]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/mips/kernel/traps.c
UBUNTU: Ubuntu-5.15.0-39.42
[mirror_ubuntu-jammy-kernel.git] / arch / mips / kernel / traps.c
CommitLineData
1da177e4
LT
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
36ccf1c0 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
1da177e4
LT
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
60b0d655 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
2a0b24f5 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
b08a9c95 13 * Copyright (C) 2014, Imagination Technologies Ltd.
1da177e4 14 */
ed2d72c1 15#include <linux/bitops.h>
8e8a52ed 16#include <linux/bug.h>
60b0d655 17#include <linux/compiler.h>
c3fc5cd5 18#include <linux/context_tracking.h>
ae4ce454 19#include <linux/cpu_pm.h>
7aa1c8f4 20#include <linux/kexec.h>
1da177e4 21#include <linux/init.h>
8742cd23 22#include <linux/kernel.h>
f9ded569 23#include <linux/module.h>
9f3b8081 24#include <linux/extable.h>
1da177e4 25#include <linux/mm.h>
68e21be2 26#include <linux/sched/mm.h>
b17b0153 27#include <linux/sched/debug.h>
1da177e4 28#include <linux/smp.h>
1da177e4
LT
29#include <linux/spinlock.h>
30#include <linux/kallsyms.h>
bcec54bf 31#include <linux/memblock.h>
d4fd1989 32#include <linux/interrupt.h>
39b8d525 33#include <linux/ptrace.h>
88547001
JW
34#include <linux/kgdb.h>
35#include <linux/kdebug.h>
c1bf207d 36#include <linux/kprobes.h>
69f3a7de 37#include <linux/notifier.h>
5dd11d5d 38#include <linux/kdb.h>
ca4d3e67 39#include <linux/irq.h>
7f788d2d 40#include <linux/perf_event.h>
1da177e4 41
a13c9962 42#include <asm/addrspace.h>
1da177e4
LT
43#include <asm/bootinfo.h>
44#include <asm/branch.h>
45#include <asm/break.h>
69f3a7de 46#include <asm/cop2.h>
1da177e4 47#include <asm/cpu.h>
69f24d17 48#include <asm/cpu-type.h>
e50c0a8f 49#include <asm/dsp.h>
1da177e4 50#include <asm/fpu.h>
ba3049ed 51#include <asm/fpu_emulator.h>
bdc92d74 52#include <asm/idle.h>
b6d18e77 53#include <asm/isa-rev.h>
e83f7e02 54#include <asm/mips-cps.h>
b0a668fb 55#include <asm/mips-r2-to-r6-emul.h>
340ee4b9
RB
56#include <asm/mipsregs.h>
57#include <asm/mipsmtregs.h>
1da177e4 58#include <asm/module.h>
1db1af84 59#include <asm/msa.h>
1da177e4
LT
60#include <asm/ptrace.h>
61#include <asm/sections.h>
3b143cca 62#include <asm/siginfo.h>
1da177e4
LT
63#include <asm/tlbdebug.h>
64#include <asm/traps.h>
7c0f6ba6 65#include <linux/uaccess.h>
b67b2b70 66#include <asm/watch.h>
1da177e4 67#include <asm/mmu_context.h>
1da177e4 68#include <asm/types.h>
1df0f0ff 69#include <asm/stacktrace.h>
4bcb4ad6 70#include <asm/tlbex.h>
92bbe1b9 71#include <asm/uasm.h>
1da177e4 72
ec7a9318
WX
73#include <asm/mach-loongson64/cpucfg-emul.h>
74
45deb5fa
TB
75#include "access-helper.h"
76
c65a5480 77extern void check_wait(void);
c65a5480 78extern asmlinkage void rollback_handle_int(void);
e4ac58af 79extern asmlinkage void handle_int(void);
1da177e4
LT
80extern asmlinkage void handle_adel(void);
81extern asmlinkage void handle_ades(void);
82extern asmlinkage void handle_ibe(void);
83extern asmlinkage void handle_dbe(void);
84extern asmlinkage void handle_sys(void);
85extern asmlinkage void handle_bp(void);
86extern asmlinkage void handle_ri(void);
5a341331 87extern asmlinkage void handle_ri_rdhwr_tlbp(void);
5b10496b 88extern asmlinkage void handle_ri_rdhwr(void);
1da177e4
LT
89extern asmlinkage void handle_cpu(void);
90extern asmlinkage void handle_ov(void);
91extern asmlinkage void handle_tr(void);
2bcb3fbc 92extern asmlinkage void handle_msa_fpe(void);
1da177e4 93extern asmlinkage void handle_fpe(void);
75b5b5e0 94extern asmlinkage void handle_ftlb(void);
bc6e8dc1 95extern asmlinkage void handle_gsexc(void);
1db1af84 96extern asmlinkage void handle_msa(void);
1da177e4
LT
97extern asmlinkage void handle_mdmx(void);
98extern asmlinkage void handle_watch(void);
340ee4b9 99extern asmlinkage void handle_mt(void);
e50c0a8f 100extern asmlinkage void handle_dsp(void);
1da177e4
LT
101extern asmlinkage void handle_mcheck(void);
102extern asmlinkage void handle_reserved(void);
5890f70f 103extern void tlb_do_page_fault_0(void);
1da177e4 104
1da177e4
LT
105void (*board_be_init)(void);
106int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
e01402b1
RB
107void (*board_nmi_handler_setup)(void);
108void (*board_ejtag_handler_setup)(void);
109void (*board_bind_eic_interrupt)(int irq, int regset);
6fb97eff 110void (*board_ebase_setup)(void);
078a55fc 111void(*board_cache_error_setup)(void);
1da177e4 112
45deb5fa
TB
113static void show_raw_backtrace(unsigned long reg29, const char *loglvl,
114 bool user)
e889d78f 115{
39b8d525 116 unsigned long *sp = (unsigned long *)(reg29 & ~3);
e889d78f
AN
117 unsigned long addr;
118
96f0458a 119 printk("%sCall Trace:", loglvl);
e889d78f 120#ifdef CONFIG_KALLSYMS
96f0458a 121 printk("%s\n", loglvl);
e889d78f 122#endif
10220c88 123 while (!kstack_end(sp)) {
45deb5fa 124 if (__get_addr(&addr, sp++, user)) {
96f0458a 125 printk("%s (Bad stack address)", loglvl);
10220c88 126 break;
39b8d525 127 }
10220c88 128 if (__kernel_text_address(addr))
96f0458a 129 print_ip_sym(loglvl, addr);
e889d78f 130 }
96f0458a 131 printk("%s\n", loglvl);
e889d78f
AN
132}
133
f66686f7 134#ifdef CONFIG_KALLSYMS
1df0f0ff 135int raw_show_trace;
f66686f7
AN
136static int __init set_raw_show_trace(char *str)
137{
138 raw_show_trace = 1;
139 return 1;
140}
141__setup("raw_show_trace", set_raw_show_trace);
1df0f0ff 142#endif
4d157d5e 143
96f0458a 144static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
45deb5fa 145 const char *loglvl, bool user)
f66686f7 146{
4d157d5e
FBH
147 unsigned long sp = regs->regs[29];
148 unsigned long ra = regs->regs[31];
f66686f7 149 unsigned long pc = regs->cp0_epc;
f66686f7 150
e909be82
VW
151 if (!task)
152 task = current;
153
81a76d71 154 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
45deb5fa 155 show_raw_backtrace(sp, loglvl, user);
f66686f7
AN
156 return;
157 }
96f0458a 158 printk("%sCall Trace:\n", loglvl);
4d157d5e 159 do {
96f0458a 160 print_ip_sym(loglvl, pc);
1924600c 161 pc = unwind_stack(task, &sp, pc, &ra);
4d157d5e 162 } while (pc);
bcf084de 163 pr_cont("\n");
f66686f7 164}
f66686f7 165
1da177e4
LT
166/*
167 * This routine abuses get_user()/put_user() to reference pointers
168 * with at least a bit of error checking ...
169 */
eae23f2c 170static void show_stacktrace(struct task_struct *task,
45deb5fa 171 const struct pt_regs *regs, const char *loglvl, bool user)
1da177e4
LT
172{
173 const int field = 2 * sizeof(unsigned long);
45deb5fa 174 unsigned long stackdata;
1da177e4 175 int i;
45deb5fa 176 unsigned long *sp = (unsigned long *)regs->regs[29];
1da177e4 177
96f0458a 178 printk("%sStack :", loglvl);
1da177e4
LT
179 i = 0;
180 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
fe4e09e7
MR
181 if (i && ((i % (64 / field)) == 0)) {
182 pr_cont("\n");
96f0458a 183 printk("%s ", loglvl);
fe4e09e7 184 }
1da177e4 185 if (i > 39) {
fe4e09e7 186 pr_cont(" ...");
1da177e4
LT
187 break;
188 }
189
45deb5fa 190 if (__get_addr(&stackdata, sp++, user)) {
fe4e09e7 191 pr_cont(" (Bad stack address)");
1da177e4
LT
192 break;
193 }
194
fe4e09e7 195 pr_cont(" %0*lx", field, stackdata);
1da177e4
LT
196 i++;
197 }
fe4e09e7 198 pr_cont("\n");
45deb5fa 199 show_backtrace(task, regs, loglvl, user);
f66686f7
AN
200}
201
9cb8f069 202void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
f66686f7
AN
203{
204 struct pt_regs regs;
85423636
JH
205
206 regs.cp0_status = KSU_KERNEL;
f66686f7
AN
207 if (sp) {
208 regs.regs[29] = (unsigned long)sp;
209 regs.regs[31] = 0;
210 regs.cp0_epc = 0;
211 } else {
212 if (task && task != current) {
213 regs.regs[29] = task->thread.reg29;
214 regs.regs[31] = 0;
215 regs.cp0_epc = task->thread.reg31;
216 } else {
217 prepare_frametrace(&regs);
218 }
219 }
45deb5fa 220 show_stacktrace(task, &regs, loglvl, false);
1da177e4
LT
221}
222
45deb5fa 223static void show_code(void *pc, bool user)
1da177e4
LT
224{
225 long i;
45deb5fa 226 unsigned short *pc16 = NULL;
1da177e4 227
41000c58 228 printk("Code:");
1da177e4 229
39b8d525 230 if ((unsigned long)pc & 1)
45deb5fa
TB
231 pc16 = (u16 *)((unsigned long)pc & ~1);
232
1da177e4 233 for(i = -3 ; i < 6 ; i++) {
45deb5fa
TB
234 if (pc16) {
235 u16 insn16;
236
237 if (__get_inst16(&insn16, pc16 + i, user))
238 goto bad_address;
239
240 pr_cont("%c%04x%c", (i?' ':'<'), insn16, (i?' ':'>'));
241 } else {
242 u32 insn32;
243
244 if (__get_inst32(&insn32, (u32 *)pc + i, user))
245 goto bad_address;
246
247 pr_cont("%c%08x%c", (i?' ':'<'), insn32, (i?' ':'>'));
1da177e4 248 }
1da177e4 249 }
41000c58 250 pr_cont("\n");
45deb5fa
TB
251 return;
252
253bad_address:
254 pr_cont(" (Bad address in epc)\n\n");
1da177e4
LT
255}
256
eae23f2c 257static void __show_regs(const struct pt_regs *regs)
1da177e4
LT
258{
259 const int field = 2 * sizeof(unsigned long);
260 unsigned int cause = regs->cp0_cause;
37dd3818 261 unsigned int exccode;
1da177e4
LT
262 int i;
263
a43cb95d 264 show_regs_print_info(KERN_DEFAULT);
1da177e4
LT
265
266 /*
267 * Saved main processor registers
268 */
269 for (i = 0; i < 32; ) {
270 if ((i % 4) == 0)
271 printk("$%2d :", i);
272 if (i == 0)
752f5499 273 pr_cont(" %0*lx", field, 0UL);
1da177e4 274 else if (i == 26 || i == 27)
752f5499 275 pr_cont(" %*s", field, "");
1da177e4 276 else
752f5499 277 pr_cont(" %0*lx", field, regs->regs[i]);
1da177e4
LT
278
279 i++;
280 if ((i % 4) == 0)
752f5499 281 pr_cont("\n");
1da177e4
LT
282 }
283
9693a853
FBH
284#ifdef CONFIG_CPU_HAS_SMARTMIPS
285 printk("Acx : %0*lx\n", field, regs->acx);
286#endif
b6d18e77
PB
287 if (MIPS_ISA_REV < 6) {
288 printk("Hi : %0*lx\n", field, regs->hi);
289 printk("Lo : %0*lx\n", field, regs->lo);
290 }
1da177e4
LT
291
292 /*
293 * Saved cp0 registers
294 */
b012cffe
RB
295 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
296 (void *) regs->cp0_epc);
b012cffe
RB
297 printk("ra : %0*lx %pS\n", field, regs->regs[31],
298 (void *) regs->regs[31]);
1da177e4 299
70342287 300 printk("Status: %08x ", (uint32_t) regs->cp0_status);
1da177e4 301
1990e542 302 if (cpu_has_3kex) {
3b2396d9 303 if (regs->cp0_status & ST0_KUO)
752f5499 304 pr_cont("KUo ");
3b2396d9 305 if (regs->cp0_status & ST0_IEO)
752f5499 306 pr_cont("IEo ");
3b2396d9 307 if (regs->cp0_status & ST0_KUP)
752f5499 308 pr_cont("KUp ");
3b2396d9 309 if (regs->cp0_status & ST0_IEP)
752f5499 310 pr_cont("IEp ");
3b2396d9 311 if (regs->cp0_status & ST0_KUC)
752f5499 312 pr_cont("KUc ");
3b2396d9 313 if (regs->cp0_status & ST0_IEC)
752f5499 314 pr_cont("IEc ");
1990e542 315 } else if (cpu_has_4kex) {
3b2396d9 316 if (regs->cp0_status & ST0_KX)
752f5499 317 pr_cont("KX ");
3b2396d9 318 if (regs->cp0_status & ST0_SX)
752f5499 319 pr_cont("SX ");
3b2396d9 320 if (regs->cp0_status & ST0_UX)
752f5499 321 pr_cont("UX ");
3b2396d9
MR
322 switch (regs->cp0_status & ST0_KSU) {
323 case KSU_USER:
752f5499 324 pr_cont("USER ");
3b2396d9
MR
325 break;
326 case KSU_SUPERVISOR:
752f5499 327 pr_cont("SUPERVISOR ");
3b2396d9
MR
328 break;
329 case KSU_KERNEL:
752f5499 330 pr_cont("KERNEL ");
3b2396d9
MR
331 break;
332 default:
752f5499 333 pr_cont("BAD_MODE ");
3b2396d9
MR
334 break;
335 }
336 if (regs->cp0_status & ST0_ERL)
752f5499 337 pr_cont("ERL ");
3b2396d9 338 if (regs->cp0_status & ST0_EXL)
752f5499 339 pr_cont("EXL ");
3b2396d9 340 if (regs->cp0_status & ST0_IE)
752f5499 341 pr_cont("IE ");
1da177e4 342 }
752f5499 343 pr_cont("\n");
1da177e4 344
37dd3818
PG
345 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
346 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
1da177e4 347
37dd3818 348 if (1 <= exccode && exccode <= 5)
1da177e4
LT
349 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
350
9966db25
RB
351 printk("PrId : %08x (%s)\n", read_c0_prid(),
352 cpu_name_string());
1da177e4
LT
353}
354
eae23f2c
RB
355/*
356 * FIXME: really the generic show_regs should take a const pointer argument.
357 */
358void show_regs(struct pt_regs *regs)
359{
49881542 360 __show_regs(regs);
5a267832 361 dump_stack();
eae23f2c
RB
362}
363
c1bf207d 364void show_registers(struct pt_regs *regs)
1da177e4 365{
39b8d525
RB
366 const int field = 2 * sizeof(unsigned long);
367
eae23f2c 368 __show_regs(regs);
1da177e4 369 print_modules();
39b8d525
RB
370 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
371 current->comm, current->pid, current_thread_info(), current,
372 field, current_thread_info()->tp_value);
373 if (cpu_has_userlocal) {
374 unsigned long tls;
375
376 tls = read_c0_userlocal();
377 if (tls != current_thread_info()->tp_value)
378 printk("*HwTLS: %0*lx\n", field, tls);
379 }
380
45deb5fa
TB
381 show_stacktrace(current, regs, KERN_DEFAULT, user_mode(regs));
382 show_code((void *)regs->cp0_epc, user_mode(regs));
1da177e4
LT
383 printk("\n");
384}
385
4d85f6af 386static DEFINE_RAW_SPINLOCK(die_lock);
1da177e4 387
70dc6f04 388void __noreturn die(const char *str, struct pt_regs *regs)
1da177e4
LT
389{
390 static int die_counter;
ce384d83 391 int sig = SIGSEGV;
1da177e4 392
8742cd23
NL
393 oops_enter();
394
e3b28831 395 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
dc73e4c1 396 SIGSEGV) == NOTIFY_STOP)
10423c91 397 sig = 0;
5dd11d5d 398
1da177e4 399 console_verbose();
4d85f6af 400 raw_spin_lock_irq(&die_lock);
41c594ab 401 bust_spinlocks(1);
ce384d83 402
178086c8 403 printk("%s[#%d]:\n", str, ++die_counter);
1da177e4 404 show_registers(regs);
373d4d09 405 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
4d85f6af 406 raw_spin_unlock_irq(&die_lock);
d4fd1989 407
8742cd23
NL
408 oops_exit();
409
d4fd1989
MB
410 if (in_interrupt())
411 panic("Fatal exception in interrupt");
412
99a7a234 413 if (panic_on_oops)
d4fd1989 414 panic("Fatal exception");
d4fd1989 415
7aa1c8f4
RB
416 if (regs && kexec_should_crash(current))
417 crash_kexec(regs);
418
ce384d83 419 do_exit(sig);
1da177e4
LT
420}
421
0510617b
TB
422extern struct exception_table_entry __start___dbe_table[];
423extern struct exception_table_entry __stop___dbe_table[];
1da177e4 424
b6dcec9b
RB
425__asm__(
426" .section __dbe_table, \"a\"\n"
427" .previous \n");
1da177e4
LT
428
429/* Given an address, look for it in the exception tables. */
430static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
431{
432 const struct exception_table_entry *e;
433
a94c33dd
TM
434 e = search_extable(__start___dbe_table,
435 __stop___dbe_table - __start___dbe_table, addr);
1da177e4
LT
436 if (!e)
437 e = search_module_dbetables(addr);
438 return e;
439}
440
441asmlinkage void do_be(struct pt_regs *regs)
442{
443 const int field = 2 * sizeof(unsigned long);
444 const struct exception_table_entry *fixup = NULL;
445 int data = regs->cp0_cause & 4;
446 int action = MIPS_BE_FATAL;
c3fc5cd5 447 enum ctx_state prev_state;
1da177e4 448
c3fc5cd5 449 prev_state = exception_enter();
70342287 450 /* XXX For now. Fixme, this searches the wrong table ... */
1da177e4
LT
451 if (data && !user_mode(regs))
452 fixup = search_dbe_tables(exception_epc(regs));
453
454 if (fixup)
455 action = MIPS_BE_FIXUP;
456
457 if (board_be_handler)
28fc582c 458 action = board_be_handler(regs, fixup != NULL);
dabdc185
PB
459 else
460 mips_cm_error_report();
1da177e4
LT
461
462 switch (action) {
463 case MIPS_BE_DISCARD:
c3fc5cd5 464 goto out;
1da177e4
LT
465 case MIPS_BE_FIXUP:
466 if (fixup) {
467 regs->cp0_epc = fixup->nextinsn;
c3fc5cd5 468 goto out;
1da177e4
LT
469 }
470 break;
471 default:
472 break;
473 }
474
475 /*
476 * Assume it would be too dangerous to continue ...
477 */
478 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
479 data ? "Data" : "Instruction",
480 field, regs->cp0_epc, field, regs->regs[31]);
e3b28831 481 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
dc73e4c1 482 SIGBUS) == NOTIFY_STOP)
c3fc5cd5 483 goto out;
88547001 484
1da177e4 485 die_if_kernel("Oops", regs);
3cf5d076 486 force_sig(SIGBUS);
c3fc5cd5
RB
487
488out:
489 exception_exit(prev_state);
1da177e4
LT
490}
491
1da177e4 492/*
60b0d655 493 * ll/sc, rdhwr, sync emulation
1da177e4
LT
494 */
495
496#define OPCODE 0xfc000000
497#define BASE 0x03e00000
498#define RT 0x001f0000
499#define OFFSET 0x0000ffff
500#define LL 0xc0000000
501#define SC 0xe0000000
60b0d655 502#define SPEC0 0x00000000
3c37026d
RB
503#define SPEC3 0x7c000000
504#define RD 0x0000f800
505#define FUNC 0x0000003f
60b0d655 506#define SYNC 0x0000000f
3c37026d 507#define RDHWR 0x0000003b
1da177e4 508
2a0b24f5
SH
509/* microMIPS definitions */
510#define MM_POOL32A_FUNC 0xfc00ffff
511#define MM_RDHWR 0x00006b3c
512#define MM_RS 0x001f0000
513#define MM_RT 0x03e00000
514
1da177e4
LT
515/*
516 * The ll_bit is cleared by r*_switch.S
517 */
518
f1e39a4a
RB
519unsigned int ll_bit;
520struct task_struct *ll_task;
1da177e4 521
60b0d655 522static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
1da177e4 523{
fe00f943 524 unsigned long value, __user *vaddr;
1da177e4 525 long offset;
1da177e4
LT
526
527 /*
528 * analyse the ll instruction that just caused a ri exception
529 * and put the referenced address to addr.
530 */
531
532 /* sign extend offset */
533 offset = opcode & OFFSET;
534 offset <<= 16;
535 offset >>= 16;
536
fe00f943 537 vaddr = (unsigned long __user *)
b9688310 538 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4 539
60b0d655
MR
540 if ((unsigned long)vaddr & 3)
541 return SIGBUS;
542 if (get_user(value, vaddr))
543 return SIGSEGV;
1da177e4
LT
544
545 preempt_disable();
546
547 if (ll_task == NULL || ll_task == current) {
548 ll_bit = 1;
549 } else {
550 ll_bit = 0;
551 }
552 ll_task = current;
553
554 preempt_enable();
555
556 regs->regs[(opcode & RT) >> 16] = value;
557
60b0d655 558 return 0;
1da177e4
LT
559}
560
60b0d655 561static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
1da177e4 562{
fe00f943
RB
563 unsigned long __user *vaddr;
564 unsigned long reg;
1da177e4 565 long offset;
1da177e4
LT
566
567 /*
568 * analyse the sc instruction that just caused a ri exception
569 * and put the referenced address to addr.
570 */
571
572 /* sign extend offset */
573 offset = opcode & OFFSET;
574 offset <<= 16;
575 offset >>= 16;
576
fe00f943 577 vaddr = (unsigned long __user *)
b9688310 578 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4
LT
579 reg = (opcode & RT) >> 16;
580
60b0d655
MR
581 if ((unsigned long)vaddr & 3)
582 return SIGBUS;
1da177e4
LT
583
584 preempt_disable();
585
586 if (ll_bit == 0 || ll_task != current) {
587 regs->regs[reg] = 0;
588 preempt_enable();
60b0d655 589 return 0;
1da177e4
LT
590 }
591
592 preempt_enable();
593
60b0d655
MR
594 if (put_user(regs->regs[reg], vaddr))
595 return SIGSEGV;
1da177e4
LT
596
597 regs->regs[reg] = 1;
598
60b0d655 599 return 0;
1da177e4
LT
600}
601
602/*
603 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
604 * opcodes are supposed to result in coprocessor unusable exceptions if
605 * executed on ll/sc-less processors. That's the theory. In practice a
606 * few processors such as NEC's VR4100 throw reserved instruction exceptions
607 * instead, so we're doing the emulation thing in both exception handlers.
608 */
60b0d655 609static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
1da177e4 610{
7f788d2d
DZ
611 if ((opcode & OPCODE) == LL) {
612 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 613 1, regs, 0);
60b0d655 614 return simulate_ll(regs, opcode);
7f788d2d
DZ
615 }
616 if ((opcode & OPCODE) == SC) {
617 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 618 1, regs, 0);
60b0d655 619 return simulate_sc(regs, opcode);
7f788d2d 620 }
1da177e4 621
60b0d655 622 return -1; /* Must be something else ... */
1da177e4
LT
623}
624
3c37026d
RB
625/*
626 * Simulate trapping 'rdhwr' instructions to provide user accessible
1f5826bd 627 * registers not implemented in hardware.
3c37026d 628 */
2a0b24f5 629static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
3c37026d 630{
dc8f6029 631 struct thread_info *ti = task_thread_info(current);
3c37026d 632
2a0b24f5
SH
633 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
634 1, regs, 0);
635 switch (rd) {
aff565aa 636 case MIPS_HWR_CPUNUM: /* CPU number */
2a0b24f5
SH
637 regs->regs[rt] = smp_processor_id();
638 return 0;
aff565aa 639 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
2a0b24f5
SH
640 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
641 current_cpu_data.icache.linesz);
642 return 0;
aff565aa 643 case MIPS_HWR_CC: /* Read count register */
2a0b24f5
SH
644 regs->regs[rt] = read_c0_count();
645 return 0;
aff565aa 646 case MIPS_HWR_CCRES: /* Count register resolution */
69f24d17 647 switch (current_cpu_type()) {
2a0b24f5
SH
648 case CPU_20KC:
649 case CPU_25KF:
650 regs->regs[rt] = 1;
651 break;
652 default:
653 regs->regs[rt] = 2;
654 }
655 return 0;
aff565aa 656 case MIPS_HWR_ULR: /* Read UserLocal register */
2a0b24f5
SH
657 regs->regs[rt] = ti->tp_value;
658 return 0;
659 default:
660 return -1;
661 }
662}
663
664static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
665{
3c37026d
RB
666 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
667 int rd = (opcode & RD) >> 11;
668 int rt = (opcode & RT) >> 16;
2a0b24f5
SH
669
670 simulate_rdhwr(regs, rd, rt);
671 return 0;
672 }
673
674 /* Not ours. */
675 return -1;
676}
677
7aa70471 678static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
2a0b24f5
SH
679{
680 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
681 int rd = (opcode & MM_RS) >> 16;
682 int rt = (opcode & MM_RT) >> 21;
683 simulate_rdhwr(regs, rd, rt);
684 return 0;
3c37026d
RB
685 }
686
56ebd51b 687 /* Not ours. */
60b0d655
MR
688 return -1;
689}
e5679882 690
60b0d655
MR
691static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
692{
7f788d2d
DZ
693 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
694 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 695 1, regs, 0);
60b0d655 696 return 0;
7f788d2d 697 }
60b0d655
MR
698
699 return -1; /* Must be something else ... */
3c37026d
RB
700}
701
ec7a9318
WX
702/*
703 * Loongson-3 CSR instructions emulation
704 */
705
706#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
707
708#define LWC2 0xc8000000
709#define RS BASE
710#define CSR_OPCODE2 0x00000118
711#define CSR_OPCODE2_MASK 0x000007ff
712#define CSR_FUNC_MASK RT
713#define CSR_FUNC_CPUCFG 0x8
714
715static int simulate_loongson3_cpucfg(struct pt_regs *regs,
716 unsigned int opcode)
717{
718 int op = opcode & OPCODE;
719 int op2 = opcode & CSR_OPCODE2_MASK;
720 int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
721
722 if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
723 int rd = (opcode & RD) >> 11;
724 int rs = (opcode & RS) >> 21;
725 __u64 sel = regs->regs[rs];
726
727 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
728
70768eba 729 /* Do not emulate on unsupported core models. */
5868347a
XS
730 preempt_disable();
731 if (!loongson3_cpucfg_emulation_enabled(&current_cpu_data)) {
732 preempt_enable();
70768eba 733 return -1;
5868347a 734 }
ec7a9318
WX
735 regs->regs[rd] = loongson3_cpucfg_read_synthesized(
736 &current_cpu_data, sel);
5868347a 737 preempt_enable();
ec7a9318
WX
738 return 0;
739 }
740
741 /* Not ours. */
742 return -1;
743}
744#endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
745
1da177e4
LT
746asmlinkage void do_ov(struct pt_regs *regs)
747{
c3fc5cd5 748 enum ctx_state prev_state;
1da177e4 749
c3fc5cd5 750 prev_state = exception_enter();
36ccf1c0
RB
751 die_if_kernel("Integer overflow", regs);
752
2e1661d2 753 force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
c3fc5cd5 754 exception_exit(prev_state);
1da177e4
LT
755}
756
5328f742
PB
757#ifdef CONFIG_MIPS_FP_SUPPORT
758
5a1aca44
MR
759/*
760 * Send SIGFPE according to FCSR Cause bits, which must have already
761 * been masked against Enable bits. This is impotant as Inexact can
762 * happen together with Overflow or Underflow, and `ptrace' can set
763 * any bits.
764 */
765void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
766 struct task_struct *tsk)
767{
0bb0a114 768 int si_code = FPE_FLTUNK;
5a1aca44
MR
769
770 if (fcr31 & FPU_CSR_INV_X)
f43a54a0 771 si_code = FPE_FLTINV;
5a1aca44 772 else if (fcr31 & FPU_CSR_DIV_X)
f43a54a0 773 si_code = FPE_FLTDIV;
5a1aca44 774 else if (fcr31 & FPU_CSR_OVF_X)
f43a54a0 775 si_code = FPE_FLTOVF;
5a1aca44 776 else if (fcr31 & FPU_CSR_UDF_X)
f43a54a0 777 si_code = FPE_FLTUND;
5a1aca44 778 else if (fcr31 & FPU_CSR_INE_X)
f43a54a0 779 si_code = FPE_FLTRES;
b123718b 780
91ca180d 781 force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
5a1aca44
MR
782}
783
304acb71 784int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
515b029d 785{
f43a54a0 786 int si_code;
304acb71
MR
787
788 switch (sig) {
789 case 0:
790 return 0;
ad70c13a 791
304acb71 792 case SIGFPE:
5a1aca44 793 force_fcr31_sig(fcr31, fault_addr, current);
515b029d 794 return 1;
304acb71
MR
795
796 case SIGBUS:
2e1661d2 797 force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
304acb71
MR
798 return 1;
799
800 case SIGSEGV:
d8ed45c5 801 mmap_read_lock(current->mm);
7f7020ac 802 if (vma_lookup(current->mm, (unsigned long)fault_addr))
f43a54a0 803 si_code = SEGV_ACCERR;
304acb71 804 else
f43a54a0 805 si_code = SEGV_MAPERR;
d8ed45c5 806 mmap_read_unlock(current->mm);
2e1661d2 807 force_sig_fault(SIGSEGV, si_code, fault_addr);
304acb71
MR
808 return 1;
809
810 default:
3cf5d076 811 force_sig(sig);
515b029d 812 return 1;
515b029d
DD
813 }
814}
815
4227a2d4
PB
816static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
817 unsigned long old_epc, unsigned long old_ra)
818{
819 union mips_instruction inst = { .word = opcode };
304acb71
MR
820 void __user *fault_addr;
821 unsigned long fcr31;
4227a2d4
PB
822 int sig;
823
824 /* If it's obviously not an FP instruction, skip it */
825 switch (inst.i_format.opcode) {
826 case cop1_op:
827 case cop1x_op:
828 case lwc1_op:
829 case ldc1_op:
830 case swc1_op:
831 case sdc1_op:
832 break;
833
834 default:
835 return -1;
836 }
837
838 /*
839 * do_ri skipped over the instruction via compute_return_epc, undo
840 * that for the FPU emulator.
841 */
842 regs->cp0_epc = old_epc;
843 regs->regs[31] = old_ra;
844
4227a2d4
PB
845 /* Run the emulator */
846 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
847 &fault_addr);
848
443c4403 849 /*
5a1aca44
MR
850 * We can't allow the emulated instruction to leave any
851 * enabled Cause bits set in $fcr31.
443c4403 852 */
5a1aca44
MR
853 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
854 current->thread.fpu.fcr31 &= ~fcr31;
4227a2d4
PB
855
856 /* Restore the hardware register state */
857 own_fpu(1);
858
304acb71
MR
859 /* Send a signal if required. */
860 process_fpemu_return(sig, fault_addr, fcr31);
861
4227a2d4
PB
862 return 0;
863}
864
1da177e4
LT
865/*
866 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
867 */
868asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
869{
c3fc5cd5 870 enum ctx_state prev_state;
304acb71
MR
871 void __user *fault_addr;
872 int sig;
948a34cf 873
c3fc5cd5 874 prev_state = exception_enter();
e3b28831 875 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
dc73e4c1 876 SIGFPE) == NOTIFY_STOP)
c3fc5cd5 877 goto out;
64bedffe
JH
878
879 /* Clear FCSR.Cause before enabling interrupts */
5a1aca44 880 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
64bedffe
JH
881 local_irq_enable();
882
57725f9e
CD
883 die_if_kernel("FP exception in kernel code", regs);
884
1da177e4 885 if (fcr31 & FPU_CSR_UNI_X) {
1da177e4 886 /*
a3dddd56 887 * Unimplemented operation exception. If we've got the full
1da177e4
LT
888 * software emulator on-board, let's use it...
889 *
890 * Force FPU to dump state into task/thread context. We're
891 * moving a lot of data here for what is probably a single
892 * instruction, but the alternative is to pre-decode the FP
893 * register operands before invoking the emulator, which seems
894 * a bit extreme for what should be an infrequent event.
895 */
1da177e4
LT
896
897 /* Run the emulator */
515b029d
DD
898 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
899 &fault_addr);
1da177e4
LT
900
901 /*
5a1aca44
MR
902 * We can't allow the emulated instruction to leave any
903 * enabled Cause bits set in $fcr31.
1da177e4 904 */
5a1aca44
MR
905 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
906 current->thread.fpu.fcr31 &= ~fcr31;
1da177e4
LT
907
908 /* Restore the hardware register state */
70342287 909 own_fpu(1); /* Using the FPU again. */
304acb71
MR
910 } else {
911 sig = SIGFPE;
912 fault_addr = (void __user *) regs->cp0_epc;
ed2d72c1 913 }
1da177e4 914
304acb71
MR
915 /* Send a signal if required. */
916 process_fpemu_return(sig, fault_addr, fcr31);
c3fc5cd5
RB
917
918out:
919 exception_exit(prev_state);
1da177e4
LT
920}
921
5328f742
PB
922/*
923 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
924 * emulated more than some threshold number of instructions, force migration to
925 * a "CPU" that has FP support.
926 */
927static void mt_ase_fp_affinity(void)
928{
929#ifdef CONFIG_MIPS_MT_FPAFF
930 if (mt_fpemul_threshold > 0 &&
931 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
932 /*
933 * If there's no FPU present, or if the application has already
934 * restricted the allowed set to exclude any CPUs with FPUs,
935 * we'll skip the procedure.
936 */
3bd37062 937 if (cpumask_intersects(&current->cpus_mask, &mt_fpu_cpumask)) {
5328f742
PB
938 cpumask_t tmask;
939
940 current->thread.user_cpus_allowed
3bd37062
SAS
941 = current->cpus_mask;
942 cpumask_and(&tmask, &current->cpus_mask,
5328f742
PB
943 &mt_fpu_cpumask);
944 set_cpus_allowed_ptr(current, &tmask);
945 set_thread_flag(TIF_FPUBOUND);
946 }
947 }
948#endif /* CONFIG_MIPS_MT_FPAFF */
949}
950
951#else /* !CONFIG_MIPS_FP_SUPPORT */
952
953static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
954 unsigned long old_epc, unsigned long old_ra)
955{
956 return -1;
957}
958
959#endif /* !CONFIG_MIPS_FP_SUPPORT */
960
3b143cca 961void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
df270051 962 const char *str)
1da177e4 963{
df270051 964 char b[40];
1da177e4 965
5dd11d5d 966#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
e3b28831
RB
967 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
968 SIGTRAP) == NOTIFY_STOP)
5dd11d5d
JW
969 return;
970#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
971
e3b28831 972 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
dc73e4c1 973 SIGTRAP) == NOTIFY_STOP)
88547001
JW
974 return;
975
1da177e4 976 /*
df270051
RB
977 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
978 * insns, even for trap and break codes that indicate arithmetic
979 * failures. Weird ...
1da177e4
LT
980 * But should we continue the brokenness??? --macro
981 */
df270051
RB
982 switch (code) {
983 case BRK_OVERFLOW:
984 case BRK_DIVZERO:
985 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
986 die_if_kernel(b, regs);
f43a54a0
EB
987 force_sig_fault(SIGFPE,
988 code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
2e1661d2 989 (void __user *) regs->cp0_epc);
1da177e4 990 break;
63dc68a8 991 case BRK_BUG:
df270051 992 die_if_kernel("Kernel bug detected", regs);
3cf5d076 993 force_sig(SIGTRAP);
63dc68a8 994 break;
ba3049ed
RB
995 case BRK_MEMU:
996 /*
1f443779
MR
997 * This breakpoint code is used by the FPU emulator to retake
998 * control of the CPU after executing the instruction from the
999 * delay slot of an emulated branch.
ba3049ed
RB
1000 *
1001 * Terminate if exception was recognized as a delay slot return
1002 * otherwise handle as normal.
1003 */
1004 if (do_dsemulret(regs))
1005 return;
1006
1007 die_if_kernel("Math emu break/trap", regs);
3cf5d076 1008 force_sig(SIGTRAP);
ba3049ed 1009 break;
1da177e4 1010 default:
df270051
RB
1011 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
1012 die_if_kernel(b, regs);
3b143cca 1013 if (si_code) {
2e1661d2 1014 force_sig_fault(SIGTRAP, si_code, NULL);
3b143cca 1015 } else {
3cf5d076 1016 force_sig(SIGTRAP);
3b143cca 1017 }
1da177e4 1018 }
df270051
RB
1019}
1020
1021asmlinkage void do_bp(struct pt_regs *regs)
1022{
f6a31da5 1023 unsigned long epc = msk_isa16_mode(exception_epc(regs));
df270051 1024 unsigned int opcode, bcode;
c3fc5cd5 1025 enum ctx_state prev_state;
45deb5fa 1026 bool user = user_mode(regs);
2a0b24f5 1027
c3fc5cd5 1028 prev_state = exception_enter();
e3b28831 1029 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
2a0b24f5 1030 if (get_isa16_mode(regs->cp0_epc)) {
f6a31da5
MR
1031 u16 instr[2];
1032
45deb5fa 1033 if (__get_inst16(&instr[0], (u16 *)epc, user))
f6a31da5
MR
1034 goto out_sigsegv;
1035
1036 if (!cpu_has_mmips) {
b08a9c95 1037 /* MIPS16e mode */
68893e00 1038 bcode = (instr[0] >> 5) & 0x3f;
f6a31da5
MR
1039 } else if (mm_insn_16bit(instr[0])) {
1040 /* 16-bit microMIPS BREAK */
1041 bcode = instr[0] & 0xf;
1042 } else {
1043 /* 32-bit microMIPS BREAK */
45deb5fa 1044 if (__get_inst16(&instr[1], (u16 *)(epc + 2), user))
2a0b24f5 1045 goto out_sigsegv;
f6a31da5
MR
1046 opcode = (instr[0] << 16) | instr[1];
1047 bcode = (opcode >> 6) & ((1 << 20) - 1);
2a0b24f5
SH
1048 }
1049 } else {
45deb5fa 1050 if (__get_inst32(&opcode, (u32 *)epc, user))
2a0b24f5 1051 goto out_sigsegv;
f6a31da5 1052 bcode = (opcode >> 6) & ((1 << 20) - 1);
2a0b24f5 1053 }
df270051
RB
1054
1055 /*
1056 * There is the ancient bug in the MIPS assemblers that the break
1057 * code starts left to bit 16 instead to bit 6 in the opcode.
1058 * Gas is bug-compatible, but not always, grrr...
1059 * We handle both cases with a simple heuristics. --macro
1060 */
df270051 1061 if (bcode >= (1 << 10))
c9875032 1062 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
df270051 1063
c1bf207d
DD
1064 /*
1065 * notify the kprobe handlers, if instruction is likely to
1066 * pertain to them.
1067 */
1068 switch (bcode) {
40e084a5
RB
1069 case BRK_UPROBE:
1070 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1071 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1072 goto out;
1073 else
1074 break;
1075 case BRK_UPROBE_XOL:
1076 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1077 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1078 goto out;
1079 else
1080 break;
c1bf207d 1081 case BRK_KPROBE_BP:
dc73e4c1 1082 if (notify_die(DIE_BREAK, "debug", regs, bcode,
e3b28831 1083 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
c3fc5cd5 1084 goto out;
c1bf207d
DD
1085 else
1086 break;
1087 case BRK_KPROBE_SSTEPBP:
dc73e4c1 1088 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
e3b28831 1089 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
c3fc5cd5 1090 goto out;
c1bf207d
DD
1091 else
1092 break;
1093 default:
1094 break;
1095 }
1096
3b143cca 1097 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
c3fc5cd5
RB
1098
1099out:
1100 exception_exit(prev_state);
90fccb13 1101 return;
e5679882
RB
1102
1103out_sigsegv:
3cf5d076 1104 force_sig(SIGSEGV);
c3fc5cd5 1105 goto out;
1da177e4
LT
1106}
1107
1108asmlinkage void do_tr(struct pt_regs *regs)
1109{
a9a6e7a0 1110 u32 opcode, tcode = 0;
c3fc5cd5 1111 enum ctx_state prev_state;
2a0b24f5 1112 u16 instr[2];
45deb5fa 1113 bool user = user_mode(regs);
a9a6e7a0 1114 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1da177e4 1115
c3fc5cd5 1116 prev_state = exception_enter();
e3b28831 1117 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
a9a6e7a0 1118 if (get_isa16_mode(regs->cp0_epc)) {
45deb5fa
TB
1119 if (__get_inst16(&instr[0], (u16 *)(epc + 0), user) ||
1120 __get_inst16(&instr[1], (u16 *)(epc + 2), user))
2a0b24f5 1121 goto out_sigsegv;
a9a6e7a0
MR
1122 opcode = (instr[0] << 16) | instr[1];
1123 /* Immediate versions don't provide a code. */
1124 if (!(opcode & OPCODE))
1125 tcode = (opcode >> 12) & ((1 << 4) - 1);
1126 } else {
45deb5fa 1127 if (__get_inst32(&opcode, (u32 *)epc, user))
a9a6e7a0
MR
1128 goto out_sigsegv;
1129 /* Immediate versions don't provide a code. */
1130 if (!(opcode & OPCODE))
1131 tcode = (opcode >> 6) & ((1 << 10) - 1);
2a0b24f5 1132 }
1da177e4 1133
3b143cca 1134 do_trap_or_bp(regs, tcode, 0, "Trap");
c3fc5cd5
RB
1135
1136out:
1137 exception_exit(prev_state);
90fccb13 1138 return;
e5679882
RB
1139
1140out_sigsegv:
3cf5d076 1141 force_sig(SIGSEGV);
c3fc5cd5 1142 goto out;
1da177e4
LT
1143}
1144
1145asmlinkage void do_ri(struct pt_regs *regs)
1146{
60b0d655
MR
1147 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1148 unsigned long old_epc = regs->cp0_epc;
2a0b24f5 1149 unsigned long old31 = regs->regs[31];
c3fc5cd5 1150 enum ctx_state prev_state;
60b0d655
MR
1151 unsigned int opcode = 0;
1152 int status = -1;
1da177e4 1153
b0a668fb
LY
1154 /*
1155 * Avoid any kernel code. Just emulate the R2 instruction
1156 * as quickly as possible.
1157 */
1158 if (mipsr2_emulation && cpu_has_mips_r6 &&
4a7c2371
MR
1159 likely(user_mode(regs)) &&
1160 likely(get_user(opcode, epc) >= 0)) {
304acb71
MR
1161 unsigned long fcr31 = 0;
1162
1163 status = mipsr2_decoder(regs, opcode, &fcr31);
4a7c2371
MR
1164 switch (status) {
1165 case 0:
1166 case SIGEMT:
4a7c2371
MR
1167 return;
1168 case SIGILL:
1169 goto no_r2_instr;
1170 default:
1171 process_fpemu_return(status,
304acb71
MR
1172 &current->thread.cp0_baduaddr,
1173 fcr31);
4a7c2371 1174 return;
b0a668fb
LY
1175 }
1176 }
1177
1178no_r2_instr:
1179
c3fc5cd5 1180 prev_state = exception_enter();
e3b28831 1181 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
b0a668fb 1182
e3b28831 1183 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
dc73e4c1 1184 SIGILL) == NOTIFY_STOP)
c3fc5cd5 1185 goto out;
88547001 1186
60b0d655 1187 die_if_kernel("Reserved instruction in kernel code", regs);
1da177e4 1188
60b0d655 1189 if (unlikely(compute_return_epc(regs) < 0))
c3fc5cd5 1190 goto out;
3c37026d 1191
3d50a7fb 1192 if (!get_isa16_mode(regs->cp0_epc)) {
2a0b24f5
SH
1193 if (unlikely(get_user(opcode, epc) < 0))
1194 status = SIGSEGV;
60b0d655 1195
2a0b24f5
SH
1196 if (!cpu_has_llsc && status < 0)
1197 status = simulate_llsc(regs, opcode);
1198
1199 if (status < 0)
1200 status = simulate_rdhwr_normal(regs, opcode);
1201
1202 if (status < 0)
1203 status = simulate_sync(regs, opcode);
4227a2d4
PB
1204
1205 if (status < 0)
1206 status = simulate_fp(regs, opcode, old_epc, old31);
ec7a9318
WX
1207
1208#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1209 if (status < 0)
1210 status = simulate_loongson3_cpucfg(regs, opcode);
1211#endif
3d50a7fb
MR
1212 } else if (cpu_has_mmips) {
1213 unsigned short mmop[2] = { 0 };
1214
1215 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1216 status = SIGSEGV;
1217 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1218 status = SIGSEGV;
1219 opcode = mmop[0];
1220 opcode = (opcode << 16) | mmop[1];
1221
1222 if (status < 0)
1223 status = simulate_rdhwr_mm(regs, opcode);
2a0b24f5 1224 }
60b0d655
MR
1225
1226 if (status < 0)
1227 status = SIGILL;
1228
1229 if (unlikely(status > 0)) {
1230 regs->cp0_epc = old_epc; /* Undo skip-over. */
2a0b24f5 1231 regs->regs[31] = old31;
3cf5d076 1232 force_sig(status);
60b0d655 1233 }
c3fc5cd5
RB
1234
1235out:
1236 exception_exit(prev_state);
1da177e4
LT
1237}
1238
69f3a7de
RB
1239/*
1240 * No lock; only written during early bootup by CPU 0.
1241 */
1242static RAW_NOTIFIER_HEAD(cu2_chain);
1243
1244int __ref register_cu2_notifier(struct notifier_block *nb)
1245{
1246 return raw_notifier_chain_register(&cu2_chain, nb);
1247}
1248
1249int cu2_notifier_call_chain(unsigned long val, void *v)
1250{
1251 return raw_notifier_call_chain(&cu2_chain, val, v);
1252}
1253
1254static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
70342287 1255 void *data)
69f3a7de
RB
1256{
1257 struct pt_regs *regs = data;
1258
83bee792 1259 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
69f3a7de 1260 "instruction", regs);
3cf5d076 1261 force_sig(SIGILL);
69f3a7de
RB
1262
1263 return NOTIFY_OK;
1264}
1265
5328f742
PB
1266#ifdef CONFIG_MIPS_FP_SUPPORT
1267
1db1af84
PB
1268static int enable_restore_fp_context(int msa)
1269{
c9017757 1270 int err, was_fpu_owner, prior_msa;
cc97ab23 1271 bool first_fp;
1db1af84 1272
cc97ab23
PB
1273 /* Initialize context if it hasn't been used already */
1274 first_fp = init_fp_ctx(current);
1db1af84 1275
cc97ab23 1276 if (first_fp) {
762a1f43 1277 preempt_disable();
cc97ab23 1278 err = own_fpu_inatomic(1);
c9017757 1279 if (msa && !err) {
1db1af84 1280 enable_msa();
bb067482
HP
1281 /*
1282 * with MSA enabled, userspace can see MSACSR
1283 * and MSA regs, but the values in them are from
1284 * other task before current task, restore them
1285 * from saved fp/msa context
1286 */
1287 write_msa_csr(current->thread.fpu.msacsr);
1288 /*
1289 * own_fpu_inatomic(1) just restore low 64bit,
1290 * fix the high 64bit
1291 */
1292 init_msa_upper();
732c0c3c
PB
1293 set_thread_flag(TIF_USEDMSA);
1294 set_thread_flag(TIF_MSA_CTX_LIVE);
c9017757 1295 }
762a1f43 1296 preempt_enable();
1db1af84
PB
1297 return err;
1298 }
1299
1300 /*
1301 * This task has formerly used the FP context.
1302 *
1303 * If this thread has no live MSA vector context then we can simply
1304 * restore the scalar FP context. If it has live MSA vector context
1305 * (that is, it has or may have used MSA since last performing a
1306 * function call) then we'll need to restore the vector context. This
1307 * applies even if we're currently only executing a scalar FP
1308 * instruction. This is because if we were to later execute an MSA
1309 * instruction then we'd either have to:
1310 *
1311 * - Restore the vector context & clobber any registers modified by
1312 * scalar FP instructions between now & then.
1313 *
1314 * or
1315 *
1316 * - Not restore the vector context & lose the most significant bits
1317 * of all vector registers.
1318 *
1319 * Neither of those options is acceptable. We cannot restore the least
1320 * significant bits of the registers now & only restore the most
1321 * significant bits later because the most significant bits of any
1322 * vector registers whose aliased FP register is modified now will have
1323 * been zeroed. We'd have no way to know that when restoring the vector
1324 * context & thus may load an outdated value for the most significant
1325 * bits of a vector register.
1326 */
1327 if (!msa && !thread_msa_context_live())
1328 return own_fpu(1);
1329
1330 /*
1331 * This task is using or has previously used MSA. Thus we require
1332 * that Status.FR == 1.
1333 */
762a1f43 1334 preempt_disable();
1db1af84 1335 was_fpu_owner = is_fpu_owner();
762a1f43 1336 err = own_fpu_inatomic(0);
1db1af84 1337 if (err)
762a1f43 1338 goto out;
1db1af84
PB
1339
1340 enable_msa();
1341 write_msa_csr(current->thread.fpu.msacsr);
1342 set_thread_flag(TIF_USEDMSA);
1343
1344 /*
1345 * If this is the first time that the task is using MSA and it has
1346 * previously used scalar FP in this time slice then we already nave
c9017757
PB
1347 * FP context which we shouldn't clobber. We do however need to clear
1348 * the upper 64b of each vector register so that this task has no
1349 * opportunity to see data left behind by another.
1db1af84 1350 */
c9017757
PB
1351 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1352 if (!prior_msa && was_fpu_owner) {
e49d3848 1353 init_msa_upper();
762a1f43
PB
1354
1355 goto out;
c9017757 1356 }
1db1af84 1357
c9017757
PB
1358 if (!prior_msa) {
1359 /*
1360 * Restore the least significant 64b of each vector register
1361 * from the existing scalar FP context.
1362 */
1363 _restore_fp(current);
b8340673 1364
c9017757
PB
1365 /*
1366 * The task has not formerly used MSA, so clear the upper 64b
1367 * of each vector register such that it cannot see data left
1368 * behind by another task.
1369 */
e49d3848 1370 init_msa_upper();
c9017757
PB
1371 } else {
1372 /* We need to restore the vector context. */
1373 restore_msa(current);
b8340673 1374
c9017757
PB
1375 /* Restore the scalar FP control & status register */
1376 if (!was_fpu_owner)
d76e9b9f
JH
1377 write_32bit_cp1_register(CP1_STATUS,
1378 current->thread.fpu.fcr31);
c9017757 1379 }
762a1f43
PB
1380
1381out:
1382 preempt_enable();
1383
1db1af84
PB
1384 return 0;
1385}
1386
5328f742
PB
1387#else /* !CONFIG_MIPS_FP_SUPPORT */
1388
1389static int enable_restore_fp_context(int msa)
1390{
1391 return SIGILL;
1392}
1393
1394#endif /* CONFIG_MIPS_FP_SUPPORT */
1395
1da177e4
LT
1396asmlinkage void do_cpu(struct pt_regs *regs)
1397{
c3fc5cd5 1398 enum ctx_state prev_state;
60b0d655 1399 unsigned int __user *epc;
2a0b24f5 1400 unsigned long old_epc, old31;
60b0d655 1401 unsigned int opcode;
1da177e4 1402 unsigned int cpid;
5328f742 1403 int status;
1da177e4 1404
c3fc5cd5 1405 prev_state = exception_enter();
1da177e4
LT
1406 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1407
83bee792
J
1408 if (cpid != 2)
1409 die_if_kernel("do_cpu invoked from kernel context!", regs);
1410
1da177e4
LT
1411 switch (cpid) {
1412 case 0:
60b0d655
MR
1413 epc = (unsigned int __user *)exception_epc(regs);
1414 old_epc = regs->cp0_epc;
2a0b24f5 1415 old31 = regs->regs[31];
60b0d655
MR
1416 opcode = 0;
1417 status = -1;
1da177e4 1418
60b0d655 1419 if (unlikely(compute_return_epc(regs) < 0))
27e28e8e 1420 break;
3c37026d 1421
10f6d99f 1422 if (!get_isa16_mode(regs->cp0_epc)) {
2a0b24f5
SH
1423 if (unlikely(get_user(opcode, epc) < 0))
1424 status = SIGSEGV;
1425
1426 if (!cpu_has_llsc && status < 0)
1427 status = simulate_llsc(regs, opcode);
2a0b24f5 1428 }
60b0d655
MR
1429
1430 if (status < 0)
1431 status = SIGILL;
1432
1433 if (unlikely(status > 0)) {
1434 regs->cp0_epc = old_epc; /* Undo skip-over. */
2a0b24f5 1435 regs->regs[31] = old31;
3cf5d076 1436 force_sig(status);
60b0d655
MR
1437 }
1438
27e28e8e 1439 break;
1da177e4 1440
5328f742 1441#ifdef CONFIG_MIPS_FP_SUPPORT
051ff44a
MR
1442 case 3:
1443 /*
2d83fea7
MR
1444 * The COP3 opcode space and consequently the CP0.Status.CU3
1445 * bit and the CP0.Cause.CE=3 encoding have been removed as
1446 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1447 * up the space has been reused for COP1X instructions, that
1448 * are enabled by the CP0.Status.CU1 bit and consequently
1449 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1450 * exceptions. Some FPU-less processors that implement one
1451 * of these ISAs however use this code erroneously for COP1X
1452 * instructions. Therefore we redirect this trap to the FP
1453 * emulator too.
051ff44a 1454 */
2d83fea7 1455 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
3cf5d076 1456 force_sig(SIGILL);
051ff44a 1457 break;
27e28e8e 1458 }
c9b02990 1459 fallthrough;
5328f742
PB
1460 case 1: {
1461 void __user *fault_addr;
1462 unsigned long fcr31;
1463 int err, sig;
1464
1db1af84 1465 err = enable_restore_fp_context(0);
1da177e4 1466
304acb71
MR
1467 if (raw_cpu_has_fpu && !err)
1468 break;
1da177e4 1469
304acb71
MR
1470 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1471 &fault_addr);
304acb71
MR
1472
1473 /*
1474 * We can't allow the emulated instruction to leave
5a1aca44 1475 * any enabled Cause bits set in $fcr31.
304acb71 1476 */
5a1aca44
MR
1477 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1478 current->thread.fpu.fcr31 &= ~fcr31;
304acb71
MR
1479
1480 /* Send a signal if required. */
1481 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1482 mt_ase_fp_affinity();
1da177e4 1483
27e28e8e 1484 break;
5328f742
PB
1485 }
1486#else /* CONFIG_MIPS_FP_SUPPORT */
1487 case 1:
1488 case 3:
3cf5d076 1489 force_sig(SIGILL);
5328f742
PB
1490 break;
1491#endif /* CONFIG_MIPS_FP_SUPPORT */
1da177e4
LT
1492
1493 case 2:
69f3a7de 1494 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
27e28e8e 1495 break;
1da177e4
LT
1496 }
1497
c3fc5cd5 1498 exception_exit(prev_state);
1da177e4
LT
1499}
1500
64bedffe 1501asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
2bcb3fbc
PB
1502{
1503 enum ctx_state prev_state;
1504
1505 prev_state = exception_enter();
e3b28831 1506 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
64bedffe 1507 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
e3b28831 1508 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
64bedffe
JH
1509 goto out;
1510
1511 /* Clear MSACSR.Cause before enabling interrupts */
1512 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1513 local_irq_enable();
1514
2bcb3fbc 1515 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
3cf5d076 1516 force_sig(SIGFPE);
64bedffe 1517out:
2bcb3fbc
PB
1518 exception_exit(prev_state);
1519}
1520
1db1af84
PB
1521asmlinkage void do_msa(struct pt_regs *regs)
1522{
1523 enum ctx_state prev_state;
1524 int err;
1525
1526 prev_state = exception_enter();
1527
1528 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
3cf5d076 1529 force_sig(SIGILL);
1db1af84
PB
1530 goto out;
1531 }
1532
1533 die_if_kernel("do_msa invoked from kernel context!", regs);
1534
1535 err = enable_restore_fp_context(1);
1536 if (err)
3cf5d076 1537 force_sig(SIGILL);
1db1af84
PB
1538out:
1539 exception_exit(prev_state);
1540}
1541
1da177e4
LT
1542asmlinkage void do_mdmx(struct pt_regs *regs)
1543{
c3fc5cd5
RB
1544 enum ctx_state prev_state;
1545
1546 prev_state = exception_enter();
3cf5d076 1547 force_sig(SIGILL);
c3fc5cd5 1548 exception_exit(prev_state);
1da177e4
LT
1549}
1550
8bc6d05b
DD
1551/*
1552 * Called with interrupts disabled.
1553 */
1da177e4
LT
1554asmlinkage void do_watch(struct pt_regs *regs)
1555{
c3fc5cd5 1556 enum ctx_state prev_state;
b67b2b70 1557
c3fc5cd5 1558 prev_state = exception_enter();
1da177e4 1559 /*
b67b2b70
DD
1560 * Clear WP (bit 22) bit of cause register so we don't loop
1561 * forever.
1da177e4 1562 */
e233c733 1563 clear_c0_cause(CAUSEF_WP);
b67b2b70
DD
1564
1565 /*
1566 * If the current thread has the watch registers loaded, save
1567 * their values and send SIGTRAP. Otherwise another thread
1568 * left the registers set, clear them and continue.
1569 */
1570 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1571 mips_read_watch_registers();
8bc6d05b 1572 local_irq_enable();
2e1661d2 1573 force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
8bc6d05b 1574 } else {
b67b2b70 1575 mips_clear_watch_registers();
8bc6d05b
DD
1576 local_irq_enable();
1577 }
c3fc5cd5 1578 exception_exit(prev_state);
1da177e4
LT
1579}
1580
1581asmlinkage void do_mcheck(struct pt_regs *regs)
1582{
cac4bcbc 1583 int multi_match = regs->cp0_status & ST0_TS;
c3fc5cd5 1584 enum ctx_state prev_state;
cac4bcbc 1585
c3fc5cd5 1586 prev_state = exception_enter();
1da177e4 1587 show_regs(regs);
cac4bcbc
RB
1588
1589 if (multi_match) {
3c865dd9
JH
1590 dump_tlb_regs();
1591 pr_info("\n");
cac4bcbc
RB
1592 dump_tlb_all();
1593 }
1594
45deb5fa 1595 show_code((void *)regs->cp0_epc, user_mode(regs));
55c723e1 1596
1da177e4
LT
1597 /*
1598 * Some chips may have other causes of machine check (e.g. SB1
1599 * graduation timer)
1600 */
1601 panic("Caught Machine Check exception - %scaused by multiple "
1602 "matching entries in the TLB.",
cac4bcbc 1603 (multi_match) ? "" : "not ");
1da177e4
LT
1604}
1605
340ee4b9
RB
1606asmlinkage void do_mt(struct pt_regs *regs)
1607{
41c594ab
RB
1608 int subcode;
1609
41c594ab
RB
1610 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1611 >> VPECONTROL_EXCPT_SHIFT;
1612 switch (subcode) {
1613 case 0:
e35a5e35 1614 printk(KERN_DEBUG "Thread Underflow\n");
41c594ab
RB
1615 break;
1616 case 1:
e35a5e35 1617 printk(KERN_DEBUG "Thread Overflow\n");
41c594ab
RB
1618 break;
1619 case 2:
e35a5e35 1620 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
41c594ab
RB
1621 break;
1622 case 3:
e35a5e35 1623 printk(KERN_DEBUG "Gating Storage Exception\n");
41c594ab
RB
1624 break;
1625 case 4:
e35a5e35 1626 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
41c594ab
RB
1627 break;
1628 case 5:
f232c7e8 1629 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
41c594ab
RB
1630 break;
1631 default:
e35a5e35 1632 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
41c594ab
RB
1633 subcode);
1634 break;
1635 }
340ee4b9
RB
1636 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1637
3cf5d076 1638 force_sig(SIGILL);
340ee4b9
RB
1639}
1640
1641
e50c0a8f
RB
1642asmlinkage void do_dsp(struct pt_regs *regs)
1643{
1644 if (cpu_has_dsp)
ab75dc02 1645 panic("Unexpected DSP exception");
e50c0a8f 1646
3cf5d076 1647 force_sig(SIGILL);
e50c0a8f
RB
1648}
1649
1da177e4
LT
1650asmlinkage void do_reserved(struct pt_regs *regs)
1651{
1652 /*
70342287 1653 * Game over - no way to handle this if it ever occurs. Most probably
1da177e4
LT
1654 * caused by a new unknown cpu type or after another deadly
1655 * hard/software error.
1656 */
1657 show_regs(regs);
1658 panic("Caught reserved exception %ld - should not happen.",
1659 (regs->cp0_cause & 0x7f) >> 2);
1660}
1661
39b8d525
RB
1662static int __initdata l1parity = 1;
1663static int __init nol1parity(char *s)
1664{
1665 l1parity = 0;
1666 return 1;
1667}
1668__setup("nol1par", nol1parity);
1669static int __initdata l2parity = 1;
1670static int __init nol2parity(char *s)
1671{
1672 l2parity = 0;
1673 return 1;
1674}
1675__setup("nol2par", nol2parity);
1676
1da177e4
LT
1677/*
1678 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1679 * it different ways.
1680 */
a2eec109 1681static inline __init void parity_protection_init(void)
1da177e4 1682{
35e6de38
PB
1683#define ERRCTL_PE 0x80000000
1684#define ERRCTL_L2P 0x00800000
1685
1686 if (mips_cm_revision() >= CM_REV_CM3) {
1687 ulong gcr_ectl, cp0_ectl;
1688
1689 /*
1690 * With CM3 systems we need to ensure that the L1 & L2
1691 * parity enables are set to the same value, since this
1692 * is presumed by the hardware engineers.
1693 *
1694 * If the user disabled either of L1 or L2 ECC checking,
1695 * disable both.
1696 */
1697 l1parity &= l2parity;
1698 l2parity &= l1parity;
1699
1700 /* Probe L1 ECC support */
1701 cp0_ectl = read_c0_ecc();
1702 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1703 back_to_back_c0_hazard();
1704 cp0_ectl = read_c0_ecc();
1705
1706 /* Probe L2 ECC support */
1707 gcr_ectl = read_gcr_err_control();
1708
93c5bba5 1709 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
35e6de38
PB
1710 !(cp0_ectl & ERRCTL_PE)) {
1711 /*
1712 * One of L1 or L2 ECC checking isn't supported,
1713 * so we cannot enable either.
1714 */
1715 l1parity = l2parity = 0;
1716 }
1717
1718 /* Configure L1 ECC checking */
1719 if (l1parity)
1720 cp0_ectl |= ERRCTL_PE;
1721 else
1722 cp0_ectl &= ~ERRCTL_PE;
1723 write_c0_ecc(cp0_ectl);
1724 back_to_back_c0_hazard();
1725 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1726
1727 /* Configure L2 ECC checking */
1728 if (l2parity)
93c5bba5 1729 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
35e6de38 1730 else
93c5bba5 1731 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
35e6de38
PB
1732 write_gcr_err_control(gcr_ectl);
1733 gcr_ectl = read_gcr_err_control();
93c5bba5 1734 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
35e6de38
PB
1735 WARN_ON(!!gcr_ectl != l2parity);
1736
1737 pr_info("Cache parity protection %sabled\n",
1738 l1parity ? "en" : "dis");
1739 return;
1740 }
1741
10cc3529 1742 switch (current_cpu_type()) {
1da177e4 1743 case CPU_24K:
98a41de9 1744 case CPU_34K:
39b8d525
RB
1745 case CPU_74K:
1746 case CPU_1004K:
442e14a2 1747 case CPU_1074K:
26ab96df 1748 case CPU_INTERAPTIV:
708ac4b8 1749 case CPU_PROAPTIV:
aced4cbd 1750 case CPU_P5600:
4695089f 1751 case CPU_QEMU_GENERIC:
1091bfa2 1752 case CPU_P6600:
39b8d525 1753 {
39b8d525
RB
1754 unsigned long errctl;
1755 unsigned int l1parity_present, l2parity_present;
1756
1757 errctl = read_c0_ecc();
1758 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1759
1760 /* probe L1 parity support */
1761 write_c0_ecc(errctl | ERRCTL_PE);
1762 back_to_back_c0_hazard();
1763 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1764
1765 /* probe L2 parity support */
1766 write_c0_ecc(errctl|ERRCTL_L2P);
1767 back_to_back_c0_hazard();
1768 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1769
1770 if (l1parity_present && l2parity_present) {
1771 if (l1parity)
1772 errctl |= ERRCTL_PE;
1773 if (l1parity ^ l2parity)
1774 errctl |= ERRCTL_L2P;
1775 } else if (l1parity_present) {
1776 if (l1parity)
1777 errctl |= ERRCTL_PE;
1778 } else if (l2parity_present) {
1779 if (l2parity)
1780 errctl |= ERRCTL_L2P;
1781 } else {
1782 /* No parity available */
1783 }
1784
1785 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1786
1787 write_c0_ecc(errctl);
1788 back_to_back_c0_hazard();
1789 errctl = read_c0_ecc();
1790 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1791
1792 if (l1parity_present)
1793 printk(KERN_INFO "Cache parity protection %sabled\n",
1794 (errctl & ERRCTL_PE) ? "en" : "dis");
1795
1796 if (l2parity_present) {
1797 if (l1parity_present && l1parity)
1798 errctl ^= ERRCTL_L2P;
1799 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1800 (errctl & ERRCTL_L2P) ? "en" : "dis");
1801 }
1802 }
1803 break;
1804
1da177e4 1805 case CPU_5KC:
78d4803f 1806 case CPU_5KE:
b2afb64c 1807 case CPU_LOONGSON32:
14f18b7f
RB
1808 write_c0_ecc(0x80000000);
1809 back_to_back_c0_hazard();
1810 /* Set the PE bit (bit 31) in the c0_errctl register. */
1811 printk(KERN_INFO "Cache parity protection %sabled\n",
1812 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1da177e4
LT
1813 break;
1814 case CPU_20KC:
1815 case CPU_25KF:
1816 /* Clear the DE bit (bit 16) in the c0_status register. */
1817 printk(KERN_INFO "Enable cache parity protection for "
1818 "MIPS 20KC/25KF CPUs.\n");
1819 clear_c0_status(ST0_DE);
1820 break;
1821 default:
1822 break;
1823 }
1824}
1825
1826asmlinkage void cache_parity_error(void)
1827{
1828 const int field = 2 * sizeof(unsigned long);
1829 unsigned int reg_val;
1830
1831 /* For the moment, report the problem and hang. */
1832 printk("Cache error exception:\n");
1833 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1834 reg_val = read_c0_cacheerr();
1835 printk("c0_cacheerr == %08x\n", reg_val);
1836
1837 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1838 reg_val & (1<<30) ? "secondary" : "primary",
1839 reg_val & (1<<31) ? "data" : "insn");
9c7d5768 1840 if ((cpu_has_mips_r2_r6) &&
721a9205 1841 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
6de20451
LY
1842 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1843 reg_val & (1<<29) ? "ED " : "",
1844 reg_val & (1<<28) ? "ET " : "",
1845 reg_val & (1<<27) ? "ES " : "",
1846 reg_val & (1<<26) ? "EE " : "",
1847 reg_val & (1<<25) ? "EB " : "",
1848 reg_val & (1<<24) ? "EI " : "",
1849 reg_val & (1<<23) ? "E1 " : "",
1850 reg_val & (1<<22) ? "E0 " : "");
1851 } else {
1852 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1853 reg_val & (1<<29) ? "ED " : "",
1854 reg_val & (1<<28) ? "ET " : "",
1855 reg_val & (1<<26) ? "EE " : "",
1856 reg_val & (1<<25) ? "EB " : "",
1857 reg_val & (1<<24) ? "EI " : "",
1858 reg_val & (1<<23) ? "E1 " : "",
1859 reg_val & (1<<22) ? "E0 " : "");
1860 }
1da177e4
LT
1861 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1862
ec917c2c 1863#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1da177e4
LT
1864 if (reg_val & (1<<22))
1865 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1866
1867 if (reg_val & (1<<23))
1868 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1869#endif
1870
1871 panic("Can't handle the cache error!");
1872}
1873
75b5b5e0
LY
1874asmlinkage void do_ftlb(void)
1875{
1876 const int field = 2 * sizeof(unsigned long);
1877 unsigned int reg_val;
1878
1879 /* For the moment, report the problem and hang. */
9c7d5768 1880 if ((cpu_has_mips_r2_r6) &&
b2edcfc8
HC
1881 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1882 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
75b5b5e0
LY
1883 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1884 read_c0_ecc());
1885 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1886 reg_val = read_c0_cacheerr();
1887 pr_err("c0_cacheerr == %08x\n", reg_val);
1888
1889 if ((reg_val & 0xc0000000) == 0xc0000000) {
1890 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1891 } else {
1892 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1893 reg_val & (1<<30) ? "secondary" : "primary",
1894 reg_val & (1<<31) ? "data" : "insn");
1895 }
1896 } else {
1897 pr_err("FTLB error exception\n");
1898 }
1899 /* Just print the cacheerr bits for now */
1900 cache_parity_error();
1901}
1902
bc6e8dc1
WX
1903asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
1904{
1905 u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
1906 LOONGSON_DIAG1_EXCCODE_SHIFT;
1907 enum ctx_state prev_state;
1908
1909 prev_state = exception_enter();
1910
1911 switch (exccode) {
1912 case 0x08:
1913 /* Undocumented exception, will trigger on certain
1914 * also-undocumented instructions accessible from userspace.
1915 * Processor state is not otherwise corrupted, but currently
1916 * we don't know how to proceed. Maybe there is some
1917 * undocumented control flag to enable the instructions?
1918 */
1919 force_sig(SIGILL);
1920 break;
1921
1922 default:
1923 /* None of the other exceptions, documented or not, have
1924 * further details given; none are encountered in the wild
1925 * either. Panic in case some of them turn out to be fatal.
1926 */
1927 show_regs(regs);
1928 panic("Unhandled Loongson exception - GSCause = %08x", diag1);
1929 }
1930
1931 exception_exit(prev_state);
1932}
1933
1da177e4
LT
1934/*
1935 * SDBBP EJTAG debug exception handler.
1936 * We skip the instruction and return to the next instruction.
1937 */
1938void ejtag_exception_handler(struct pt_regs *regs)
1939{
1940 const int field = 2 * sizeof(unsigned long);
2a0b24f5 1941 unsigned long depc, old_epc, old_ra;
1da177e4
LT
1942 unsigned int debug;
1943
70ae6126 1944 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1da177e4
LT
1945 depc = read_c0_depc();
1946 debug = read_c0_debug();
70ae6126 1947 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1da177e4
LT
1948 if (debug & 0x80000000) {
1949 /*
1950 * In branch delay slot.
1951 * We cheat a little bit here and use EPC to calculate the
1952 * debug return address (DEPC). EPC is restored after the
1953 * calculation.
1954 */
1955 old_epc = regs->cp0_epc;
2a0b24f5 1956 old_ra = regs->regs[31];
1da177e4 1957 regs->cp0_epc = depc;
2a0b24f5 1958 compute_return_epc(regs);
1da177e4
LT
1959 depc = regs->cp0_epc;
1960 regs->cp0_epc = old_epc;
2a0b24f5 1961 regs->regs[31] = old_ra;
1da177e4
LT
1962 } else
1963 depc += 4;
1964 write_c0_depc(depc);
1965
1966#if 0
70ae6126 1967 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1da177e4
LT
1968 write_c0_debug(debug | 0x100);
1969#endif
1970}
1971
1972/*
1973 * NMI exception handler.
34bd92e2 1974 * No lock; only written during early bootup by CPU 0.
1da177e4 1975 */
34bd92e2
KC
1976static RAW_NOTIFIER_HEAD(nmi_chain);
1977
1978int register_nmi_notifier(struct notifier_block *nb)
1979{
1980 return raw_notifier_chain_register(&nmi_chain, nb);
1981}
1982
ff2d8b19 1983void __noreturn nmi_exception_handler(struct pt_regs *regs)
1da177e4 1984{
83e4da1e
LY
1985 char str[100];
1986
7963b3f1 1987 nmi_enter();
34bd92e2 1988 raw_notifier_call_chain(&nmi_chain, 0, regs);
41c594ab 1989 bust_spinlocks(1);
83e4da1e
LY
1990 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1991 smp_processor_id(), regs->cp0_epc);
1992 regs->cp0_epc = read_c0_errorepc();
1993 die(str, regs);
7963b3f1 1994 nmi_exit();
1da177e4
LT
1995}
1996
e01402b1 1997unsigned long ebase;
878edf01 1998EXPORT_SYMBOL_GPL(ebase);
1da177e4 1999unsigned long exception_handlers[32];
e01402b1 2000unsigned long vi_handlers[64];
1da177e4 2001
bd67b711
TB
2002void reserve_exception_space(phys_addr_t addr, unsigned long size)
2003{
2004 memblock_reserve(addr, size);
2005}
2006
2d1b6e95 2007void __init *set_except_vector(int n, void *addr)
1da177e4
LT
2008{
2009 unsigned long handler = (unsigned long) addr;
b22d1b6a 2010 unsigned long old_handler;
1da177e4 2011
2a0b24f5
SH
2012#ifdef CONFIG_CPU_MICROMIPS
2013 /*
2014 * Only the TLB handlers are cache aligned with an even
2015 * address. All other handlers are on an odd address and
2016 * require no modification. Otherwise, MIPS32 mode will
2017 * be entered when handling any TLB exceptions. That
2018 * would be bad...since we must stay in microMIPS mode.
2019 */
2020 if (!(handler & 0x1))
2021 handler |= 1;
2022#endif
b22d1b6a 2023 old_handler = xchg(&exception_handlers[n], handler);
1da177e4 2024
1da177e4 2025 if (n == 0 && cpu_has_divec) {
2a0b24f5
SH
2026#ifdef CONFIG_CPU_MICROMIPS
2027 unsigned long jump_mask = ~((1 << 27) - 1);
2028#else
92bbe1b9 2029 unsigned long jump_mask = ~((1 << 28) - 1);
2a0b24f5 2030#endif
92bbe1b9
FF
2031 u32 *buf = (u32 *)(ebase + 0x200);
2032 unsigned int k0 = 26;
2033 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
2034 uasm_i_j(&buf, handler & ~jump_mask);
2035 uasm_i_nop(&buf);
2036 } else {
2037 UASM_i_LA(&buf, k0, handler);
2038 uasm_i_jr(&buf, k0);
2039 uasm_i_nop(&buf);
2040 }
2041 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
e01402b1
RB
2042 }
2043 return (void *)old_handler;
2044}
2045
86a1708a 2046static void do_default_vi(void)
6ba07e59
AN
2047{
2048 show_regs(get_irq_regs());
2049 panic("Caught unexpected vectored interrupt.");
2050}
2051
ef300e42 2052static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
e01402b1
RB
2053{
2054 unsigned long handler;
2055 unsigned long old_handler = vi_handlers[n];
f6771dbb 2056 int srssets = current_cpu_data.srsets;
2a0b24f5 2057 u16 *h;
e01402b1
RB
2058 unsigned char *b;
2059
b72b7092 2060 BUG_ON(!cpu_has_veic && !cpu_has_vint);
e01402b1
RB
2061
2062 if (addr == NULL) {
2063 handler = (unsigned long) do_default_vi;
2064 srs = 0;
41c594ab 2065 } else
e01402b1 2066 handler = (unsigned long) addr;
2a0b24f5 2067 vi_handlers[n] = handler;
e01402b1
RB
2068
2069 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2070
f6771dbb 2071 if (srs >= srssets)
e01402b1
RB
2072 panic("Shadow register set %d not supported", srs);
2073
2074 if (cpu_has_veic) {
2075 if (board_bind_eic_interrupt)
49a89efb 2076 board_bind_eic_interrupt(n, srs);
41c594ab 2077 } else if (cpu_has_vint) {
e01402b1 2078 /* SRSMap is only defined if shadow sets are implemented */
f6771dbb 2079 if (srssets > 1)
49a89efb 2080 change_c0_srsmap(0xf << n*4, srs << n*4);
e01402b1
RB
2081 }
2082
2083 if (srs == 0) {
2084 /*
2085 * If no shadow set is selected then use the default handler
2a0b24f5 2086 * that does normal register saving and standard interrupt exit
e01402b1 2087 */
fba37e55
AL
2088 extern const u8 except_vec_vi[], except_vec_vi_lui[];
2089 extern const u8 except_vec_vi_ori[], except_vec_vi_end[];
2090 extern const u8 rollback_except_vec_vi[];
2091 const u8 *vec_start = using_rollback_handler() ?
2092 rollback_except_vec_vi : except_vec_vi;
2a0b24f5 2093#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
fba37e55
AL
2094 const int lui_offset = except_vec_vi_lui - vec_start + 2;
2095 const int ori_offset = except_vec_vi_ori - vec_start + 2;
2a0b24f5 2096#else
fba37e55
AL
2097 const int lui_offset = except_vec_vi_lui - vec_start;
2098 const int ori_offset = except_vec_vi_ori - vec_start;
2a0b24f5 2099#endif
fba37e55 2100 const int handler_len = except_vec_vi_end - vec_start;
e01402b1
RB
2101
2102 if (handler_len > VECTORSPACING) {
2103 /*
2104 * Sigh... panicing won't help as the console
2105 * is probably not configured :(
2106 */
49a89efb 2107 panic("VECTORSPACING too small");
e01402b1
RB
2108 }
2109
2a0b24f5
SH
2110 set_handler(((unsigned long)b - ebase), vec_start,
2111#ifdef CONFIG_CPU_MICROMIPS
2112 (handler_len - 1));
2113#else
2114 handler_len);
2115#endif
2a0b24f5
SH
2116 h = (u16 *)(b + lui_offset);
2117 *h = (handler >> 16) & 0xffff;
2118 h = (u16 *)(b + ori_offset);
2119 *h = (handler & 0xffff);
e0cee3ee
TB
2120 local_flush_icache_range((unsigned long)b,
2121 (unsigned long)(b+handler_len));
e01402b1
RB
2122 }
2123 else {
2124 /*
2a0b24f5
SH
2125 * In other cases jump directly to the interrupt handler. It
2126 * is the handler's responsibility to save registers if required
2127 * (eg hi/lo) and return from the exception using "eret".
e01402b1 2128 */
2a0b24f5
SH
2129 u32 insn;
2130
2131 h = (u16 *)b;
2132 /* j handler */
2133#ifdef CONFIG_CPU_MICROMIPS
2134 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2135#else
2136 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2137#endif
2138 h[0] = (insn >> 16) & 0xffff;
2139 h[1] = insn & 0xffff;
2140 h[2] = 0;
2141 h[3] = 0;
e0cee3ee
TB
2142 local_flush_icache_range((unsigned long)b,
2143 (unsigned long)(b+8));
1da177e4 2144 }
e01402b1 2145
1da177e4
LT
2146 return (void *)old_handler;
2147}
2148
ef300e42 2149void *set_vi_handler(int n, vi_handler_t addr)
e01402b1 2150{
ff3eab2a 2151 return set_vi_srs_handler(n, addr, 0);
e01402b1 2152}
f41ae0b2 2153
1da177e4
LT
2154extern void tlb_init(void);
2155
42f77542
RB
2156/*
2157 * Timer interrupt
2158 */
2159int cp0_compare_irq;
68b6352c 2160EXPORT_SYMBOL_GPL(cp0_compare_irq);
010c108d 2161int cp0_compare_irq_shift;
42f77542
RB
2162
2163/*
2164 * Performance counter IRQ or -1 if shared with timer
2165 */
2166int cp0_perfcount_irq;
2167EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2168
8f7ff027
JH
2169/*
2170 * Fast debug channel IRQ or -1 if not present
2171 */
2172int cp0_fdc_irq;
2173EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2174
078a55fc 2175static int noulri;
bdc94eb4
CD
2176
2177static int __init ulri_disable(char *s)
2178{
2179 pr_info("Disabling ulri\n");
2180 noulri = 1;
2181
2182 return 1;
2183}
2184__setup("noulri", ulri_disable);
2185
ae4ce454
JH
2186/* configure STATUS register */
2187static void configure_status(void)
1da177e4 2188{
1da177e4
LT
2189 /*
2190 * Disable coprocessors and select 32-bit or 64-bit addressing
2191 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2192 * flag that some firmware may have left set and the TS bit (for
2193 * IP27). Set XX for ISA IV code to work.
2194 */
195615ec 2195 unsigned int status_set = ST0_KERNEL_CUMASK;
875d43e7 2196#ifdef CONFIG_64BIT
1da177e4
LT
2197 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2198#endif
adb37892 2199 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1da177e4 2200 status_set |= ST0_XX;
bbaf238b
CD
2201 if (cpu_has_dsp)
2202 status_set |= ST0_MX;
2203
b38c7399 2204 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1da177e4 2205 status_set);
fcec538e 2206 back_to_back_c0_hazard();
ae4ce454
JH
2207}
2208
b937ff62
JH
2209unsigned int hwrena;
2210EXPORT_SYMBOL_GPL(hwrena);
2211
ae4ce454
JH
2212/* configure HWRENA register */
2213static void configure_hwrena(void)
2214{
b937ff62 2215 hwrena = cpu_hwrena_impl_bits;
1da177e4 2216
9c7d5768 2217 if (cpu_has_mips_r2_r6)
aff565aa
JH
2218 hwrena |= MIPS_HWRENA_CPUNUM |
2219 MIPS_HWRENA_SYNCISTEP |
2220 MIPS_HWRENA_CC |
2221 MIPS_HWRENA_CCRES;
a3692020 2222
18d693b3 2223 if (!noulri && cpu_has_userlocal)
aff565aa 2224 hwrena |= MIPS_HWRENA_ULR;
a3692020 2225
18d693b3
KC
2226 if (hwrena)
2227 write_c0_hwrena(hwrena);
ae4ce454 2228}
e01402b1 2229
ae4ce454
JH
2230static void configure_exception_vector(void)
2231{
de56d4c1 2232 if (cpu_has_mips_r2_r6) {
9fb4c2b9 2233 unsigned long sr = set_c0_status(ST0_BEV);
4b22c693
MR
2234 /* If available, use WG to set top bits of EBASE */
2235 if (cpu_has_ebase_wg) {
2236#ifdef CONFIG_64BIT
2237 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2238#else
2239 write_c0_ebase(ebase | MIPS_EBASE_WG);
2240#endif
2241 }
49a89efb 2242 write_c0_ebase(ebase);
9fb4c2b9 2243 write_c0_status(sr);
de56d4c1
PB
2244 }
2245 if (cpu_has_veic || cpu_has_vint) {
e01402b1 2246 /* Setting vector spacing enables EI/VI mode */
49a89efb 2247 change_c0_intctl(0x3e0, VECTORSPACING);
e01402b1 2248 }
d03d0a57
RB
2249 if (cpu_has_divec) {
2250 if (cpu_has_mipsmt) {
2251 unsigned int vpflags = dvpe();
2252 set_c0_cause(CAUSEF_IV);
2253 evpe(vpflags);
2254 } else
2255 set_c0_cause(CAUSEF_IV);
2256 }
ae4ce454
JH
2257}
2258
2259void per_cpu_trap_init(bool is_boot_cpu)
2260{
2261 unsigned int cpu = smp_processor_id();
ae4ce454
JH
2262
2263 configure_status();
2264 configure_hwrena();
2265
ae4ce454 2266 configure_exception_vector();
3b1d4ed5
RB
2267
2268 /*
2269 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2270 *
2271 * o read IntCtl.IPTI to determine the timer interrupt
2272 * o read IntCtl.IPPCI to determine the performance counter interrupt
8f7ff027 2273 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
3b1d4ed5 2274 */
9c7d5768 2275 if (cpu_has_mips_r2_r6) {
010c108d
DV
2276 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2277 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2278 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
8f7ff027
JH
2279 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2280 if (!cp0_fdc_irq)
2281 cp0_fdc_irq = -1;
2282
c3e838a2
CD
2283 } else {
2284 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
c6a4ebb9 2285 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
c3e838a2 2286 cp0_perfcount_irq = -1;
8f7ff027 2287 cp0_fdc_irq = -1;
3b1d4ed5
RB
2288 }
2289
c8790d65
PB
2290 if (cpu_has_mmid)
2291 cpu_data[cpu].asid_cache = 0;
2292 else if (!cpu_data[cpu].asid_cache)
4edf00a4 2293 cpu_data[cpu].asid_cache = asid_first_version(cpu);
1da177e4 2294
f1f10076 2295 mmgrab(&init_mm);
1da177e4
LT
2296 current->active_mm = &init_mm;
2297 BUG_ON(current->mm);
2298 enter_lazy_tlb(&init_mm, current);
2299
761b4493
MC
2300 /* Boot CPU's cache setup in setup_arch(). */
2301 if (!is_boot_cpu)
2302 cpu_cache_init();
2303 tlb_init();
3d8bfdd0 2304 TLBMISS_HANDLER_SETUP();
1da177e4
LT
2305}
2306
e01402b1 2307/* Install CPU exception handler */
fba37e55 2308void set_handler(unsigned long offset, const void *addr, unsigned long size)
e01402b1 2309{
2a0b24f5
SH
2310#ifdef CONFIG_CPU_MICROMIPS
2311 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2312#else
e01402b1 2313 memcpy((void *)(ebase + offset), addr, size);
2a0b24f5 2314#endif
e0cee3ee 2315 local_flush_icache_range(ebase + offset, ebase + offset + size);
e01402b1
RB
2316}
2317
06324664
KC
2318static const char panic_null_cerr[] =
2319 "Trying to set NULL cache error exception handler\n";
641e97f3 2320
42fe7ee3
RB
2321/*
2322 * Install uncached CPU exception handler.
2323 * This is suitable only for the cache error exception which is the only
2324 * exception handler that is being run uncached.
2325 */
078a55fc 2326void set_uncached_handler(unsigned long offset, void *addr,
234fcd14 2327 unsigned long size)
e01402b1 2328{
4f81b01a 2329 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
e01402b1 2330
641e97f3
RB
2331 if (!addr)
2332 panic(panic_null_cerr);
2333
e01402b1
RB
2334 memcpy((void *)(uncached_ebase + offset), addr, size);
2335}
2336
5b10496b
AN
2337static int __initdata rdhwr_noopt;
2338static int __init set_rdhwr_noopt(char *str)
2339{
2340 rdhwr_noopt = 1;
2341 return 1;
2342}
2343
2344__setup("rdhwr_noopt", set_rdhwr_noopt);
2345
1da177e4
LT
2346void __init trap_init(void)
2347{
2a0b24f5 2348 extern char except_vec3_generic;
1da177e4 2349 extern char except_vec4;
2a0b24f5 2350 extern char except_vec3_r4000;
172dcd93
PB
2351 unsigned long i, vec_size;
2352 phys_addr_t ebase_pa;
c65a5480
AN
2353
2354 check_wait();
1da177e4 2355
172dcd93
PB
2356 if (!cpu_has_mips_r2_r6) {
2357 ebase = CAC_BASE;
172dcd93 2358 vec_size = 0x400;
172dcd93
PB
2359 } else {
2360 if (cpu_has_veic || cpu_has_vint)
2361 vec_size = 0x200 + VECTORSPACING*64;
2362 else
2363 vec_size = PAGE_SIZE;
c195e079 2364
172dcd93 2365 ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
f995adb0 2366 if (!ebase_pa)
8a7f97b9 2367 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
172dcd93 2368 __func__, vec_size, 1 << fls(vec_size));
c195e079
JH
2369
2370 /*
2371 * Try to ensure ebase resides in KSeg0 if possible.
2372 *
2373 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2374 * hitting a poorly defined exception base for Cache Errors.
2375 * The allocation is likely to be in the low 512MB of physical,
2376 * in which case we should be able to convert to KSeg0.
2377 *
2378 * EVA is special though as it allows segments to be rearranged
2379 * and to become uncached during cache error handling.
2380 */
c195e079
JH
2381 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2382 ebase = CKSEG0ADDR(ebase_pa);
f995adb0
PB
2383 else
2384 ebase = (unsigned long)phys_to_virt(ebase_pa);
566f74f6 2385 }
e01402b1 2386
c6213c6c
SH
2387 if (cpu_has_mmips) {
2388 unsigned int config3 = read_c0_config3();
2389
2390 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2391 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2392 else
2393 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2394 }
2395
6fb97eff
KC
2396 if (board_ebase_setup)
2397 board_ebase_setup();
6650df3c 2398 per_cpu_trap_init(true);
25517ed4 2399 memblock_set_bottom_up(false);
1da177e4
LT
2400
2401 /*
2402 * Copy the generic exception handlers to their final destination.
92a76f6d 2403 * This will be overridden later as suitable for a particular
1da177e4
LT
2404 * configuration.
2405 */
e01402b1 2406 set_handler(0x180, &except_vec3_generic, 0x80);
1da177e4
LT
2407
2408 /*
2409 * Setup default vectors
2410 */
2411 for (i = 0; i <= 31; i++)
2412 set_except_vector(i, handle_reserved);
2413
2414 /*
2415 * Copy the EJTAG debug exception vector handler code to it's final
2416 * destination.
2417 */
e01402b1 2418 if (cpu_has_ejtag && board_ejtag_handler_setup)
49a89efb 2419 board_ejtag_handler_setup();
1da177e4
LT
2420
2421 /*
2422 * Only some CPUs have the watch exceptions.
2423 */
2424 if (cpu_has_watch)
1b505def 2425 set_except_vector(EXCCODE_WATCH, handle_watch);
1da177e4
LT
2426
2427 /*
e01402b1 2428 * Initialise interrupt handlers
1da177e4 2429 */
e01402b1
RB
2430 if (cpu_has_veic || cpu_has_vint) {
2431 int nvec = cpu_has_veic ? 64 : 8;
2432 for (i = 0; i < nvec; i++)
ff3eab2a 2433 set_vi_handler(i, NULL);
e01402b1
RB
2434 }
2435 else if (cpu_has_divec)
2436 set_handler(0x200, &except_vec4, 0x8);
1da177e4
LT
2437
2438 /*
2439 * Some CPUs can enable/disable for cache parity detection, but does
2440 * it different ways.
2441 */
2442 parity_protection_init();
2443
2444 /*
2445 * The Data Bus Errors / Instruction Bus Errors are signaled
2446 * by external hardware. Therefore these two exceptions
2447 * may have board specific handlers.
2448 */
2449 if (board_be_init)
2450 board_be_init();
2451
1b505def
JH
2452 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2453 rollback_handle_int : handle_int);
2454 set_except_vector(EXCCODE_MOD, handle_tlbm);
2455 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2456 set_except_vector(EXCCODE_TLBS, handle_tlbs);
1da177e4 2457
1b505def
JH
2458 set_except_vector(EXCCODE_ADEL, handle_adel);
2459 set_except_vector(EXCCODE_ADES, handle_ades);
1da177e4 2460
1b505def
JH
2461 set_except_vector(EXCCODE_IBE, handle_ibe);
2462 set_except_vector(EXCCODE_DBE, handle_dbe);
1da177e4 2463
1b505def
JH
2464 set_except_vector(EXCCODE_SYS, handle_sys);
2465 set_except_vector(EXCCODE_BP, handle_bp);
5a341331
HC
2466
2467 if (rdhwr_noopt)
2468 set_except_vector(EXCCODE_RI, handle_ri);
2469 else {
2470 if (cpu_has_vtag_icache)
2471 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
268a2d60 2472 else if (current_cpu_type() == CPU_LOONGSON64)
5a341331
HC
2473 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2474 else
2475 set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2476 }
2477
1b505def
JH
2478 set_except_vector(EXCCODE_CPU, handle_cpu);
2479 set_except_vector(EXCCODE_OV, handle_ov);
2480 set_except_vector(EXCCODE_TR, handle_tr);
2481 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
1da177e4 2482
e01402b1
RB
2483 if (board_nmi_handler_setup)
2484 board_nmi_handler_setup();
2485
e50c0a8f 2486 if (cpu_has_fpu && !cpu_has_nofpuex)
1b505def 2487 set_except_vector(EXCCODE_FPE, handle_fpe);
e50c0a8f 2488
efd1b4ad
WX
2489 if (cpu_has_ftlbparex)
2490 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
5890f70f 2491
bc6e8dc1
WX
2492 if (cpu_has_gsexcex)
2493 set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
5890f70f
LY
2494
2495 if (cpu_has_rixiex) {
1b505def
JH
2496 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2497 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
5890f70f
LY
2498 }
2499
1b505def
JH
2500 set_except_vector(EXCCODE_MSADIS, handle_msa);
2501 set_except_vector(EXCCODE_MDMX, handle_mdmx);
e50c0a8f
RB
2502
2503 if (cpu_has_mcheck)
1b505def 2504 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
e50c0a8f 2505
340ee4b9 2506 if (cpu_has_mipsmt)
1b505def 2507 set_except_vector(EXCCODE_THREAD, handle_mt);
340ee4b9 2508
1b505def 2509 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
e50c0a8f 2510
fcbf1dfd
DD
2511 if (board_cache_error_setup)
2512 board_cache_error_setup();
2513
e50c0a8f
RB
2514 if (cpu_has_vce)
2515 /* Special exception: R4[04]00 uses also the divec space. */
2a0b24f5 2516 set_handler(0x180, &except_vec3_r4000, 0x100);
e50c0a8f 2517 else if (cpu_has_4kex)
2a0b24f5 2518 set_handler(0x180, &except_vec3_generic, 0x80);
e50c0a8f 2519 else
2a0b24f5 2520 set_handler(0x080, &except_vec3_generic, 0x80);
e50c0a8f 2521
783454e2 2522 local_flush_icache_range(ebase, ebase + vec_size);
0510617b
TB
2523
2524 sort_extable(__start___dbe_table, __stop___dbe_table);
69f3a7de 2525
4483b159 2526 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
1da177e4 2527}
ae4ce454
JH
2528
2529static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2530 void *v)
2531{
2532 switch (cmd) {
2533 case CPU_PM_ENTER_FAILED:
2534 case CPU_PM_EXIT:
2535 configure_status();
2536 configure_hwrena();
2537 configure_exception_vector();
2538
2539 /* Restore register with CPU number for TLB handlers */
2540 TLBMISS_HANDLER_RESTORE();
2541
2542 break;
2543 }
2544
2545 return NOTIFY_OK;
2546}
2547
2548static struct notifier_block trap_pm_notifier_block = {
2549 .notifier_call = trap_pm_notifier,
2550};
2551
2552static int __init trap_pm_init(void)
2553{
2554 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2555}
2556arch_initcall(trap_pm_init);