2313 if (cpu_has_watch)
1b505def 2314 set_except_vector(EXCCODE_WATCH, handle_watch);
1da177e4
LT
2315
2316 /*
e01402b1 2317 * Initialise interrupt handlers
1da177e4 2318 */
e01402b1
RB
2319 if (cpu_has_veic || cpu_has_vint) {
2320 int nvec = cpu_has_veic ? 64 : 8;
2321 for (i = 0; i < nvec; i++)
ff3eab2a 2322 set_vi_handler(i, NULL);
e01402b1
RB
2323 }
2324 else if (cpu_has_divec)
2325 set_handler(0x200, &except_vec4, 0x8);
1da177e4
LT
2326
2327 /*
2328 * Some CPUs can enable/disable for cache parity detection, but does
2329 * it different ways.
2330 */
2331 parity_protection_init();
2332
2333 /*
2334 * The Data Bus Errors / Instruction Bus Errors are signaled
2335 * by external hardware. Therefore these two exceptions
2336 * may have board specific handlers.
2337 */
2338 if (board_be_init)
2339 board_be_init();
2340
1b505def
JH
2341 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2342 rollback_handle_int : handle_int);
2343 set_except_vector(EXCCODE_MOD, handle_tlbm);
2344 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2345 set_except_vector(EXCCODE_TLBS, handle_tlbs);
1da177e4 2346
1b505def
JH
2347 set_except_vector(EXCCODE_ADEL, handle_adel);
2348 set_except_vector(EXCCODE_ADES, handle_ades);
1da177e4 2349
1b505def
JH
2350 set_except_vector(EXCCODE_IBE, handle_ibe);
2351 set_except_vector(EXCCODE_DBE, handle_dbe);
1da177e4 2352
1b505def
JH
2353 set_except_vector(EXCCODE_SYS, handle_sys);
2354 set_except_vector(EXCCODE_BP, handle_bp);
2355 set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri :
5b10496b
AN
2356 (cpu_has_vtag_icache ?
2357 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1b505def
JH
2358 set_except_vector(EXCCODE_CPU, handle_cpu);
2359 set_except_vector(EXCCODE_OV, handle_ov);
2360 set_except_vector(EXCCODE_TR, handle_tr);
2361 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
1da177e4 2362
10cc3529
RB
2363 if (current_cpu_type() == CPU_R6000 ||
2364 current_cpu_type() == CPU_R6000A) {
1da177e4
LT
2365 /*
2366 * The R6000 is the only R-series CPU that features a machine
2367 * check exception (similar to the R4000 cache error) and
2368 * unaligned ldc1/sdc1 exception. The handlers have not been
70342287 2369 * written yet. Well, anyway there is no R6000 machine on the
1da177e4
LT
2370 * current list of targets for Linux/MIPS.
2371 * (Duh, crap, there is someone with a triple R6k machine)
2372 */
2373 //set_except_vector(14, handle_mc);
2374 //set_except_vector(15, handle_ndc);
2375 }
2376
e01402b1
RB
2377
2378 if (board_nmi_handler_setup)
2379 board_nmi_handler_setup();
2380
e50c0a8f 2381 if (cpu_has_fpu && !cpu_has_nofpuex)
1b505def 2382 set_except_vector(EXCCODE_FPE, handle_fpe);
e50c0a8f 2383
1b505def 2384 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
5890f70f
LY
2385
2386 if (cpu_has_rixiex) {
1b505def
JH
2387 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2388 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
5890f70f
LY
2389 }
2390
1b505def
JH
2391 set_except_vector(EXCCODE_MSADIS, handle_msa);
2392 set_except_vector(EXCCODE_MDMX, handle_mdmx);
e50c0a8f
RB
2393
2394 if (cpu_has_mcheck)
1b505def 2395 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
e50c0a8f 2396
340ee4b9 2397 if (cpu_has_mipsmt)
1b505def 2398 set_except_vector(EXCCODE_THREAD, handle_mt);
340ee4b9 2399
1b505def 2400 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
e50c0a8f 2401
fcbf1dfd
DD
2402 if (board_cache_error_setup)
2403 board_cache_error_setup();
2404
e50c0a8f
RB
2405 if (cpu_has_vce)
2406 /* Special exception: R4[04]00 uses also the divec space. */
2a0b24f5 2407 set_handler(0x180, &except_vec3_r4000, 0x100);
e50c0a8f 2408 else if (cpu_has_4kex)
2a0b24f5 2409 set_handler(0x180, &except_vec3_generic, 0x80);
e50c0a8f 2410 else
2a0b24f5 2411 set_handler(0x080, &except_vec3_generic, 0x80);
e50c0a8f 2412
e0cee3ee 2413 local_flush_icache_range(ebase, ebase + 0x400);
0510617b
TB
2414
2415 sort_extable(__start___dbe_table, __stop___dbe_table);
69f3a7de 2416
4483b159 2417 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
1da177e4 2418}
ae4ce454
JH
2419
2420static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2421 void *v)
2422{
2423 switch (cmd) {
2424 case CPU_PM_ENTER_FAILED:
2425 case CPU_PM_EXIT:
2426 configure_status();
2427 configure_hwrena();
2428 configure_exception_vector();
2429
2430 /* Restore register with CPU number for TLB handlers */
2431 TLBMISS_HANDLER_RESTORE();
2432
2433 break;
2434 }
2435
2436 return NOTIFY_OK;
2437}
2438
2439static struct notifier_block trap_pm_notifier_block = {
2440 .notifier_call = trap_pm_notifier,
2441};
2442
2443static int __init trap_pm_init(void)
2444{
2445 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2446}
2447arch_initcall(trap_pm_init);