]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/mips/kernel/traps.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / arch / mips / kernel / traps.c
CommitLineData
1da177e4
LT
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
36ccf1c0 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
1da177e4
LT
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
60b0d655 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
2a0b24f5 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
b08a9c95 13 * Copyright (C) 2014, Imagination Technologies Ltd.
1da177e4 14 */
ed2d72c1 15#include <linux/bitops.h>
8e8a52ed 16#include <linux/bug.h>
60b0d655 17#include <linux/compiler.h>
c3fc5cd5 18#include <linux/context_tracking.h>
ae4ce454 19#include <linux/cpu_pm.h>
7aa1c8f4 20#include <linux/kexec.h>
1da177e4 21#include <linux/init.h>
8742cd23 22#include <linux/kernel.h>
f9ded569 23#include <linux/module.h>
9f3b8081 24#include <linux/extable.h>
1da177e4 25#include <linux/mm.h>
68e21be2 26#include <linux/sched/mm.h>
b17b0153 27#include <linux/sched/debug.h>
1da177e4 28#include <linux/smp.h>
1da177e4
LT
29#include <linux/spinlock.h>
30#include <linux/kallsyms.h>
e01402b1 31#include <linux/bootmem.h>
d4fd1989 32#include <linux/interrupt.h>
39b8d525 33#include <linux/ptrace.h>
88547001
JW
34#include <linux/kgdb.h>
35#include <linux/kdebug.h>
c1bf207d 36#include <linux/kprobes.h>
69f3a7de 37#include <linux/notifier.h>
5dd11d5d 38#include <linux/kdb.h>
ca4d3e67 39#include <linux/irq.h>
7f788d2d 40#include <linux/perf_event.h>
1da177e4 41
a13c9962 42#include <asm/addrspace.h>
1da177e4
LT
43#include <asm/bootinfo.h>
44#include <asm/branch.h>
45#include <asm/break.h>
69f3a7de 46#include <asm/cop2.h>
1da177e4 47#include <asm/cpu.h>
69f24d17 48#include <asm/cpu-type.h>
e50c0a8f 49#include <asm/dsp.h>
1da177e4 50#include <asm/fpu.h>
ba3049ed 51#include <asm/fpu_emulator.h>
bdc92d74 52#include <asm/idle.h>
dabdc185 53#include <asm/mips-cm.h>
b0a668fb 54#include <asm/mips-r2-to-r6-emul.h>
35e6de38 55#include <asm/mips-cm.h>
340ee4b9
RB
56#include <asm/mipsregs.h>
57#include <asm/mipsmtregs.h>
1da177e4 58#include <asm/module.h>
1db1af84 59#include <asm/msa.h>
1da177e4
LT
60#include <asm/pgtable.h>
61#include <asm/ptrace.h>
62#include <asm/sections.h>
3b143cca 63#include <asm/siginfo.h>
1da177e4
LT
64#include <asm/tlbdebug.h>
65#include <asm/traps.h>
7c0f6ba6 66#include <linux/uaccess.h>
b67b2b70 67#include <asm/watch.h>
1da177e4 68#include <asm/mmu_context.h>
1da177e4 69#include <asm/types.h>
1df0f0ff 70#include <asm/stacktrace.h>
92bbe1b9 71#include <asm/uasm.h>
1da177e4 72
c65a5480 73extern void check_wait(void);
c65a5480 74extern asmlinkage void rollback_handle_int(void);
e4ac58af 75extern asmlinkage void handle_int(void);
86a1708a
RB
76extern u32 handle_tlbl[];
77extern u32 handle_tlbs[];
78extern u32 handle_tlbm[];
1da177e4
LT
79extern asmlinkage void handle_adel(void);
80extern asmlinkage void handle_ades(void);
81extern asmlinkage void handle_ibe(void);
82extern asmlinkage void handle_dbe(void);
83extern asmlinkage void handle_sys(void);
84extern asmlinkage void handle_bp(void);
85extern asmlinkage void handle_ri(void);
5a341331 86extern asmlinkage void handle_ri_rdhwr_tlbp(void);
5b10496b 87extern asmlinkage void handle_ri_rdhwr(void);
1da177e4
LT
88extern asmlinkage void handle_cpu(void);
89extern asmlinkage void handle_ov(void);
90extern asmlinkage void handle_tr(void);
2bcb3fbc 91extern asmlinkage void handle_msa_fpe(void);
1da177e4 92extern asmlinkage void handle_fpe(void);
75b5b5e0 93extern asmlinkage void handle_ftlb(void);
1db1af84 94extern asmlinkage void handle_msa(void);
1da177e4
LT
95extern asmlinkage void handle_mdmx(void);
96extern asmlinkage void handle_watch(void);
340ee4b9 97extern asmlinkage void handle_mt(void);
e50c0a8f 98extern asmlinkage void handle_dsp(void);
1da177e4
LT
99extern asmlinkage void handle_mcheck(void);
100extern asmlinkage void handle_reserved(void);
5890f70f 101extern void tlb_do_page_fault_0(void);
1da177e4 102
1da177e4
LT
103void (*board_be_init)(void);
104int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
e01402b1
RB
105void (*board_nmi_handler_setup)(void);
106void (*board_ejtag_handler_setup)(void);
107void (*board_bind_eic_interrupt)(int irq, int regset);
6fb97eff 108void (*board_ebase_setup)(void);
078a55fc 109void(*board_cache_error_setup)(void);
1da177e4 110
4d157d5e 111static void show_raw_backtrace(unsigned long reg29)
e889d78f 112{
39b8d525 113 unsigned long *sp = (unsigned long *)(reg29 & ~3);
e889d78f
AN
114 unsigned long addr;
115
116 printk("Call Trace:");
117#ifdef CONFIG_KALLSYMS
118 printk("\n");
119#endif
10220c88
TB
120 while (!kstack_end(sp)) {
121 unsigned long __user *p =
122 (unsigned long __user *)(unsigned long)sp++;
123 if (__get_user(addr, p)) {
124 printk(" (Bad stack address)");
125 break;
39b8d525 126 }
10220c88
TB
127 if (__kernel_text_address(addr))
128 print_ip_sym(addr);
e889d78f 129 }
10220c88 130 printk("\n");
e889d78f
AN
131}
132
f66686f7 133#ifdef CONFIG_KALLSYMS
1df0f0ff 134int raw_show_trace;
f66686f7
AN
135static int __init set_raw_show_trace(char *str)
136{
137 raw_show_trace = 1;
138 return 1;
139}
140__setup("raw_show_trace", set_raw_show_trace);
1df0f0ff 141#endif
4d157d5e 142
eae23f2c 143static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
f66686f7 144{
4d157d5e
FBH
145 unsigned long sp = regs->regs[29];
146 unsigned long ra = regs->regs[31];
f66686f7 147 unsigned long pc = regs->cp0_epc;
f66686f7 148
e909be82
VW
149 if (!task)
150 task = current;
151
81a76d71 152 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
87151ae3 153 show_raw_backtrace(sp);
f66686f7
AN
154 return;
155 }
156 printk("Call Trace:\n");
4d157d5e 157 do {
87151ae3 158 print_ip_sym(pc);
1924600c 159 pc = unwind_stack(task, &sp, pc, &ra);
4d157d5e 160 } while (pc);
bcf084de 161 pr_cont("\n");
f66686f7 162}
f66686f7 163
1da177e4
LT
164/*
165 * This routine abuses get_user()/put_user() to reference pointers
166 * with at least a bit of error checking ...
167 */
eae23f2c
RB
168static void show_stacktrace(struct task_struct *task,
169 const struct pt_regs *regs)
1da177e4
LT
170{
171 const int field = 2 * sizeof(unsigned long);
172 long stackdata;
173 int i;
5e0373b8 174 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
1da177e4
LT
175
176 printk("Stack :");
177 i = 0;
178 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
fe4e09e7
MR
179 if (i && ((i % (64 / field)) == 0)) {
180 pr_cont("\n");
181 printk(" ");
182 }
1da177e4 183 if (i > 39) {
fe4e09e7 184 pr_cont(" ...");
1da177e4
LT
185 break;
186 }
187
188 if (__get_user(stackdata, sp++)) {
fe4e09e7 189 pr_cont(" (Bad stack address)");
1da177e4
LT
190 break;
191 }
192
fe4e09e7 193 pr_cont(" %0*lx", field, stackdata);
1da177e4
LT
194 i++;
195 }
fe4e09e7 196 pr_cont("\n");
87151ae3 197 show_backtrace(task, regs);
f66686f7
AN
198}
199
f66686f7
AN
200void show_stack(struct task_struct *task, unsigned long *sp)
201{
202 struct pt_regs regs;
1e77863a 203 mm_segment_t old_fs = get_fs();
85423636
JH
204
205 regs.cp0_status = KSU_KERNEL;
f66686f7
AN
206 if (sp) {
207 regs.regs[29] = (unsigned long)sp;
208 regs.regs[31] = 0;
209 regs.cp0_epc = 0;
210 } else {
211 if (task && task != current) {
212 regs.regs[29] = task->thread.reg29;
213 regs.regs[31] = 0;
214 regs.cp0_epc = task->thread.reg31;
5dd11d5d
JW
215#ifdef CONFIG_KGDB_KDB
216 } else if (atomic_read(&kgdb_active) != -1 &&
217 kdb_current_regs) {
218 memcpy(&regs, kdb_current_regs, sizeof(regs));
219#endif /* CONFIG_KGDB_KDB */
f66686f7
AN
220 } else {
221 prepare_frametrace(&regs);
222 }
223 }
1e77863a
JH
224 /*
225 * show_stack() deals exclusively with kernel mode, so be sure to access
226 * the stack in the kernel (not user) address space.
227 */
228 set_fs(KERNEL_DS);
f66686f7 229 show_stacktrace(task, &regs);
1e77863a 230 set_fs(old_fs);
1da177e4
LT
231}
232
e1bb8289 233static void show_code(unsigned int __user *pc)
1da177e4
LT
234{
235 long i;
39b8d525 236 unsigned short __user *pc16 = NULL;
1da177e4 237
41000c58 238 printk("Code:");
1da177e4 239
39b8d525
RB
240 if ((unsigned long)pc & 1)
241 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
1da177e4
LT
242 for(i = -3 ; i < 6 ; i++) {
243 unsigned int insn;
39b8d525 244 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
41000c58 245 pr_cont(" (Bad address in epc)\n");
1da177e4
LT
246 break;
247 }
41000c58 248 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
1da177e4 249 }
41000c58 250 pr_cont("\n");
1da177e4
LT
251}
252
eae23f2c 253static void __show_regs(const struct pt_regs *regs)
1da177e4
LT
254{
255 const int field = 2 * sizeof(unsigned long);
256 unsigned int cause = regs->cp0_cause;
37dd3818 257 unsigned int exccode;
1da177e4
LT
258 int i;
259
a43cb95d 260 show_regs_print_info(KERN_DEFAULT);
1da177e4
LT
261
262 /*
263 * Saved main processor registers
264 */
265 for (i = 0; i < 32; ) {
266 if ((i % 4) == 0)
267 printk("$%2d :", i);
268 if (i == 0)
752f5499 269 pr_cont(" %0*lx", field, 0UL);
1da177e4 270 else if (i == 26 || i == 27)
752f5499 271 pr_cont(" %*s", field, "");
1da177e4 272 else
752f5499 273 pr_cont(" %0*lx", field, regs->regs[i]);
1da177e4
LT
274
275 i++;
276 if ((i % 4) == 0)
752f5499 277 pr_cont("\n");
1da177e4
LT
278 }
279
9693a853
FBH
280#ifdef CONFIG_CPU_HAS_SMARTMIPS
281 printk("Acx : %0*lx\n", field, regs->acx);
282#endif
1da177e4
LT
283 printk("Hi : %0*lx\n", field, regs->hi);
284 printk("Lo : %0*lx\n", field, regs->lo);
285
286 /*
287 * Saved cp0 registers
288 */
b012cffe
RB
289 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
290 (void *) regs->cp0_epc);
b012cffe
RB
291 printk("ra : %0*lx %pS\n", field, regs->regs[31],
292 (void *) regs->regs[31]);
1da177e4 293
70342287 294 printk("Status: %08x ", (uint32_t) regs->cp0_status);
1da177e4 295
1990e542 296 if (cpu_has_3kex) {
3b2396d9 297 if (regs->cp0_status & ST0_KUO)
752f5499 298 pr_cont("KUo ");
3b2396d9 299 if (regs->cp0_status & ST0_IEO)
752f5499 300 pr_cont("IEo ");
3b2396d9 301 if (regs->cp0_status & ST0_KUP)
752f5499 302 pr_cont("KUp ");
3b2396d9 303 if (regs->cp0_status & ST0_IEP)
752f5499 304 pr_cont("IEp ");
3b2396d9 305 if (regs->cp0_status & ST0_KUC)
752f5499 306 pr_cont("KUc ");
3b2396d9 307 if (regs->cp0_status & ST0_IEC)
752f5499 308 pr_cont("IEc ");
1990e542 309 } else if (cpu_has_4kex) {
3b2396d9 310 if (regs->cp0_status & ST0_KX)
752f5499 311 pr_cont("KX ");
3b2396d9 312 if (regs->cp0_status & ST0_SX)
752f5499 313 pr_cont("SX ");
3b2396d9 314 if (regs->cp0_status & ST0_UX)
752f5499 315 pr_cont("UX ");
3b2396d9
MR
316 switch (regs->cp0_status & ST0_KSU) {
317 case KSU_USER:
752f5499 318 pr_cont("USER ");
3b2396d9
MR
319 break;
320 case KSU_SUPERVISOR:
752f5499 321 pr_cont("SUPERVISOR ");
3b2396d9
MR
322 break;
323 case KSU_KERNEL:
752f5499 324 pr_cont("KERNEL ");
3b2396d9
MR
325 break;
326 default:
752f5499 327 pr_cont("BAD_MODE ");
3b2396d9
MR
328 break;
329 }
330 if (regs->cp0_status & ST0_ERL)
752f5499 331 pr_cont("ERL ");
3b2396d9 332 if (regs->cp0_status & ST0_EXL)
752f5499 333 pr_cont("EXL ");
3b2396d9 334 if (regs->cp0_status & ST0_IE)
752f5499 335 pr_cont("IE ");
1da177e4 336 }
752f5499 337 pr_cont("\n");
1da177e4 338
37dd3818
PG
339 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
340 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
1da177e4 341
37dd3818 342 if (1 <= exccode && exccode <= 5)
1da177e4
LT
343 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
344
9966db25
RB
345 printk("PrId : %08x (%s)\n", read_c0_prid(),
346 cpu_name_string());
1da177e4
LT
347}
348
eae23f2c
RB
349/*
350 * FIXME: really the generic show_regs should take a const pointer argument.
351 */
352void show_regs(struct pt_regs *regs)
353{
354 __show_regs((struct pt_regs *)regs);
355}
356
c1bf207d 357void show_registers(struct pt_regs *regs)
1da177e4 358{
39b8d525 359 const int field = 2 * sizeof(unsigned long);
83e4da1e 360 mm_segment_t old_fs = get_fs();
39b8d525 361
eae23f2c 362 __show_regs(regs);
1da177e4 363 print_modules();
39b8d525
RB
364 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
365 current->comm, current->pid, current_thread_info(), current,
366 field, current_thread_info()->tp_value);
367 if (cpu_has_userlocal) {
368 unsigned long tls;
369
370 tls = read_c0_userlocal();
371 if (tls != current_thread_info()->tp_value)
372 printk("*HwTLS: %0*lx\n", field, tls);
373 }
374
83e4da1e
LY
375 if (!user_mode(regs))
376 /* Necessary for getting the correct stack content */
377 set_fs(KERNEL_DS);
f66686f7 378 show_stacktrace(current, regs);
e1bb8289 379 show_code((unsigned int __user *) regs->cp0_epc);
1da177e4 380 printk("\n");
83e4da1e 381 set_fs(old_fs);
1da177e4
LT
382}
383
4d85f6af 384static DEFINE_RAW_SPINLOCK(die_lock);
1da177e4 385
70dc6f04 386void __noreturn die(const char *str, struct pt_regs *regs)
1da177e4
LT
387{
388 static int die_counter;
ce384d83 389 int sig = SIGSEGV;
1da177e4 390
8742cd23
NL
391 oops_enter();
392
e3b28831 393 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
dc73e4c1 394 SIGSEGV) == NOTIFY_STOP)
10423c91 395 sig = 0;
5dd11d5d 396
1da177e4 397 console_verbose();
4d85f6af 398 raw_spin_lock_irq(&die_lock);
41c594ab 399 bust_spinlocks(1);
ce384d83 400
178086c8 401 printk("%s[#%d]:\n", str, ++die_counter);
1da177e4 402 show_registers(regs);
373d4d09 403 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
4d85f6af 404 raw_spin_unlock_irq(&die_lock);
d4fd1989 405
8742cd23
NL
406 oops_exit();
407
d4fd1989
MB
408 if (in_interrupt())
409 panic("Fatal exception in interrupt");
410
99a7a234 411 if (panic_on_oops)
d4fd1989 412 panic("Fatal exception");
d4fd1989 413
7aa1c8f4
RB
414 if (regs && kexec_should_crash(current))
415 crash_kexec(regs);
416
ce384d83 417 do_exit(sig);
1da177e4
LT
418}
419
0510617b
TB
420extern struct exception_table_entry __start___dbe_table[];
421extern struct exception_table_entry __stop___dbe_table[];
1da177e4 422
b6dcec9b
RB
423__asm__(
424" .section __dbe_table, \"a\"\n"
425" .previous \n");
1da177e4
LT
426
427/* Given an address, look for it in the exception tables. */
428static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
429{
430 const struct exception_table_entry *e;
431
432 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
433 if (!e)
434 e = search_module_dbetables(addr);
435 return e;
436}
437
438asmlinkage void do_be(struct pt_regs *regs)
439{
440 const int field = 2 * sizeof(unsigned long);
441 const struct exception_table_entry *fixup = NULL;
442 int data = regs->cp0_cause & 4;
443 int action = MIPS_BE_FATAL;
c3fc5cd5 444 enum ctx_state prev_state;
1da177e4 445
c3fc5cd5 446 prev_state = exception_enter();
70342287 447 /* XXX For now. Fixme, this searches the wrong table ... */
1da177e4
LT
448 if (data && !user_mode(regs))
449 fixup = search_dbe_tables(exception_epc(regs));
450
451 if (fixup)
452 action = MIPS_BE_FIXUP;
453
454 if (board_be_handler)
28fc582c 455 action = board_be_handler(regs, fixup != NULL);
dabdc185
PB
456 else
457 mips_cm_error_report();
1da177e4
LT
458
459 switch (action) {
460 case MIPS_BE_DISCARD:
c3fc5cd5 461 goto out;
1da177e4
LT
462 case MIPS_BE_FIXUP:
463 if (fixup) {
464 regs->cp0_epc = fixup->nextinsn;
c3fc5cd5 465 goto out;
1da177e4
LT
466 }
467 break;
468 default:
469 break;
470 }
471
472 /*
473 * Assume it would be too dangerous to continue ...
474 */
475 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
476 data ? "Data" : "Instruction",
477 field, regs->cp0_epc, field, regs->regs[31]);
e3b28831 478 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
dc73e4c1 479 SIGBUS) == NOTIFY_STOP)
c3fc5cd5 480 goto out;
88547001 481
1da177e4
LT
482 die_if_kernel("Oops", regs);
483 force_sig(SIGBUS, current);
c3fc5cd5
RB
484
485out:
486 exception_exit(prev_state);
1da177e4
LT
487}
488
1da177e4 489/*
60b0d655 490 * ll/sc, rdhwr, sync emulation
1da177e4
LT
491 */
492
493#define OPCODE 0xfc000000
494#define BASE 0x03e00000
495#define RT 0x001f0000
496#define OFFSET 0x0000ffff
497#define LL 0xc0000000
498#define SC 0xe0000000
60b0d655 499#define SPEC0 0x00000000
3c37026d
RB
500#define SPEC3 0x7c000000
501#define RD 0x0000f800
502#define FUNC 0x0000003f
60b0d655 503#define SYNC 0x0000000f
3c37026d 504#define RDHWR 0x0000003b
1da177e4 505
2a0b24f5
SH
506/* microMIPS definitions */
507#define MM_POOL32A_FUNC 0xfc00ffff
508#define MM_RDHWR 0x00006b3c
509#define MM_RS 0x001f0000
510#define MM_RT 0x03e00000
511
1da177e4
LT
512/*
513 * The ll_bit is cleared by r*_switch.S
514 */
515
f1e39a4a
RB
516unsigned int ll_bit;
517struct task_struct *ll_task;
1da177e4 518
60b0d655 519static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
1da177e4 520{
fe00f943 521 unsigned long value, __user *vaddr;
1da177e4 522 long offset;
1da177e4
LT
523
524 /*
525 * analyse the ll instruction that just caused a ri exception
526 * and put the referenced address to addr.
527 */
528
529 /* sign extend offset */
530 offset = opcode & OFFSET;
531 offset <<= 16;
532 offset >>= 16;
533
fe00f943 534 vaddr = (unsigned long __user *)
b9688310 535 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4 536
60b0d655
MR
537 if ((unsigned long)vaddr & 3)
538 return SIGBUS;
539 if (get_user(value, vaddr))
540 return SIGSEGV;
1da177e4
LT
541
542 preempt_disable();
543
544 if (ll_task == NULL || ll_task == current) {
545 ll_bit = 1;
546 } else {
547 ll_bit = 0;
548 }
549 ll_task = current;
550
551 preempt_enable();
552
553 regs->regs[(opcode & RT) >> 16] = value;
554
60b0d655 555 return 0;
1da177e4
LT
556}
557
60b0d655 558static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
1da177e4 559{
fe00f943
RB
560 unsigned long __user *vaddr;
561 unsigned long reg;
1da177e4 562 long offset;
1da177e4
LT
563
564 /*
565 * analyse the sc instruction that just caused a ri exception
566 * and put the referenced address to addr.
567 */
568
569 /* sign extend offset */
570 offset = opcode & OFFSET;
571 offset <<= 16;
572 offset >>= 16;
573
fe00f943 574 vaddr = (unsigned long __user *)
b9688310 575 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4
LT
576 reg = (opcode & RT) >> 16;
577
60b0d655
MR
578 if ((unsigned long)vaddr & 3)
579 return SIGBUS;
1da177e4
LT
580
581 preempt_disable();
582
583 if (ll_bit == 0 || ll_task != current) {
584 regs->regs[reg] = 0;
585 preempt_enable();
60b0d655 586 return 0;
1da177e4
LT
587 }
588
589 preempt_enable();
590
60b0d655
MR
591 if (put_user(regs->regs[reg], vaddr))
592 return SIGSEGV;
1da177e4
LT
593
594 regs->regs[reg] = 1;
595
60b0d655 596 return 0;
1da177e4
LT
597}
598
599/*
600 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
601 * opcodes are supposed to result in coprocessor unusable exceptions if
602 * executed on ll/sc-less processors. That's the theory. In practice a
603 * few processors such as NEC's VR4100 throw reserved instruction exceptions
604 * instead, so we're doing the emulation thing in both exception handlers.
605 */
60b0d655 606static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
1da177e4 607{
7f788d2d
DCZ
608 if ((opcode & OPCODE) == LL) {
609 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 610 1, regs, 0);
60b0d655 611 return simulate_ll(regs, opcode);
7f788d2d
DCZ
612 }
613 if ((opcode & OPCODE) == SC) {
614 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 615 1, regs, 0);
60b0d655 616 return simulate_sc(regs, opcode);
7f788d2d 617 }
1da177e4 618
60b0d655 619 return -1; /* Must be something else ... */
1da177e4
LT
620}
621
3c37026d
RB
622/*
623 * Simulate trapping 'rdhwr' instructions to provide user accessible
1f5826bd 624 * registers not implemented in hardware.
3c37026d 625 */
2a0b24f5 626static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
3c37026d 627{
dc8f6029 628 struct thread_info *ti = task_thread_info(current);
3c37026d 629
2a0b24f5
SH
630 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
631 1, regs, 0);
632 switch (rd) {
aff565aa 633 case MIPS_HWR_CPUNUM: /* CPU number */
2a0b24f5
SH
634 regs->regs[rt] = smp_processor_id();
635 return 0;
aff565aa 636 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
2a0b24f5
SH
637 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
638 current_cpu_data.icache.linesz);
639 return 0;
aff565aa 640 case MIPS_HWR_CC: /* Read count register */
2a0b24f5
SH
641 regs->regs[rt] = read_c0_count();
642 return 0;
aff565aa 643 case MIPS_HWR_CCRES: /* Count register resolution */
69f24d17 644 switch (current_cpu_type()) {
2a0b24f5
SH
645 case CPU_20KC:
646 case CPU_25KF:
647 regs->regs[rt] = 1;
648 break;
649 default:
650 regs->regs[rt] = 2;
651 }
652 return 0;
aff565aa 653 case MIPS_HWR_ULR: /* Read UserLocal register */
2a0b24f5
SH
654 regs->regs[rt] = ti->tp_value;
655 return 0;
656 default:
657 return -1;
658 }
659}
660
661static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
662{
3c37026d
RB
663 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
664 int rd = (opcode & RD) >> 11;
665 int rt = (opcode & RT) >> 16;
2a0b24f5
SH
666
667 simulate_rdhwr(regs, rd, rt);
668 return 0;
669 }
670
671 /* Not ours. */
672 return -1;
673}
674
7aa70471 675static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
2a0b24f5
SH
676{
677 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
678 int rd = (opcode & MM_RS) >> 16;
679 int rt = (opcode & MM_RT) >> 21;
680 simulate_rdhwr(regs, rd, rt);
681 return 0;
3c37026d
RB
682 }
683
56ebd51b 684 /* Not ours. */
60b0d655
MR
685 return -1;
686}
e5679882 687
60b0d655
MR
688static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
689{
7f788d2d
DCZ
690 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
691 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 692 1, regs, 0);
60b0d655 693 return 0;
7f788d2d 694 }
60b0d655
MR
695
696 return -1; /* Must be something else ... */
3c37026d
RB
697}
698
1da177e4
LT
699asmlinkage void do_ov(struct pt_regs *regs)
700{
c3fc5cd5 701 enum ctx_state prev_state;
e723e3f7
MR
702 siginfo_t info = {
703 .si_signo = SIGFPE,
704 .si_code = FPE_INTOVF,
705 .si_addr = (void __user *)regs->cp0_epc,
706 };
1da177e4 707
c3fc5cd5 708 prev_state = exception_enter();
36ccf1c0
RB
709 die_if_kernel("Integer overflow", regs);
710
1da177e4 711 force_sig_info(SIGFPE, &info, current);
c3fc5cd5 712 exception_exit(prev_state);
1da177e4
LT
713}
714
5a1aca44
MR
715/*
716 * Send SIGFPE according to FCSR Cause bits, which must have already
717 * been masked against Enable bits. This is impotant as Inexact can
718 * happen together with Overflow or Underflow, and `ptrace' can set
719 * any bits.
720 */
721void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
722 struct task_struct *tsk)
723{
724 struct siginfo si = { .si_addr = fault_addr, .si_signo = SIGFPE };
725
726 if (fcr31 & FPU_CSR_INV_X)
727 si.si_code = FPE_FLTINV;
728 else if (fcr31 & FPU_CSR_DIV_X)
729 si.si_code = FPE_FLTDIV;
730 else if (fcr31 & FPU_CSR_OVF_X)
731 si.si_code = FPE_FLTOVF;
732 else if (fcr31 & FPU_CSR_UDF_X)
733 si.si_code = FPE_FLTUND;
734 else if (fcr31 & FPU_CSR_INE_X)
735 si.si_code = FPE_FLTRES;
736 else
737 si.si_code = __SI_FAULT;
738 force_sig_info(SIGFPE, &si, tsk);
739}
740
304acb71 741int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
515b029d 742{
304acb71 743 struct siginfo si = { 0 };
bcfc8f0d 744 struct vm_area_struct *vma;
304acb71
MR
745
746 switch (sig) {
747 case 0:
748 return 0;
ad70c13a 749
304acb71 750 case SIGFPE:
5a1aca44 751 force_fcr31_sig(fcr31, fault_addr, current);
515b029d 752 return 1;
304acb71
MR
753
754 case SIGBUS:
755 si.si_addr = fault_addr;
756 si.si_signo = sig;
757 si.si_code = BUS_ADRERR;
758 force_sig_info(sig, &si, current);
759 return 1;
760
761 case SIGSEGV:
762 si.si_addr = fault_addr;
763 si.si_signo = sig;
764 down_read(&current->mm->mmap_sem);
bcfc8f0d
PJ
765 vma = find_vma(current->mm, (unsigned long)fault_addr);
766 if (vma && (vma->vm_start <= (unsigned long)fault_addr))
304acb71
MR
767 si.si_code = SEGV_ACCERR;
768 else
769 si.si_code = SEGV_MAPERR;
770 up_read(&current->mm->mmap_sem);
771 force_sig_info(sig, &si, current);
772 return 1;
773
774 default:
515b029d
DD
775 force_sig(sig, current);
776 return 1;
515b029d
DD
777 }
778}
779
4227a2d4
PB
780static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
781 unsigned long old_epc, unsigned long old_ra)
782{
783 union mips_instruction inst = { .word = opcode };
304acb71
MR
784 void __user *fault_addr;
785 unsigned long fcr31;
4227a2d4
PB
786 int sig;
787
788 /* If it's obviously not an FP instruction, skip it */
789 switch (inst.i_format.opcode) {
790 case cop1_op:
791 case cop1x_op:
792 case lwc1_op:
793 case ldc1_op:
794 case swc1_op:
795 case sdc1_op:
796 break;
797
798 default:
799 return -1;
800 }
801
802 /*
803 * do_ri skipped over the instruction via compute_return_epc, undo
804 * that for the FPU emulator.
805 */
806 regs->cp0_epc = old_epc;
807 regs->regs[31] = old_ra;
808
809 /* Save the FP context to struct thread_struct */
810 lose_fpu(1);
811
812 /* Run the emulator */
813 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
814 &fault_addr);
815
443c4403 816 /*
5a1aca44
MR
817 * We can't allow the emulated instruction to leave any
818 * enabled Cause bits set in $fcr31.
443c4403 819 */
5a1aca44
MR
820 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
821 current->thread.fpu.fcr31 &= ~fcr31;
4227a2d4
PB
822
823 /* Restore the hardware register state */
824 own_fpu(1);
825
304acb71
MR
826 /* Send a signal if required. */
827 process_fpemu_return(sig, fault_addr, fcr31);
828
4227a2d4
PB
829 return 0;
830}
831
1da177e4
LT
832/*
833 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
834 */
835asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
836{
c3fc5cd5 837 enum ctx_state prev_state;
304acb71
MR
838 void __user *fault_addr;
839 int sig;
948a34cf 840
c3fc5cd5 841 prev_state = exception_enter();
e3b28831 842 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
dc73e4c1 843 SIGFPE) == NOTIFY_STOP)
c3fc5cd5 844 goto out;
64bedffe
JH
845
846 /* Clear FCSR.Cause before enabling interrupts */
5a1aca44 847 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
64bedffe
JH
848 local_irq_enable();
849
57725f9e
CD
850 die_if_kernel("FP exception in kernel code", regs);
851
1da177e4 852 if (fcr31 & FPU_CSR_UNI_X) {
1da177e4 853 /*
a3dddd56 854 * Unimplemented operation exception. If we've got the full
1da177e4
LT
855 * software emulator on-board, let's use it...
856 *
857 * Force FPU to dump state into task/thread context. We're
858 * moving a lot of data here for what is probably a single
859 * instruction, but the alternative is to pre-decode the FP
860 * register operands before invoking the emulator, which seems
861 * a bit extreme for what should be an infrequent event.
862 */
cd21dfcf 863 /* Ensure 'resume' not overwrite saved fp context again. */
53dc8028 864 lose_fpu(1);
1da177e4
LT
865
866 /* Run the emulator */
515b029d
DD
867 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
868 &fault_addr);
1da177e4
LT
869
870 /*
5a1aca44
MR
871 * We can't allow the emulated instruction to leave any
872 * enabled Cause bits set in $fcr31.
1da177e4 873 */
5a1aca44
MR
874 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
875 current->thread.fpu.fcr31 &= ~fcr31;
1da177e4
LT
876
877 /* Restore the hardware register state */
70342287 878 own_fpu(1); /* Using the FPU again. */
304acb71
MR
879 } else {
880 sig = SIGFPE;
881 fault_addr = (void __user *) regs->cp0_epc;
ed2d72c1 882 }
1da177e4 883
304acb71
MR
884 /* Send a signal if required. */
885 process_fpemu_return(sig, fault_addr, fcr31);
c3fc5cd5
RB
886
887out:
888 exception_exit(prev_state);
1da177e4
LT
889}
890
3b143cca 891void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
df270051 892 const char *str)
1da177e4 893{
e723e3f7 894 siginfo_t info = { 0 };
df270051 895 char b[40];
1da177e4 896
5dd11d5d 897#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
e3b28831
RB
898 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
899 SIGTRAP) == NOTIFY_STOP)
5dd11d5d
JW
900 return;
901#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
902
e3b28831 903 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
dc73e4c1 904 SIGTRAP) == NOTIFY_STOP)
88547001
JW
905 return;
906
1da177e4 907 /*
df270051
RB
908 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
909 * insns, even for trap and break codes that indicate arithmetic
910 * failures. Weird ...
1da177e4
LT
911 * But should we continue the brokenness??? --macro
912 */
df270051
RB
913 switch (code) {
914 case BRK_OVERFLOW:
915 case BRK_DIVZERO:
916 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
917 die_if_kernel(b, regs);
918 if (code == BRK_DIVZERO)
1da177e4
LT
919 info.si_code = FPE_INTDIV;
920 else
921 info.si_code = FPE_INTOVF;
922 info.si_signo = SIGFPE;
fe00f943 923 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
924 force_sig_info(SIGFPE, &info, current);
925 break;
63dc68a8 926 case BRK_BUG:
df270051
RB
927 die_if_kernel("Kernel bug detected", regs);
928 force_sig(SIGTRAP, current);
63dc68a8 929 break;
ba3049ed
RB
930 case BRK_MEMU:
931 /*
1f443779
MR
932 * This breakpoint code is used by the FPU emulator to retake
933 * control of the CPU after executing the instruction from the
934 * delay slot of an emulated branch.
ba3049ed
RB
935 *
936 * Terminate if exception was recognized as a delay slot return
937 * otherwise handle as normal.
938 */
939 if (do_dsemulret(regs))
940 return;
941
942 die_if_kernel("Math emu break/trap", regs);
943 force_sig(SIGTRAP, current);
944 break;
1da177e4 945 default:
df270051
RB
946 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
947 die_if_kernel(b, regs);
3b143cca
MR
948 if (si_code) {
949 info.si_signo = SIGTRAP;
950 info.si_code = si_code;
951 force_sig_info(SIGTRAP, &info, current);
952 } else {
953 force_sig(SIGTRAP, current);
954 }
1da177e4 955 }
df270051
RB
956}
957
958asmlinkage void do_bp(struct pt_regs *regs)
959{
f6a31da5 960 unsigned long epc = msk_isa16_mode(exception_epc(regs));
df270051 961 unsigned int opcode, bcode;
c3fc5cd5 962 enum ctx_state prev_state;
078dde5e
LY
963 mm_segment_t seg;
964
965 seg = get_fs();
966 if (!user_mode(regs))
967 set_fs(KERNEL_DS);
2a0b24f5 968
c3fc5cd5 969 prev_state = exception_enter();
e3b28831 970 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
2a0b24f5 971 if (get_isa16_mode(regs->cp0_epc)) {
f6a31da5
MR
972 u16 instr[2];
973
974 if (__get_user(instr[0], (u16 __user *)epc))
975 goto out_sigsegv;
976
977 if (!cpu_has_mmips) {
b08a9c95 978 /* MIPS16e mode */
68893e00 979 bcode = (instr[0] >> 5) & 0x3f;
f6a31da5
MR
980 } else if (mm_insn_16bit(instr[0])) {
981 /* 16-bit microMIPS BREAK */
982 bcode = instr[0] & 0xf;
983 } else {
984 /* 32-bit microMIPS BREAK */
985 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
2a0b24f5 986 goto out_sigsegv;
f6a31da5
MR
987 opcode = (instr[0] << 16) | instr[1];
988 bcode = (opcode >> 6) & ((1 << 20) - 1);
2a0b24f5
SH
989 }
990 } else {
f6a31da5 991 if (__get_user(opcode, (unsigned int __user *)epc))
2a0b24f5 992 goto out_sigsegv;
f6a31da5 993 bcode = (opcode >> 6) & ((1 << 20) - 1);
2a0b24f5 994 }
df270051
RB
995
996 /*
997 * There is the ancient bug in the MIPS assemblers that the break
998 * code starts left to bit 16 instead to bit 6 in the opcode.
999 * Gas is bug-compatible, but not always, grrr...
1000 * We handle both cases with a simple heuristics. --macro
1001 */
df270051 1002 if (bcode >= (1 << 10))
c9875032 1003 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
df270051 1004
c1bf207d
DD
1005 /*
1006 * notify the kprobe handlers, if instruction is likely to
1007 * pertain to them.
1008 */
1009 switch (bcode) {
40e084a5
RB
1010 case BRK_UPROBE:
1011 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1012 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1013 goto out;
1014 else
1015 break;
1016 case BRK_UPROBE_XOL:
1017 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1018 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1019 goto out;
1020 else
1021 break;
c1bf207d 1022 case BRK_KPROBE_BP:
dc73e4c1 1023 if (notify_die(DIE_BREAK, "debug", regs, bcode,
e3b28831 1024 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
c3fc5cd5 1025 goto out;
c1bf207d
DD
1026 else
1027 break;
1028 case BRK_KPROBE_SSTEPBP:
dc73e4c1 1029 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
e3b28831 1030 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
c3fc5cd5 1031 goto out;
c1bf207d
DD
1032 else
1033 break;
1034 default:
1035 break;
1036 }
1037
3b143cca 1038 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
c3fc5cd5
RB
1039
1040out:
078dde5e 1041 set_fs(seg);
c3fc5cd5 1042 exception_exit(prev_state);
90fccb13 1043 return;
e5679882
RB
1044
1045out_sigsegv:
1046 force_sig(SIGSEGV, current);
c3fc5cd5 1047 goto out;
1da177e4
LT
1048}
1049
1050asmlinkage void do_tr(struct pt_regs *regs)
1051{
a9a6e7a0 1052 u32 opcode, tcode = 0;
c3fc5cd5 1053 enum ctx_state prev_state;
2a0b24f5 1054 u16 instr[2];
078dde5e 1055 mm_segment_t seg;
a9a6e7a0 1056 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1da177e4 1057
078dde5e
LY
1058 seg = get_fs();
1059 if (!user_mode(regs))
1060 set_fs(get_ds());
1061
c3fc5cd5 1062 prev_state = exception_enter();
e3b28831 1063 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
a9a6e7a0
MR
1064 if (get_isa16_mode(regs->cp0_epc)) {
1065 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1066 __get_user(instr[1], (u16 __user *)(epc + 2)))
2a0b24f5 1067 goto out_sigsegv;
a9a6e7a0
MR
1068 opcode = (instr[0] << 16) | instr[1];
1069 /* Immediate versions don't provide a code. */
1070 if (!(opcode & OPCODE))
1071 tcode = (opcode >> 12) & ((1 << 4) - 1);
1072 } else {
1073 if (__get_user(opcode, (u32 __user *)epc))
1074 goto out_sigsegv;
1075 /* Immediate versions don't provide a code. */
1076 if (!(opcode & OPCODE))
1077 tcode = (opcode >> 6) & ((1 << 10) - 1);
2a0b24f5 1078 }
1da177e4 1079
3b143cca 1080 do_trap_or_bp(regs, tcode, 0, "Trap");
c3fc5cd5
RB
1081
1082out:
078dde5e 1083 set_fs(seg);
c3fc5cd5 1084 exception_exit(prev_state);
90fccb13 1085 return;
e5679882
RB
1086
1087out_sigsegv:
1088 force_sig(SIGSEGV, current);
c3fc5cd5 1089 goto out;
1da177e4
LT
1090}
1091
1092asmlinkage void do_ri(struct pt_regs *regs)
1093{
60b0d655
MR
1094 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1095 unsigned long old_epc = regs->cp0_epc;
2a0b24f5 1096 unsigned long old31 = regs->regs[31];
c3fc5cd5 1097 enum ctx_state prev_state;
60b0d655
MR
1098 unsigned int opcode = 0;
1099 int status = -1;
1da177e4 1100
b0a668fb
LY
1101 /*
1102 * Avoid any kernel code. Just emulate the R2 instruction
1103 * as quickly as possible.
1104 */
1105 if (mipsr2_emulation && cpu_has_mips_r6 &&
4a7c2371
MR
1106 likely(user_mode(regs)) &&
1107 likely(get_user(opcode, epc) >= 0)) {
304acb71
MR
1108 unsigned long fcr31 = 0;
1109
1110 status = mipsr2_decoder(regs, opcode, &fcr31);
4a7c2371
MR
1111 switch (status) {
1112 case 0:
1113 case SIGEMT:
4a7c2371
MR
1114 return;
1115 case SIGILL:
1116 goto no_r2_instr;
1117 default:
1118 process_fpemu_return(status,
304acb71
MR
1119 &current->thread.cp0_baduaddr,
1120 fcr31);
4a7c2371 1121 return;
b0a668fb
LY
1122 }
1123 }
1124
1125no_r2_instr:
1126
c3fc5cd5 1127 prev_state = exception_enter();
e3b28831 1128 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
b0a668fb 1129
e3b28831 1130 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
dc73e4c1 1131 SIGILL) == NOTIFY_STOP)
c3fc5cd5 1132 goto out;
88547001 1133
60b0d655 1134 die_if_kernel("Reserved instruction in kernel code", regs);
1da177e4 1135
60b0d655 1136 if (unlikely(compute_return_epc(regs) < 0))
c3fc5cd5 1137 goto out;
3c37026d 1138
3d50a7fb 1139 if (!get_isa16_mode(regs->cp0_epc)) {
2a0b24f5
SH
1140 if (unlikely(get_user(opcode, epc) < 0))
1141 status = SIGSEGV;
60b0d655 1142
2a0b24f5
SH
1143 if (!cpu_has_llsc && status < 0)
1144 status = simulate_llsc(regs, opcode);
1145
1146 if (status < 0)
1147 status = simulate_rdhwr_normal(regs, opcode);
1148
1149 if (status < 0)
1150 status = simulate_sync(regs, opcode);
4227a2d4
PB
1151
1152 if (status < 0)
1153 status = simulate_fp(regs, opcode, old_epc, old31);
3d50a7fb
MR
1154 } else if (cpu_has_mmips) {
1155 unsigned short mmop[2] = { 0 };
1156
1157 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1158 status = SIGSEGV;
1159 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1160 status = SIGSEGV;
1161 opcode = mmop[0];
1162 opcode = (opcode << 16) | mmop[1];
1163
1164 if (status < 0)
1165 status = simulate_rdhwr_mm(regs, opcode);
2a0b24f5 1166 }
60b0d655
MR
1167
1168 if (status < 0)
1169 status = SIGILL;
1170
1171 if (unlikely(status > 0)) {
1172 regs->cp0_epc = old_epc; /* Undo skip-over. */
2a0b24f5 1173 regs->regs[31] = old31;
60b0d655
MR
1174 force_sig(status, current);
1175 }
c3fc5cd5
RB
1176
1177out:
1178 exception_exit(prev_state);
1da177e4
LT
1179}
1180
d223a861
RB
1181/*
1182 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1183 * emulated more than some threshold number of instructions, force migration to
1184 * a "CPU" that has FP support.
1185 */
1186static void mt_ase_fp_affinity(void)
1187{
1188#ifdef CONFIG_MIPS_MT_FPAFF
1189 if (mt_fpemul_threshold > 0 &&
1190 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1191 /*
1192 * If there's no FPU present, or if the application has already
1193 * restricted the allowed set to exclude any CPUs with FPUs,
1194 * we'll skip the procedure.
1195 */
8dd92891 1196 if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
d223a861
RB
1197 cpumask_t tmask;
1198
9cc12363
KK
1199 current->thread.user_cpus_allowed
1200 = current->cpus_allowed;
8dd92891
RR
1201 cpumask_and(&tmask, &current->cpus_allowed,
1202 &mt_fpu_cpumask);
ed1bbdef 1203 set_cpus_allowed_ptr(current, &tmask);
293c5bd1 1204 set_thread_flag(TIF_FPUBOUND);
d223a861
RB
1205 }
1206 }
1207#endif /* CONFIG_MIPS_MT_FPAFF */
1208}
1209
69f3a7de
RB
1210/*
1211 * No lock; only written during early bootup by CPU 0.
1212 */
1213static RAW_NOTIFIER_HEAD(cu2_chain);
1214
1215int __ref register_cu2_notifier(struct notifier_block *nb)
1216{
1217 return raw_notifier_chain_register(&cu2_chain, nb);
1218}
1219
1220int cu2_notifier_call_chain(unsigned long val, void *v)
1221{
1222 return raw_notifier_call_chain(&cu2_chain, val, v);
1223}
1224
1225static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
70342287 1226 void *data)
69f3a7de
RB
1227{
1228 struct pt_regs *regs = data;
1229
83bee792 1230 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
69f3a7de 1231 "instruction", regs);
83bee792 1232 force_sig(SIGILL, current);
69f3a7de
RB
1233
1234 return NOTIFY_OK;
1235}
1236
9791554b
PB
1237static int wait_on_fp_mode_switch(atomic_t *p)
1238{
1239 /*
1240 * The FP mode for this task is currently being switched. That may
1241 * involve modifications to the format of this tasks FP context which
1242 * make it unsafe to proceed with execution for the moment. Instead,
1243 * schedule some other task.
1244 */
1245 schedule();
1246 return 0;
1247}
1248
1db1af84
PB
1249static int enable_restore_fp_context(int msa)
1250{
c9017757 1251 int err, was_fpu_owner, prior_msa;
1db1af84 1252
9791554b
PB
1253 /*
1254 * If an FP mode switch is currently underway, wait for it to
1255 * complete before proceeding.
1256 */
1257 wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1258 wait_on_fp_mode_switch, TASK_KILLABLE);
1259
1db1af84
PB
1260 if (!used_math()) {
1261 /* First time FP context user. */
762a1f43 1262 preempt_disable();
1db1af84 1263 err = init_fpu();
c9017757 1264 if (msa && !err) {
1db1af84 1265 enable_msa();
e49d3848 1266 init_msa_upper();
732c0c3c
PB
1267 set_thread_flag(TIF_USEDMSA);
1268 set_thread_flag(TIF_MSA_CTX_LIVE);
c9017757 1269 }
762a1f43 1270 preempt_enable();
1db1af84
PB
1271 if (!err)
1272 set_used_math();
1273 return err;
1274 }
1275
1276 /*
1277 * This task has formerly used the FP context.
1278 *
1279 * If this thread has no live MSA vector context then we can simply
1280 * restore the scalar FP context. If it has live MSA vector context
1281 * (that is, it has or may have used MSA since last performing a
1282 * function call) then we'll need to restore the vector context. This
1283 * applies even if we're currently only executing a scalar FP
1284 * instruction. This is because if we were to later execute an MSA
1285 * instruction then we'd either have to:
1286 *
1287 * - Restore the vector context & clobber any registers modified by
1288 * scalar FP instructions between now & then.
1289 *
1290 * or
1291 *
1292 * - Not restore the vector context & lose the most significant bits
1293 * of all vector registers.
1294 *
1295 * Neither of those options is acceptable. We cannot restore the least
1296 * significant bits of the registers now & only restore the most
1297 * significant bits later because the most significant bits of any
1298 * vector registers whose aliased FP register is modified now will have
1299 * been zeroed. We'd have no way to know that when restoring the vector
1300 * context & thus may load an outdated value for the most significant
1301 * bits of a vector register.
1302 */
1303 if (!msa && !thread_msa_context_live())
1304 return own_fpu(1);
1305
1306 /*
1307 * This task is using or has previously used MSA. Thus we require
1308 * that Status.FR == 1.
1309 */
762a1f43 1310 preempt_disable();
1db1af84 1311 was_fpu_owner = is_fpu_owner();
762a1f43 1312 err = own_fpu_inatomic(0);
1db1af84 1313 if (err)
762a1f43 1314 goto out;
1db1af84
PB
1315
1316 enable_msa();
1317 write_msa_csr(current->thread.fpu.msacsr);
1318 set_thread_flag(TIF_USEDMSA);
1319
1320 /*
1321 * If this is the first time that the task is using MSA and it has
1322 * previously used scalar FP in this time slice then we already nave
c9017757
PB
1323 * FP context which we shouldn't clobber. We do however need to clear
1324 * the upper 64b of each vector register so that this task has no
1325 * opportunity to see data left behind by another.
1db1af84 1326 */
c9017757
PB
1327 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1328 if (!prior_msa && was_fpu_owner) {
e49d3848 1329 init_msa_upper();
762a1f43
PB
1330
1331 goto out;
c9017757 1332 }
1db1af84 1333
c9017757
PB
1334 if (!prior_msa) {
1335 /*
1336 * Restore the least significant 64b of each vector register
1337 * from the existing scalar FP context.
1338 */
1339 _restore_fp(current);
b8340673 1340
c9017757
PB
1341 /*
1342 * The task has not formerly used MSA, so clear the upper 64b
1343 * of each vector register such that it cannot see data left
1344 * behind by another task.
1345 */
e49d3848 1346 init_msa_upper();
c9017757
PB
1347 } else {
1348 /* We need to restore the vector context. */
1349 restore_msa(current);
b8340673 1350
c9017757
PB
1351 /* Restore the scalar FP control & status register */
1352 if (!was_fpu_owner)
d76e9b9f
JH
1353 write_32bit_cp1_register(CP1_STATUS,
1354 current->thread.fpu.fcr31);
c9017757 1355 }
762a1f43
PB
1356
1357out:
1358 preempt_enable();
1359
1db1af84
PB
1360 return 0;
1361}
1362
1da177e4
LT
1363asmlinkage void do_cpu(struct pt_regs *regs)
1364{
c3fc5cd5 1365 enum ctx_state prev_state;
60b0d655 1366 unsigned int __user *epc;
2a0b24f5 1367 unsigned long old_epc, old31;
304acb71 1368 void __user *fault_addr;
60b0d655 1369 unsigned int opcode;
304acb71 1370 unsigned long fcr31;
1da177e4 1371 unsigned int cpid;
597ce172 1372 int status, err;
304acb71 1373 int sig;
1da177e4 1374
c3fc5cd5 1375 prev_state = exception_enter();
1da177e4
LT
1376 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1377
83bee792
J
1378 if (cpid != 2)
1379 die_if_kernel("do_cpu invoked from kernel context!", regs);
1380
1da177e4
LT
1381 switch (cpid) {
1382 case 0:
60b0d655
MR
1383 epc = (unsigned int __user *)exception_epc(regs);
1384 old_epc = regs->cp0_epc;
2a0b24f5 1385 old31 = regs->regs[31];
60b0d655
MR
1386 opcode = 0;
1387 status = -1;
1da177e4 1388
60b0d655 1389 if (unlikely(compute_return_epc(regs) < 0))
27e28e8e 1390 break;
3c37026d 1391
10f6d99f 1392 if (!get_isa16_mode(regs->cp0_epc)) {
2a0b24f5
SH
1393 if (unlikely(get_user(opcode, epc) < 0))
1394 status = SIGSEGV;
1395
1396 if (!cpu_has_llsc && status < 0)
1397 status = simulate_llsc(regs, opcode);
2a0b24f5 1398 }
60b0d655
MR
1399
1400 if (status < 0)
1401 status = SIGILL;
1402
1403 if (unlikely(status > 0)) {
1404 regs->cp0_epc = old_epc; /* Undo skip-over. */
2a0b24f5 1405 regs->regs[31] = old31;
60b0d655
MR
1406 force_sig(status, current);
1407 }
1408
27e28e8e 1409 break;
1da177e4 1410
051ff44a
MR
1411 case 3:
1412 /*
2d83fea7
MR
1413 * The COP3 opcode space and consequently the CP0.Status.CU3
1414 * bit and the CP0.Cause.CE=3 encoding have been removed as
1415 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1416 * up the space has been reused for COP1X instructions, that
1417 * are enabled by the CP0.Status.CU1 bit and consequently
1418 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1419 * exceptions. Some FPU-less processors that implement one
1420 * of these ISAs however use this code erroneously for COP1X
1421 * instructions. Therefore we redirect this trap to the FP
1422 * emulator too.
051ff44a 1423 */
2d83fea7 1424 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
27e28e8e 1425 force_sig(SIGILL, current);
051ff44a 1426 break;
27e28e8e 1427 }
051ff44a
MR
1428 /* Fall through. */
1429
1da177e4 1430 case 1:
1db1af84 1431 err = enable_restore_fp_context(0);
1da177e4 1432
304acb71
MR
1433 if (raw_cpu_has_fpu && !err)
1434 break;
1da177e4 1435
304acb71
MR
1436 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1437 &fault_addr);
304acb71
MR
1438
1439 /*
1440 * We can't allow the emulated instruction to leave
5a1aca44 1441 * any enabled Cause bits set in $fcr31.
304acb71 1442 */
5a1aca44
MR
1443 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1444 current->thread.fpu.fcr31 &= ~fcr31;
304acb71
MR
1445
1446 /* Send a signal if required. */
1447 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1448 mt_ase_fp_affinity();
1da177e4 1449
27e28e8e 1450 break;
1da177e4
LT
1451
1452 case 2:
69f3a7de 1453 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
27e28e8e 1454 break;
1da177e4
LT
1455 }
1456
c3fc5cd5 1457 exception_exit(prev_state);
1da177e4
LT
1458}
1459
64bedffe 1460asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
2bcb3fbc
PB
1461{
1462 enum ctx_state prev_state;
1463
1464 prev_state = exception_enter();
e3b28831 1465 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
64bedffe 1466 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
e3b28831 1467 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
64bedffe
JH
1468 goto out;
1469
1470 /* Clear MSACSR.Cause before enabling interrupts */
1471 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1472 local_irq_enable();
1473
2bcb3fbc
PB
1474 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1475 force_sig(SIGFPE, current);
64bedffe 1476out:
2bcb3fbc
PB
1477 exception_exit(prev_state);
1478}
1479
1db1af84
PB
1480asmlinkage void do_msa(struct pt_regs *regs)
1481{
1482 enum ctx_state prev_state;
1483 int err;
1484
1485 prev_state = exception_enter();
1486
1487 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1488 force_sig(SIGILL, current);
1489 goto out;
1490 }
1491
1492 die_if_kernel("do_msa invoked from kernel context!", regs);
1493
1494 err = enable_restore_fp_context(1);
1495 if (err)
1496 force_sig(SIGILL, current);
1497out:
1498 exception_exit(prev_state);
1499}
1500
1da177e4
LT
1501asmlinkage void do_mdmx(struct pt_regs *regs)
1502{
c3fc5cd5
RB
1503 enum ctx_state prev_state;
1504
1505 prev_state = exception_enter();
1da177e4 1506 force_sig(SIGILL, current);
c3fc5cd5 1507 exception_exit(prev_state);
1da177e4
LT
1508}
1509
8bc6d05b
DD
1510/*
1511 * Called with interrupts disabled.
1512 */
1da177e4
LT
1513asmlinkage void do_watch(struct pt_regs *regs)
1514{
3b143cca 1515 siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
c3fc5cd5 1516 enum ctx_state prev_state;
b67b2b70 1517
c3fc5cd5 1518 prev_state = exception_enter();
1da177e4 1519 /*
b67b2b70
DD
1520 * Clear WP (bit 22) bit of cause register so we don't loop
1521 * forever.
1da177e4 1522 */
e233c733 1523 clear_c0_cause(CAUSEF_WP);
b67b2b70
DD
1524
1525 /*
1526 * If the current thread has the watch registers loaded, save
1527 * their values and send SIGTRAP. Otherwise another thread
1528 * left the registers set, clear them and continue.
1529 */
1530 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1531 mips_read_watch_registers();
8bc6d05b 1532 local_irq_enable();
3b143cca 1533 force_sig_info(SIGTRAP, &info, current);
8bc6d05b 1534 } else {
b67b2b70 1535 mips_clear_watch_registers();
8bc6d05b
DD
1536 local_irq_enable();
1537 }
c3fc5cd5 1538 exception_exit(prev_state);
1da177e4
LT
1539}
1540
1541asmlinkage void do_mcheck(struct pt_regs *regs)
1542{
cac4bcbc 1543 int multi_match = regs->cp0_status & ST0_TS;
c3fc5cd5 1544 enum ctx_state prev_state;
55c723e1 1545 mm_segment_t old_fs = get_fs();
cac4bcbc 1546
c3fc5cd5 1547 prev_state = exception_enter();
1da177e4 1548 show_regs(regs);
cac4bcbc
RB
1549
1550 if (multi_match) {
3c865dd9
JH
1551 dump_tlb_regs();
1552 pr_info("\n");
cac4bcbc
RB
1553 dump_tlb_all();
1554 }
1555
55c723e1
JH
1556 if (!user_mode(regs))
1557 set_fs(KERNEL_DS);
1558
e1bb8289 1559 show_code((unsigned int __user *) regs->cp0_epc);
cac4bcbc 1560
55c723e1
JH
1561 set_fs(old_fs);
1562
1da177e4
LT
1563 /*
1564 * Some chips may have other causes of machine check (e.g. SB1
1565 * graduation timer)
1566 */
1567 panic("Caught Machine Check exception - %scaused by multiple "
1568 "matching entries in the TLB.",
cac4bcbc 1569 (multi_match) ? "" : "not ");
1da177e4
LT
1570}
1571
340ee4b9
RB
1572asmlinkage void do_mt(struct pt_regs *regs)
1573{
41c594ab
RB
1574 int subcode;
1575
41c594ab
RB
1576 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1577 >> VPECONTROL_EXCPT_SHIFT;
1578 switch (subcode) {
1579 case 0:
e35a5e35 1580 printk(KERN_DEBUG "Thread Underflow\n");
41c594ab
RB
1581 break;
1582 case 1:
e35a5e35 1583 printk(KERN_DEBUG "Thread Overflow\n");
41c594ab
RB
1584 break;
1585 case 2:
e35a5e35 1586 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
41c594ab
RB
1587 break;
1588 case 3:
e35a5e35 1589 printk(KERN_DEBUG "Gating Storage Exception\n");
41c594ab
RB
1590 break;
1591 case 4:
e35a5e35 1592 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
41c594ab
RB
1593 break;
1594 case 5:
f232c7e8 1595 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
41c594ab
RB
1596 break;
1597 default:
e35a5e35 1598 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
41c594ab
RB
1599 subcode);
1600 break;
1601 }
340ee4b9
RB
1602 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1603
1604 force_sig(SIGILL, current);
1605}
1606
1607
e50c0a8f
RB
1608asmlinkage void do_dsp(struct pt_regs *regs)
1609{
1610 if (cpu_has_dsp)
ab75dc02 1611 panic("Unexpected DSP exception");
e50c0a8f
RB
1612
1613 force_sig(SIGILL, current);
1614}
1615
1da177e4
LT
1616asmlinkage void do_reserved(struct pt_regs *regs)
1617{
1618 /*
70342287 1619 * Game over - no way to handle this if it ever occurs. Most probably
1da177e4
LT
1620 * caused by a new unknown cpu type or after another deadly
1621 * hard/software error.
1622 */
1623 show_regs(regs);
1624 panic("Caught reserved exception %ld - should not happen.",
1625 (regs->cp0_cause & 0x7f) >> 2);
1626}
1627
39b8d525
RB
1628static int __initdata l1parity = 1;
1629static int __init nol1parity(char *s)
1630{
1631 l1parity = 0;
1632 return 1;
1633}
1634__setup("nol1par", nol1parity);
1635static int __initdata l2parity = 1;
1636static int __init nol2parity(char *s)
1637{
1638 l2parity = 0;
1639 return 1;
1640}
1641__setup("nol2par", nol2parity);
1642
1da177e4
LT
1643/*
1644 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1645 * it different ways.
1646 */
1647static inline void parity_protection_init(void)
1648{
35e6de38
PB
1649#define ERRCTL_PE 0x80000000
1650#define ERRCTL_L2P 0x00800000
1651
1652 if (mips_cm_revision() >= CM_REV_CM3) {
1653 ulong gcr_ectl, cp0_ectl;
1654
1655 /*
1656 * With CM3 systems we need to ensure that the L1 & L2
1657 * parity enables are set to the same value, since this
1658 * is presumed by the hardware engineers.
1659 *
1660 * If the user disabled either of L1 or L2 ECC checking,
1661 * disable both.
1662 */
1663 l1parity &= l2parity;
1664 l2parity &= l1parity;
1665
1666 /* Probe L1 ECC support */
1667 cp0_ectl = read_c0_ecc();
1668 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1669 back_to_back_c0_hazard();
1670 cp0_ectl = read_c0_ecc();
1671
1672 /* Probe L2 ECC support */
1673 gcr_ectl = read_gcr_err_control();
1674
1675 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT_MSK) ||
1676 !(cp0_ectl & ERRCTL_PE)) {
1677 /*
1678 * One of L1 or L2 ECC checking isn't supported,
1679 * so we cannot enable either.
1680 */
1681 l1parity = l2parity = 0;
1682 }
1683
1684 /* Configure L1 ECC checking */
1685 if (l1parity)
1686 cp0_ectl |= ERRCTL_PE;
1687 else
1688 cp0_ectl &= ~ERRCTL_PE;
1689 write_c0_ecc(cp0_ectl);
1690 back_to_back_c0_hazard();
1691 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1692
1693 /* Configure L2 ECC checking */
1694 if (l2parity)
1695 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
1696 else
1697 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
1698 write_gcr_err_control(gcr_ectl);
1699 gcr_ectl = read_gcr_err_control();
1700 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
1701 WARN_ON(!!gcr_ectl != l2parity);
1702
1703 pr_info("Cache parity protection %sabled\n",
1704 l1parity ? "en" : "dis");
1705 return;
1706 }
1707
10cc3529 1708 switch (current_cpu_type()) {
1da177e4 1709 case CPU_24K:
98a41de9 1710 case CPU_34K:
39b8d525
RB
1711 case CPU_74K:
1712 case CPU_1004K:
442e14a2 1713 case CPU_1074K:
26ab96df 1714 case CPU_INTERAPTIV:
708ac4b8 1715 case CPU_PROAPTIV:
aced4cbd 1716 case CPU_P5600:
4695089f 1717 case CPU_QEMU_GENERIC:
1091bfa2 1718 case CPU_P6600:
39b8d525 1719 {
39b8d525
RB
1720 unsigned long errctl;
1721 unsigned int l1parity_present, l2parity_present;
1722
1723 errctl = read_c0_ecc();
1724 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1725
1726 /* probe L1 parity support */
1727 write_c0_ecc(errctl | ERRCTL_PE);
1728 back_to_back_c0_hazard();
1729 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1730
1731 /* probe L2 parity support */
1732 write_c0_ecc(errctl|ERRCTL_L2P);
1733 back_to_back_c0_hazard();
1734 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1735
1736 if (l1parity_present && l2parity_present) {
1737 if (l1parity)
1738 errctl |= ERRCTL_PE;
1739 if (l1parity ^ l2parity)
1740 errctl |= ERRCTL_L2P;
1741 } else if (l1parity_present) {
1742 if (l1parity)
1743 errctl |= ERRCTL_PE;
1744 } else if (l2parity_present) {
1745 if (l2parity)
1746 errctl |= ERRCTL_L2P;
1747 } else {
1748 /* No parity available */
1749 }
1750
1751 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1752
1753 write_c0_ecc(errctl);
1754 back_to_back_c0_hazard();
1755 errctl = read_c0_ecc();
1756 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1757
1758 if (l1parity_present)
1759 printk(KERN_INFO "Cache parity protection %sabled\n",
1760 (errctl & ERRCTL_PE) ? "en" : "dis");
1761
1762 if (l2parity_present) {
1763 if (l1parity_present && l1parity)
1764 errctl ^= ERRCTL_L2P;
1765 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1766 (errctl & ERRCTL_L2P) ? "en" : "dis");
1767 }
1768 }
1769 break;
1770
1da177e4 1771 case CPU_5KC:
78d4803f 1772 case CPU_5KE:
2fa36399 1773 case CPU_LOONGSON1:
14f18b7f
RB
1774 write_c0_ecc(0x80000000);
1775 back_to_back_c0_hazard();
1776 /* Set the PE bit (bit 31) in the c0_errctl register. */
1777 printk(KERN_INFO "Cache parity protection %sabled\n",
1778 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1da177e4
LT
1779 break;
1780 case CPU_20KC:
1781 case CPU_25KF:
1782 /* Clear the DE bit (bit 16) in the c0_status register. */
1783 printk(KERN_INFO "Enable cache parity protection for "
1784 "MIPS 20KC/25KF CPUs.\n");
1785 clear_c0_status(ST0_DE);
1786 break;
1787 default:
1788 break;
1789 }
1790}
1791
1792asmlinkage void cache_parity_error(void)
1793{
1794 const int field = 2 * sizeof(unsigned long);
1795 unsigned int reg_val;
1796
1797 /* For the moment, report the problem and hang. */
1798 printk("Cache error exception:\n");
1799 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1800 reg_val = read_c0_cacheerr();
1801 printk("c0_cacheerr == %08x\n", reg_val);
1802
1803 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1804 reg_val & (1<<30) ? "secondary" : "primary",
1805 reg_val & (1<<31) ? "data" : "insn");
9c7d5768 1806 if ((cpu_has_mips_r2_r6) &&
721a9205 1807 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
6de20451
LY
1808 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1809 reg_val & (1<<29) ? "ED " : "",
1810 reg_val & (1<<28) ? "ET " : "",
1811 reg_val & (1<<27) ? "ES " : "",
1812 reg_val & (1<<26) ? "EE " : "",
1813 reg_val & (1<<25) ? "EB " : "",
1814 reg_val & (1<<24) ? "EI " : "",
1815 reg_val & (1<<23) ? "E1 " : "",
1816 reg_val & (1<<22) ? "E0 " : "");
1817 } else {
1818 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1819 reg_val & (1<<29) ? "ED " : "",
1820 reg_val & (1<<28) ? "ET " : "",
1821 reg_val & (1<<26) ? "EE " : "",
1822 reg_val & (1<<25) ? "EB " : "",
1823 reg_val & (1<<24) ? "EI " : "",
1824 reg_val & (1<<23) ? "E1 " : "",
1825 reg_val & (1<<22) ? "E0 " : "");
1826 }
1da177e4
LT
1827 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1828
ec917c2c 1829#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1da177e4
LT
1830 if (reg_val & (1<<22))
1831 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1832
1833 if (reg_val & (1<<23))
1834 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1835#endif
1836
1837 panic("Can't handle the cache error!");
1838}
1839
75b5b5e0
LY
1840asmlinkage void do_ftlb(void)
1841{
1842 const int field = 2 * sizeof(unsigned long);
1843 unsigned int reg_val;
1844
1845 /* For the moment, report the problem and hang. */
9c7d5768 1846 if ((cpu_has_mips_r2_r6) &&
b2edcfc8
HC
1847 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1848 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
75b5b5e0
LY
1849 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1850 read_c0_ecc());
1851 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1852 reg_val = read_c0_cacheerr();
1853 pr_err("c0_cacheerr == %08x\n", reg_val);
1854
1855 if ((reg_val & 0xc0000000) == 0xc0000000) {
1856 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1857 } else {
1858 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1859 reg_val & (1<<30) ? "secondary" : "primary",
1860 reg_val & (1<<31) ? "data" : "insn");
1861 }
1862 } else {
1863 pr_err("FTLB error exception\n");
1864 }
1865 /* Just print the cacheerr bits for now */
1866 cache_parity_error();
1867}
1868
1da177e4
LT
1869/*
1870 * SDBBP EJTAG debug exception handler.
1871 * We skip the instruction and return to the next instruction.
1872 */
1873void ejtag_exception_handler(struct pt_regs *regs)
1874{
1875 const int field = 2 * sizeof(unsigned long);
2a0b24f5 1876 unsigned long depc, old_epc, old_ra;
1da177e4
LT
1877 unsigned int debug;
1878
70ae6126 1879 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1da177e4
LT
1880 depc = read_c0_depc();
1881 debug = read_c0_debug();
70ae6126 1882 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1da177e4
LT
1883 if (debug & 0x80000000) {
1884 /*
1885 * In branch delay slot.
1886 * We cheat a little bit here and use EPC to calculate the
1887 * debug return address (DEPC). EPC is restored after the
1888 * calculation.
1889 */
1890 old_epc = regs->cp0_epc;
2a0b24f5 1891 old_ra = regs->regs[31];
1da177e4 1892 regs->cp0_epc = depc;
2a0b24f5 1893 compute_return_epc(regs);
1da177e4
LT
1894 depc = regs->cp0_epc;
1895 regs->cp0_epc = old_epc;
2a0b24f5 1896 regs->regs[31] = old_ra;
1da177e4
LT
1897 } else
1898 depc += 4;
1899 write_c0_depc(depc);
1900
1901#if 0
70ae6126 1902 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1da177e4
LT
1903 write_c0_debug(debug | 0x100);
1904#endif
1905}
1906
1907/*
1908 * NMI exception handler.
34bd92e2 1909 * No lock; only written during early bootup by CPU 0.
1da177e4 1910 */
34bd92e2
KC
1911static RAW_NOTIFIER_HEAD(nmi_chain);
1912
1913int register_nmi_notifier(struct notifier_block *nb)
1914{
1915 return raw_notifier_chain_register(&nmi_chain, nb);
1916}
1917
ff2d8b19 1918void __noreturn nmi_exception_handler(struct pt_regs *regs)
1da177e4 1919{
83e4da1e
LY
1920 char str[100];
1921
7963b3f1 1922 nmi_enter();
34bd92e2 1923 raw_notifier_call_chain(&nmi_chain, 0, regs);
41c594ab 1924 bust_spinlocks(1);
83e4da1e
LY
1925 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1926 smp_processor_id(), regs->cp0_epc);
1927 regs->cp0_epc = read_c0_errorepc();
1928 die(str, regs);
7963b3f1 1929 nmi_exit();
1da177e4
LT
1930}
1931
e01402b1
RB
1932#define VECTORSPACING 0x100 /* for EI/VI mode */
1933
1934unsigned long ebase;
878edf01 1935EXPORT_SYMBOL_GPL(ebase);
1da177e4 1936unsigned long exception_handlers[32];
e01402b1 1937unsigned long vi_handlers[64];
1da177e4 1938
2d1b6e95 1939void __init *set_except_vector(int n, void *addr)
1da177e4
LT
1940{
1941 unsigned long handler = (unsigned long) addr;
b22d1b6a 1942 unsigned long old_handler;
1da177e4 1943
2a0b24f5
SH
1944#ifdef CONFIG_CPU_MICROMIPS
1945 /*
1946 * Only the TLB handlers are cache aligned with an even
1947 * address. All other handlers are on an odd address and
1948 * require no modification. Otherwise, MIPS32 mode will
1949 * be entered when handling any TLB exceptions. That
1950 * would be bad...since we must stay in microMIPS mode.
1951 */
1952 if (!(handler & 0x1))
1953 handler |= 1;
1954#endif
b22d1b6a 1955 old_handler = xchg(&exception_handlers[n], handler);
1da177e4 1956
1da177e4 1957 if (n == 0 && cpu_has_divec) {
2a0b24f5
SH
1958#ifdef CONFIG_CPU_MICROMIPS
1959 unsigned long jump_mask = ~((1 << 27) - 1);
1960#else
92bbe1b9 1961 unsigned long jump_mask = ~((1 << 28) - 1);
2a0b24f5 1962#endif
92bbe1b9
FF
1963 u32 *buf = (u32 *)(ebase + 0x200);
1964 unsigned int k0 = 26;
1965 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1966 uasm_i_j(&buf, handler & ~jump_mask);
1967 uasm_i_nop(&buf);
1968 } else {
1969 UASM_i_LA(&buf, k0, handler);
1970 uasm_i_jr(&buf, k0);
1971 uasm_i_nop(&buf);
1972 }
1973 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
e01402b1
RB
1974 }
1975 return (void *)old_handler;
1976}
1977
86a1708a 1978static void do_default_vi(void)
6ba07e59
AN
1979{
1980 show_regs(get_irq_regs());
1981 panic("Caught unexpected vectored interrupt.");
1982}
1983
ef300e42 1984static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
e01402b1
RB
1985{
1986 unsigned long handler;
1987 unsigned long old_handler = vi_handlers[n];
f6771dbb 1988 int srssets = current_cpu_data.srsets;
2a0b24f5 1989 u16 *h;
e01402b1
RB
1990 unsigned char *b;
1991
b72b7092 1992 BUG_ON(!cpu_has_veic && !cpu_has_vint);
e01402b1
RB
1993
1994 if (addr == NULL) {
1995 handler = (unsigned long) do_default_vi;
1996 srs = 0;
41c594ab 1997 } else
e01402b1 1998 handler = (unsigned long) addr;
2a0b24f5 1999 vi_handlers[n] = handler;
e01402b1
RB
2000
2001 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2002
f6771dbb 2003 if (srs >= srssets)
e01402b1
RB
2004 panic("Shadow register set %d not supported", srs);
2005
2006 if (cpu_has_veic) {
2007 if (board_bind_eic_interrupt)
49a89efb 2008 board_bind_eic_interrupt(n, srs);
41c594ab 2009 } else if (cpu_has_vint) {
e01402b1 2010 /* SRSMap is only defined if shadow sets are implemented */
f6771dbb 2011 if (srssets > 1)
49a89efb 2012 change_c0_srsmap(0xf << n*4, srs << n*4);
e01402b1
RB
2013 }
2014
2015 if (srs == 0) {
2016 /*
2017 * If no shadow set is selected then use the default handler
2a0b24f5 2018 * that does normal register saving and standard interrupt exit
e01402b1 2019 */
e01402b1
RB
2020 extern char except_vec_vi, except_vec_vi_lui;
2021 extern char except_vec_vi_ori, except_vec_vi_end;
c65a5480 2022 extern char rollback_except_vec_vi;
f94d9a8e 2023 char *vec_start = using_rollback_handler() ?
c65a5480 2024 &rollback_except_vec_vi : &except_vec_vi;
2a0b24f5
SH
2025#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2026 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2027 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2028#else
c65a5480
AN
2029 const int lui_offset = &except_vec_vi_lui - vec_start;
2030 const int ori_offset = &except_vec_vi_ori - vec_start;
2a0b24f5
SH
2031#endif
2032 const int handler_len = &except_vec_vi_end - vec_start;
e01402b1
RB
2033
2034 if (handler_len > VECTORSPACING) {
2035 /*
2036 * Sigh... panicing won't help as the console
2037 * is probably not configured :(
2038 */
49a89efb 2039 panic("VECTORSPACING too small");
e01402b1
RB
2040 }
2041
2a0b24f5
SH
2042 set_handler(((unsigned long)b - ebase), vec_start,
2043#ifdef CONFIG_CPU_MICROMIPS
2044 (handler_len - 1));
2045#else
2046 handler_len);
2047#endif
2a0b24f5
SH
2048 h = (u16 *)(b + lui_offset);
2049 *h = (handler >> 16) & 0xffff;
2050 h = (u16 *)(b + ori_offset);
2051 *h = (handler & 0xffff);
e0cee3ee
TB
2052 local_flush_icache_range((unsigned long)b,
2053 (unsigned long)(b+handler_len));
e01402b1
RB
2054 }
2055 else {
2056 /*
2a0b24f5
SH
2057 * In other cases jump directly to the interrupt handler. It
2058 * is the handler's responsibility to save registers if required
2059 * (eg hi/lo) and return from the exception using "eret".
e01402b1 2060 */
2a0b24f5
SH
2061 u32 insn;
2062
2063 h = (u16 *)b;
2064 /* j handler */
2065#ifdef CONFIG_CPU_MICROMIPS
2066 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2067#else
2068 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2069#endif
2070 h[0] = (insn >> 16) & 0xffff;
2071 h[1] = insn & 0xffff;
2072 h[2] = 0;
2073 h[3] = 0;
e0cee3ee
TB
2074 local_flush_icache_range((unsigned long)b,
2075 (unsigned long)(b+8));
1da177e4 2076 }
e01402b1 2077
1da177e4
LT
2078 return (void *)old_handler;
2079}
2080
ef300e42 2081void *set_vi_handler(int n, vi_handler_t addr)
e01402b1 2082{
ff3eab2a 2083 return set_vi_srs_handler(n, addr, 0);
e01402b1 2084}
f41ae0b2 2085
1da177e4
LT
2086extern void tlb_init(void);
2087
42f77542
RB
2088/*
2089 * Timer interrupt
2090 */
2091int cp0_compare_irq;
68b6352c 2092EXPORT_SYMBOL_GPL(cp0_compare_irq);
010c108d 2093int cp0_compare_irq_shift;
42f77542
RB
2094
2095/*
2096 * Performance counter IRQ or -1 if shared with timer
2097 */
2098int cp0_perfcount_irq;
2099EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2100
8f7ff027
JH
2101/*
2102 * Fast debug channel IRQ or -1 if not present
2103 */
2104int cp0_fdc_irq;
2105EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2106
078a55fc 2107static int noulri;
bdc94eb4
CD
2108
2109static int __init ulri_disable(char *s)
2110{
2111 pr_info("Disabling ulri\n");
2112 noulri = 1;
2113
2114 return 1;
2115}
2116__setup("noulri", ulri_disable);
2117
ae4ce454
JH
2118/* configure STATUS register */
2119static void configure_status(void)
1da177e4 2120{
1da177e4
LT
2121 /*
2122 * Disable coprocessors and select 32-bit or 64-bit addressing
2123 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2124 * flag that some firmware may have left set and the TS bit (for
2125 * IP27). Set XX for ISA IV code to work.
2126 */
ae4ce454 2127 unsigned int status_set = ST0_CU0;
875d43e7 2128#ifdef CONFIG_64BIT
1da177e4
LT
2129 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2130#endif
adb37892 2131 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1da177e4 2132 status_set |= ST0_XX;
bbaf238b
CD
2133 if (cpu_has_dsp)
2134 status_set |= ST0_MX;
2135
b38c7399 2136 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1da177e4 2137 status_set);
ae4ce454
JH
2138}
2139
b937ff62
JH
2140unsigned int hwrena;
2141EXPORT_SYMBOL_GPL(hwrena);
2142
ae4ce454
JH
2143/* configure HWRENA register */
2144static void configure_hwrena(void)
2145{
b937ff62 2146 hwrena = cpu_hwrena_impl_bits;
1da177e4 2147
9c7d5768 2148 if (cpu_has_mips_r2_r6)
aff565aa
JH
2149 hwrena |= MIPS_HWRENA_CPUNUM |
2150 MIPS_HWRENA_SYNCISTEP |
2151 MIPS_HWRENA_CC |
2152 MIPS_HWRENA_CCRES;
a3692020 2153
18d693b3 2154 if (!noulri && cpu_has_userlocal)
aff565aa 2155 hwrena |= MIPS_HWRENA_ULR;
a3692020 2156
18d693b3
KC
2157 if (hwrena)
2158 write_c0_hwrena(hwrena);
ae4ce454 2159}
e01402b1 2160
ae4ce454
JH
2161static void configure_exception_vector(void)
2162{
e01402b1 2163 if (cpu_has_veic || cpu_has_vint) {
9fb4c2b9 2164 unsigned long sr = set_c0_status(ST0_BEV);
4b22c693
MR
2165 /* If available, use WG to set top bits of EBASE */
2166 if (cpu_has_ebase_wg) {
2167#ifdef CONFIG_64BIT
2168 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2169#else
2170 write_c0_ebase(ebase | MIPS_EBASE_WG);
2171#endif
2172 }
49a89efb 2173 write_c0_ebase(ebase);
9fb4c2b9 2174 write_c0_status(sr);
e01402b1 2175 /* Setting vector spacing enables EI/VI mode */
49a89efb 2176 change_c0_intctl(0x3e0, VECTORSPACING);
e01402b1 2177 }
d03d0a57
RB
2178 if (cpu_has_divec) {
2179 if (cpu_has_mipsmt) {
2180 unsigned int vpflags = dvpe();
2181 set_c0_cause(CAUSEF_IV);
2182 evpe(vpflags);
2183 } else
2184 set_c0_cause(CAUSEF_IV);
2185 }
ae4ce454
JH
2186}
2187
2188void per_cpu_trap_init(bool is_boot_cpu)
2189{
2190 unsigned int cpu = smp_processor_id();
ae4ce454
JH
2191
2192 configure_status();
2193 configure_hwrena();
2194
ae4ce454 2195 configure_exception_vector();
3b1d4ed5
RB
2196
2197 /*
2198 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2199 *
2200 * o read IntCtl.IPTI to determine the timer interrupt
2201 * o read IntCtl.IPPCI to determine the performance counter interrupt
8f7ff027 2202 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
3b1d4ed5 2203 */
9c7d5768 2204 if (cpu_has_mips_r2_r6) {
04d83f94
MC
2205 /*
2206 * We shouldn't trust a secondary core has a sane EBASE register
2207 * so use the one calculated by the boot CPU.
2208 */
4b22c693
MR
2209 if (!is_boot_cpu) {
2210 /* If available, use WG to set top bits of EBASE */
2211 if (cpu_has_ebase_wg) {
2212#ifdef CONFIG_64BIT
2213 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2214#else
2215 write_c0_ebase(ebase | MIPS_EBASE_WG);
2216#endif
2217 }
04d83f94 2218 write_c0_ebase(ebase);
4b22c693 2219 }
04d83f94 2220
010c108d
DV
2221 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2222 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2223 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
8f7ff027
JH
2224 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2225 if (!cp0_fdc_irq)
2226 cp0_fdc_irq = -1;
2227
c3e838a2
CD
2228 } else {
2229 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
c6a4ebb9 2230 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
c3e838a2 2231 cp0_perfcount_irq = -1;
8f7ff027 2232 cp0_fdc_irq = -1;
3b1d4ed5
RB
2233 }
2234
48c4ac97 2235 if (!cpu_data[cpu].asid_cache)
4edf00a4 2236 cpu_data[cpu].asid_cache = asid_first_version(cpu);
1da177e4 2237
f1f10076 2238 mmgrab(&init_mm);
1da177e4
LT
2239 current->active_mm = &init_mm;
2240 BUG_ON(current->mm);
2241 enter_lazy_tlb(&init_mm, current);
2242
761b4493
MC
2243 /* Boot CPU's cache setup in setup_arch(). */
2244 if (!is_boot_cpu)
2245 cpu_cache_init();
2246 tlb_init();
3d8bfdd0 2247 TLBMISS_HANDLER_SETUP();
1da177e4
LT
2248}
2249
e01402b1 2250/* Install CPU exception handler */
078a55fc 2251void set_handler(unsigned long offset, void *addr, unsigned long size)
e01402b1 2252{
2a0b24f5
SH
2253#ifdef CONFIG_CPU_MICROMIPS
2254 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2255#else
e01402b1 2256 memcpy((void *)(ebase + offset), addr, size);
2a0b24f5 2257#endif
e0cee3ee 2258 local_flush_icache_range(ebase + offset, ebase + offset + size);
e01402b1
RB
2259}
2260
06324664
KC
2261static const char panic_null_cerr[] =
2262 "Trying to set NULL cache error exception handler\n";
641e97f3 2263
42fe7ee3
RB
2264/*
2265 * Install uncached CPU exception handler.
2266 * This is suitable only for the cache error exception which is the only
2267 * exception handler that is being run uncached.
2268 */
078a55fc 2269void set_uncached_handler(unsigned long offset, void *addr,
234fcd14 2270 unsigned long size)
e01402b1 2271{
4f81b01a 2272 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
e01402b1 2273
641e97f3
RB
2274 if (!addr)
2275 panic(panic_null_cerr);
2276
e01402b1
RB
2277 memcpy((void *)(uncached_ebase + offset), addr, size);
2278}
2279
5b10496b
AN
2280static int __initdata rdhwr_noopt;
2281static int __init set_rdhwr_noopt(char *str)
2282{
2283 rdhwr_noopt = 1;
2284 return 1;
2285}
2286
2287__setup("rdhwr_noopt", set_rdhwr_noopt);
2288
1da177e4
LT
2289void __init trap_init(void)
2290{
2a0b24f5 2291 extern char except_vec3_generic;
1da177e4 2292 extern char except_vec4;
2a0b24f5 2293 extern char except_vec3_r4000;
1da177e4 2294 unsigned long i;
c65a5480
AN
2295
2296 check_wait();
1da177e4 2297
9fb4c2b9
CD
2298 if (cpu_has_veic || cpu_has_vint) {
2299 unsigned long size = 0x200 + VECTORSPACING*64;
c195e079
JH
2300 phys_addr_t ebase_pa;
2301
9fb4c2b9
CD
2302 ebase = (unsigned long)
2303 __alloc_bootmem(size, 1 << fls(size), 0);
c195e079
JH
2304
2305 /*
2306 * Try to ensure ebase resides in KSeg0 if possible.
2307 *
2308 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2309 * hitting a poorly defined exception base for Cache Errors.
2310 * The allocation is likely to be in the low 512MB of physical,
2311 * in which case we should be able to convert to KSeg0.
2312 *
2313 * EVA is special though as it allows segments to be rearranged
2314 * and to become uncached during cache error handling.
2315 */
2316 ebase_pa = __pa(ebase);
2317 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2318 ebase = CKSEG0ADDR(ebase_pa);
9fb4c2b9 2319 } else {
a13c9962
PB
2320 ebase = CAC_BASE;
2321
18022894
JH
2322 if (cpu_has_mips_r2_r6) {
2323 if (cpu_has_ebase_wg) {
2324#ifdef CONFIG_64BIT
2325 ebase = (read_c0_ebase_64() & ~0xfff);
2326#else
2327 ebase = (read_c0_ebase() & ~0xfff);
2328#endif
2329 } else {
2330 ebase += (read_c0_ebase() & 0x3ffff000);
2331 }
2332 }
566f74f6 2333 }
e01402b1 2334
c6213c6c
SH
2335 if (cpu_has_mmips) {
2336 unsigned int config3 = read_c0_config3();
2337
2338 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2339 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2340 else
2341 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2342 }
2343
6fb97eff
KC
2344 if (board_ebase_setup)
2345 board_ebase_setup();
6650df3c 2346 per_cpu_trap_init(true);
1da177e4
LT
2347
2348 /*
2349 * Copy the generic exception handlers to their final destination.
92a76f6d 2350 * This will be overridden later as suitable for a particular
1da177e4
LT
2351 * configuration.
2352 */
e01402b1 2353 set_handler(0x180, &except_vec3_generic, 0x80);
1da177e4
LT
2354
2355 /*
2356 * Setup default vectors
2357 */
2358 for (i = 0; i <= 31; i++)
2359 set_except_vector(i, handle_reserved);
2360
2361 /*
2362 * Copy the EJTAG debug exception vector handler code to it's final
2363 * destination.
2364 */
e01402b1 2365 if (cpu_has_ejtag && board_ejtag_handler_setup)
49a89efb 2366 board_ejtag_handler_setup();
1da177e4
LT
2367
2368 /*
2369 * Only some CPUs have the watch exceptions.
2370 */
2371 if (cpu_has_watch)
1b505def 2372 set_except_vector(EXCCODE_WATCH, handle_watch);
1da177e4
LT
2373
2374 /*
e01402b1 2375 * Initialise interrupt handlers
1da177e4 2376 */
e01402b1
RB
2377 if (cpu_has_veic || cpu_has_vint) {
2378 int nvec = cpu_has_veic ? 64 : 8;
2379 for (i = 0; i < nvec; i++)
ff3eab2a 2380 set_vi_handler(i, NULL);
e01402b1
RB
2381 }
2382 else if (cpu_has_divec)
2383 set_handler(0x200, &except_vec4, 0x8);
1da177e4
LT
2384
2385 /*
2386 * Some CPUs can enable/disable for cache parity detection, but does
2387 * it different ways.
2388 */
2389 parity_protection_init();
2390
2391 /*
2392 * The Data Bus Errors / Instruction Bus Errors are signaled
2393 * by external hardware. Therefore these two exceptions
2394 * may have board specific handlers.
2395 */
2396 if (board_be_init)
2397 board_be_init();
2398
1b505def
JH
2399 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2400 rollback_handle_int : handle_int);
2401 set_except_vector(EXCCODE_MOD, handle_tlbm);
2402 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2403 set_except_vector(EXCCODE_TLBS, handle_tlbs);
1da177e4 2404
1b505def
JH
2405 set_except_vector(EXCCODE_ADEL, handle_adel);
2406 set_except_vector(EXCCODE_ADES, handle_ades);
1da177e4 2407
1b505def
JH
2408 set_except_vector(EXCCODE_IBE, handle_ibe);
2409 set_except_vector(EXCCODE_DBE, handle_dbe);
1da177e4 2410
1b505def
JH
2411 set_except_vector(EXCCODE_SYS, handle_sys);
2412 set_except_vector(EXCCODE_BP, handle_bp);
5a341331
HC
2413
2414 if (rdhwr_noopt)
2415 set_except_vector(EXCCODE_RI, handle_ri);
2416 else {
2417 if (cpu_has_vtag_icache)
2418 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2419 else if (current_cpu_type() == CPU_LOONGSON3)
2420 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2421 else
2422 set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2423 }
2424
1b505def
JH
2425 set_except_vector(EXCCODE_CPU, handle_cpu);
2426 set_except_vector(EXCCODE_OV, handle_ov);
2427 set_except_vector(EXCCODE_TR, handle_tr);
2428 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
1da177e4 2429
10cc3529
RB
2430 if (current_cpu_type() == CPU_R6000 ||
2431 current_cpu_type() == CPU_R6000A) {
1da177e4
LT
2432 /*
2433 * The R6000 is the only R-series CPU that features a machine
2434 * check exception (similar to the R4000 cache error) and
2435 * unaligned ldc1/sdc1 exception. The handlers have not been
70342287 2436 * written yet. Well, anyway there is no R6000 machine on the
1da177e4
LT
2437 * current list of targets for Linux/MIPS.
2438 * (Duh, crap, there is someone with a triple R6k machine)
2439 */
2440 //set_except_vector(14, handle_mc);
2441 //set_except_vector(15, handle_ndc);
2442 }
2443
e01402b1
RB
2444
2445 if (board_nmi_handler_setup)
2446 board_nmi_handler_setup();
2447
e50c0a8f 2448 if (cpu_has_fpu && !cpu_has_nofpuex)
1b505def 2449 set_except_vector(EXCCODE_FPE, handle_fpe);
e50c0a8f 2450
1b505def 2451 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
5890f70f
LY
2452
2453 if (cpu_has_rixiex) {
1b505def
JH
2454 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2455 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
5890f70f
LY
2456 }
2457
1b505def
JH
2458 set_except_vector(EXCCODE_MSADIS, handle_msa);
2459 set_except_vector(EXCCODE_MDMX, handle_mdmx);
e50c0a8f
RB
2460
2461 if (cpu_has_mcheck)
1b505def 2462 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
e50c0a8f 2463
340ee4b9 2464 if (cpu_has_mipsmt)
1b505def 2465 set_except_vector(EXCCODE_THREAD, handle_mt);
340ee4b9 2466
1b505def 2467 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
e50c0a8f 2468
fcbf1dfd
DD
2469 if (board_cache_error_setup)
2470 board_cache_error_setup();
2471
e50c0a8f
RB
2472 if (cpu_has_vce)
2473 /* Special exception: R4[04]00 uses also the divec space. */
2a0b24f5 2474 set_handler(0x180, &except_vec3_r4000, 0x100);
e50c0a8f 2475 else if (cpu_has_4kex)
2a0b24f5 2476 set_handler(0x180, &except_vec3_generic, 0x80);
e50c0a8f 2477 else
2a0b24f5 2478 set_handler(0x080, &except_vec3_generic, 0x80);
e50c0a8f 2479
e0cee3ee 2480 local_flush_icache_range(ebase, ebase + 0x400);
0510617b
TB
2481
2482 sort_extable(__start___dbe_table, __stop___dbe_table);
69f3a7de 2483
4483b159 2484 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
1da177e4 2485}
ae4ce454
JH
2486
2487static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2488 void *v)
2489{
2490 switch (cmd) {
2491 case CPU_PM_ENTER_FAILED:
2492 case CPU_PM_EXIT:
2493 configure_status();
2494 configure_hwrena();
2495 configure_exception_vector();
2496
2497 /* Restore register with CPU number for TLB handlers */
2498 TLBMISS_HANDLER_RESTORE();
2499
2500 break;
2501 }
2502
2503 return NOTIFY_OK;
2504}
2505
2506static struct notifier_block trap_pm_notifier_block = {
2507 .notifier_call = trap_pm_notifier,
2508};
2509
2510static int __init trap_pm_init(void)
2511{
2512 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2513}
2514arch_initcall(trap_pm_init);