]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/parisc/kernel/firmware.c
Merge remote-tracking branches 'asoc/fix/dpcm', 'asoc/fix/imx', 'asoc/fix/msm8916...
[mirror_ubuntu-bionic-kernel.git] / arch / parisc / kernel / firmware.c
CommitLineData
1da177e4
LT
1/*
2 * arch/parisc/kernel/firmware.c - safe PDC access routines
3 *
4 * PDC == Processor Dependent Code
5 *
6 * See http://www.parisc-linux.org/documentation/index.html
7 * for documentation describing the entry points and calling
8 * conventions defined below.
9 *
10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
8ffaeaf4 14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
1da177e4
LT
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 *
21 */
22
23/* I think it would be in everyone's best interest to follow this
24 * guidelines when writing PDC wrappers:
25 *
26 * - the name of the pdc wrapper should match one of the macros
27 * used for the first two arguments
28 * - don't use caps for random parts of the name
29 * - use the static PDC result buffers and "copyout" to structs
30 * supplied by the caller to encapsulate alignment restrictions
31 * - hold pdc_lock while in PDC or using static result buffers
32 * - use __pa() to convert virtual (kernel) pointers to physical
33 * ones.
34 * - the name of the struct used for pdc return values should equal
35 * one of the macros used for the first two arguments to the
36 * corresponding PDC call
37 * - keep the order of arguments
38 * - don't be smart (setting trailing NUL bytes for strings, return
39 * something useful even if the call failed) unless you are sure
40 * it's not going to affect functionality or performance
41 *
42 * Example:
43 * int pdc_cache_info(struct pdc_cache_info *cache_info )
44 * {
45 * int retval;
46 *
47 * spin_lock_irq(&pdc_lock);
48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49 * convert_to_wide(pdc_result);
50 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
51 * spin_unlock_irq(&pdc_lock);
52 *
53 * return retval;
54 * }
55 * prumpf 991016
56 */
57
58#include <stdarg.h>
59
60#include <linux/delay.h>
61#include <linux/init.h>
62#include <linux/kernel.h>
63#include <linux/module.h>
64#include <linux/string.h>
65#include <linux/spinlock.h>
66
67#include <asm/page.h>
68#include <asm/pdc.h>
69#include <asm/pdcpat.h>
1da177e4
LT
70#include <asm/processor.h> /* for boot_cpu_data */
71
72static DEFINE_SPINLOCK(pdc_lock);
6c86cb82
KM
73extern unsigned long pdc_result[NUM_PDC_RESULT];
74extern unsigned long pdc_result2[NUM_PDC_RESULT];
1da177e4 75
a8f44e38 76#ifdef CONFIG_64BIT
1da177e4
LT
77#define WIDE_FIRMWARE 0x1
78#define NARROW_FIRMWARE 0x2
79
80/* Firmware needs to be initially set to narrow to determine the
81 * actual firmware width. */
8039de10 82int parisc_narrow_firmware __read_mostly = 1;
1da177e4
LT
83#endif
84
675ec7a5
GG
85/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
86 * and MEM_PDC calls are always the same width as the OS.
87 * Some PAT boxes may have 64-bit IODC I/O.
1da177e4 88 *
675ec7a5
GG
89 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
90 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
91 * This allowed wide kernels to run on Cxxx boxes.
92 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
93 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
1da177e4
LT
94 */
95
a8f44e38 96#ifdef CONFIG_64BIT
1da177e4
LT
97long real64_call(unsigned long function, ...);
98#endif
99long real32_call(unsigned long function, ...);
100
a8f44e38 101#ifdef CONFIG_64BIT
1da177e4
LT
102# define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
103# define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
104#else
105# define MEM_PDC (unsigned long)PAGE0->mem_pdc
106# define mem_pdc_call(args...) real32_call(MEM_PDC, args)
107#endif
108
109
110/**
111 * f_extend - Convert PDC addresses to kernel addresses.
112 * @address: Address returned from PDC.
113 *
114 * This function is used to convert PDC addresses into kernel addresses
115 * when the PDC address size and kernel address size are different.
116 */
117static unsigned long f_extend(unsigned long address)
118{
a8f44e38 119#ifdef CONFIG_64BIT
1da177e4
LT
120 if(unlikely(parisc_narrow_firmware)) {
121 if((address & 0xff000000) == 0xf0000000)
122 return 0xf0f0f0f000000000UL | (u32)address;
123
124 if((address & 0xf0000000) == 0xf0000000)
125 return 0xffffffff00000000UL | (u32)address;
126 }
127#endif
128 return address;
129}
130
131/**
132 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
133 * @address: The return buffer from PDC.
134 *
135 * This function is used to convert the return buffer addresses retrieved from PDC
136 * into kernel addresses when the PDC address size and kernel address size are
137 * different.
138 */
139static void convert_to_wide(unsigned long *addr)
140{
a8f44e38 141#ifdef CONFIG_64BIT
1da177e4
LT
142 int i;
143 unsigned int *p = (unsigned int *)addr;
144
145 if(unlikely(parisc_narrow_firmware)) {
146 for(i = 31; i >= 0; --i)
147 addr[i] = p[i];
148 }
149#endif
150}
151
24b574d0 152#ifdef CONFIG_64BIT
60ffef06 153void set_firmware_width_unlocked(void)
24b574d0
KM
154{
155 int ret;
156
157 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
158 __pa(pdc_result), 0);
159 convert_to_wide(pdc_result);
160 if (pdc_result[0] != NARROW_FIRMWARE)
161 parisc_narrow_firmware = 0;
162}
163
1da177e4
LT
164/**
165 * set_firmware_width - Determine if the firmware is wide or narrow.
166 *
24b574d0
KM
167 * This function must be called before any pdc_* function that uses the
168 * convert_to_wide function.
1da177e4 169 */
60ffef06 170void set_firmware_width(void)
1da177e4 171{
09690b18 172 unsigned long flags;
24b574d0
KM
173 spin_lock_irqsave(&pdc_lock, flags);
174 set_firmware_width_unlocked();
175 spin_unlock_irqrestore(&pdc_lock, flags);
176}
177#else
60ffef06
PG
178void set_firmware_width_unlocked(void)
179{
24b574d0
KM
180 return;
181}
1da177e4 182
60ffef06
PG
183void set_firmware_width(void)
184{
24b574d0 185 return;
1da177e4 186}
24b574d0 187#endif /*CONFIG_64BIT*/
1da177e4
LT
188
189/**
190 * pdc_emergency_unlock - Unlock the linux pdc lock
191 *
192 * This call unlocks the linux pdc lock in case we need some PDC functions
193 * (like pdc_add_valid) during kernel stack dump.
194 */
195void pdc_emergency_unlock(void)
196{
197 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
198 if (spin_is_locked(&pdc_lock))
199 spin_unlock(&pdc_lock);
200}
201
202
203/**
204 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
205 * @address: Address to be verified.
206 *
207 * This PDC call attempts to read from the specified address and verifies
208 * if the address is valid.
209 *
210 * The return value is PDC_OK (0) in case accessing this address is valid.
211 */
212int pdc_add_valid(unsigned long address)
213{
214 int retval;
09690b18 215 unsigned long flags;
1da177e4 216
09690b18 217 spin_lock_irqsave(&pdc_lock, flags);
1da177e4 218 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
09690b18 219 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
220
221 return retval;
222}
223EXPORT_SYMBOL(pdc_add_valid);
224
225/**
226 * pdc_chassis_info - Return chassis information.
227 * @result: The return buffer.
228 * @chassis_info: The memory buffer address.
229 * @len: The size of the memory buffer address.
230 *
231 * An HVERSION dependent call for returning the chassis information.
232 */
233int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
234{
235 int retval;
09690b18 236 unsigned long flags;
1da177e4 237
09690b18 238 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
239 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
240 memcpy(&pdc_result2, led_info, len);
241 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
242 __pa(pdc_result), __pa(pdc_result2), len);
243 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
244 memcpy(led_info, pdc_result2, len);
09690b18 245 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
246
247 return retval;
248}
249
250/**
251 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
252 * @retval: -1 on error, 0 on success. Other value are PDC errors
253 *
254 * Must be correctly formatted or expect system crash
255 */
a8f44e38 256#ifdef CONFIG_64BIT
1da177e4
LT
257int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
258{
259 int retval = 0;
09690b18 260 unsigned long flags;
1da177e4
LT
261
262 if (!is_pdc_pat())
263 return -1;
264
09690b18 265 spin_lock_irqsave(&pdc_lock, flags);
1da177e4 266 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
09690b18 267 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
268
269 return retval;
270}
271#endif
272
273/**
8ffaeaf4 274 * pdc_chassis_disp - Updates chassis code
1da177e4 275 * @retval: -1 on error, 0 on success
1da177e4
LT
276 */
277int pdc_chassis_disp(unsigned long disp)
278{
279 int retval = 0;
09690b18 280 unsigned long flags;
1da177e4 281
09690b18 282 spin_lock_irqsave(&pdc_lock, flags);
1da177e4 283 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
09690b18 284 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
285
286 return retval;
287}
288
8ffaeaf4
TV
289/**
290 * pdc_chassis_warn - Fetches chassis warnings
291 * @retval: -1 on error, 0 on success
292 */
293int pdc_chassis_warn(unsigned long *warn)
294{
295 int retval = 0;
09690b18 296 unsigned long flags;
8ffaeaf4 297
09690b18 298 spin_lock_irqsave(&pdc_lock, flags);
8ffaeaf4
TV
299 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
300 *warn = pdc_result[0];
09690b18 301 spin_unlock_irqrestore(&pdc_lock, flags);
8ffaeaf4
TV
302
303 return retval;
304}
305
60ffef06 306int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
24b574d0
KM
307{
308 int ret;
309
310 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
311 convert_to_wide(pdc_result);
312 pdc_coproc_info->ccr_functional = pdc_result[0];
313 pdc_coproc_info->ccr_present = pdc_result[1];
314 pdc_coproc_info->revision = pdc_result[17];
315 pdc_coproc_info->model = pdc_result[18];
316
317 return ret;
318}
319
1da177e4
LT
320/**
321 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
322 * @pdc_coproc_info: Return buffer address.
323 *
324 * This PDC call returns the presence and status of all the coprocessors
325 * attached to the processor.
326 */
60ffef06 327int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
1da177e4 328{
24b574d0 329 int ret;
09690b18 330 unsigned long flags;
1da177e4 331
24b574d0
KM
332 spin_lock_irqsave(&pdc_lock, flags);
333 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
334 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4 335
24b574d0 336 return ret;
1da177e4
LT
337}
338
339/**
340 * pdc_iodc_read - Read data from the modules IODC.
341 * @actcnt: The actual number of bytes.
342 * @hpa: The HPA of the module for the iodc read.
343 * @index: The iodc entry point.
344 * @iodc_data: A buffer memory for the iodc options.
345 * @iodc_data_size: Size of the memory buffer.
346 *
347 * This PDC call reads from the IODC of the module specified by the hpa
348 * argument.
349 */
350int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
351 void *iodc_data, unsigned int iodc_data_size)
352{
353 int retval;
09690b18 354 unsigned long flags;
1da177e4 355
09690b18 356 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
357 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
358 index, __pa(pdc_result2), iodc_data_size);
359 convert_to_wide(pdc_result);
360 *actcnt = pdc_result[0];
361 memcpy(iodc_data, pdc_result2, iodc_data_size);
09690b18 362 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
363
364 return retval;
365}
366EXPORT_SYMBOL(pdc_iodc_read);
367
368/**
369 * pdc_system_map_find_mods - Locate unarchitected modules.
370 * @pdc_mod_info: Return buffer address.
371 * @mod_path: pointer to dev path structure.
372 * @mod_index: fixed address module index.
373 *
374 * To locate and identify modules which reside at fixed I/O addresses, which
375 * do not self-identify via architected bus walks.
376 */
377int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
378 struct pdc_module_path *mod_path, long mod_index)
379{
380 int retval;
09690b18 381 unsigned long flags;
1da177e4 382
09690b18 383 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
384 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
385 __pa(pdc_result2), mod_index);
386 convert_to_wide(pdc_result);
387 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
388 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
09690b18 389 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
390
391 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
392 return retval;
393}
394
395/**
396 * pdc_system_map_find_addrs - Retrieve additional address ranges.
397 * @pdc_addr_info: Return buffer address.
398 * @mod_index: Fixed address module index.
399 * @addr_index: Address range index.
400 *
401 * Retrieve additional information about subsequent address ranges for modules
402 * with multiple address ranges.
403 */
404int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
405 long mod_index, long addr_index)
406{
407 int retval;
09690b18 408 unsigned long flags;
1da177e4 409
09690b18 410 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
411 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
412 mod_index, addr_index);
413 convert_to_wide(pdc_result);
414 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
09690b18 415 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
416
417 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
418 return retval;
419}
420
421/**
422 * pdc_model_info - Return model information about the processor.
423 * @model: The return buffer.
424 *
425 * Returns the version numbers, identifiers, and capabilities from the processor module.
426 */
427int pdc_model_info(struct pdc_model *model)
428{
429 int retval;
09690b18 430 unsigned long flags;
1da177e4 431
09690b18 432 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
433 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
434 convert_to_wide(pdc_result);
435 memcpy(model, pdc_result, sizeof(*model));
09690b18 436 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
437
438 return retval;
439}
440
441/**
442 * pdc_model_sysmodel - Get the system model name.
443 * @name: A char array of at least 81 characters.
444 *
ec1fdc24
KM
445 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
446 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
447 * on HP/UX.
1da177e4
LT
448 */
449int pdc_model_sysmodel(char *name)
450{
451 int retval;
09690b18 452 unsigned long flags;
1da177e4 453
09690b18 454 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
455 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
456 OS_ID_HPUX, __pa(name));
457 convert_to_wide(pdc_result);
458
459 if (retval == PDC_OK) {
460 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
461 } else {
462 name[0] = 0;
463 }
09690b18 464 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
465
466 return retval;
467}
468
469/**
470 * pdc_model_versions - Identify the version number of each processor.
471 * @cpu_id: The return buffer.
472 * @id: The id of the processor to check.
473 *
474 * Returns the version number for each processor component.
475 *
476 * This comment was here before, but I do not know what it means :( -RB
477 * id: 0 = cpu revision, 1 = boot-rom-version
478 */
479int pdc_model_versions(unsigned long *versions, int id)
480{
481 int retval;
09690b18 482 unsigned long flags;
1da177e4 483
09690b18 484 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
485 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
486 convert_to_wide(pdc_result);
487 *versions = pdc_result[0];
09690b18 488 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
489
490 return retval;
491}
492
493/**
494 * pdc_model_cpuid - Returns the CPU_ID.
495 * @cpu_id: The return buffer.
496 *
497 * Returns the CPU_ID value which uniquely identifies the cpu portion of
498 * the processor module.
499 */
500int pdc_model_cpuid(unsigned long *cpu_id)
501{
502 int retval;
09690b18 503 unsigned long flags;
1da177e4 504
09690b18 505 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
506 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
507 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
508 convert_to_wide(pdc_result);
509 *cpu_id = pdc_result[0];
09690b18 510 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
511
512 return retval;
513}
514
515/**
516 * pdc_model_capabilities - Returns the platform capabilities.
517 * @capabilities: The return buffer.
518 *
519 * Returns information about platform support for 32- and/or 64-bit
520 * OSes, IO-PDIR coherency, and virtual aliasing.
521 */
522int pdc_model_capabilities(unsigned long *capabilities)
523{
524 int retval;
09690b18 525 unsigned long flags;
1da177e4 526
09690b18 527 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
528 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
529 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
530 convert_to_wide(pdc_result);
445c088f
CW
531 if (retval == PDC_OK) {
532 *capabilities = pdc_result[0];
533 } else {
534 *capabilities = PDC_MODEL_OS32;
535 }
09690b18 536 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
537
538 return retval;
539}
540
541/**
542 * pdc_cache_info - Return cache and TLB information.
543 * @cache_info: The return buffer.
544 *
545 * Returns information about the processor's cache and TLB.
546 */
547int pdc_cache_info(struct pdc_cache_info *cache_info)
548{
549 int retval;
09690b18 550 unsigned long flags;
1da177e4 551
09690b18 552 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
553 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
554 convert_to_wide(pdc_result);
555 memcpy(cache_info, pdc_result, sizeof(*cache_info));
09690b18 556 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
557
558 return retval;
559}
560
a9d2d386
KM
561/**
562 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
563 * @space_bits: Should be 0, if not, bad mojo!
564 *
565 * Returns information about Space ID hashing.
566 */
567int pdc_spaceid_bits(unsigned long *space_bits)
568{
569 int retval;
09690b18 570 unsigned long flags;
a9d2d386 571
09690b18 572 spin_lock_irqsave(&pdc_lock, flags);
a9d2d386
KM
573 pdc_result[0] = 0;
574 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
575 convert_to_wide(pdc_result);
576 *space_bits = pdc_result[0];
09690b18 577 spin_unlock_irqrestore(&pdc_lock, flags);
a9d2d386
KM
578
579 return retval;
580}
581
1da177e4
LT
582#ifndef CONFIG_PA20
583/**
584 * pdc_btlb_info - Return block TLB information.
585 * @btlb: The return buffer.
586 *
587 * Returns information about the hardware Block TLB.
588 */
589int pdc_btlb_info(struct pdc_btlb_info *btlb)
590{
591 int retval;
09690b18 592 unsigned long flags;
1da177e4 593
09690b18 594 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
595 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
596 memcpy(btlb, pdc_result, sizeof(*btlb));
09690b18 597 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
598
599 if(retval < 0) {
600 btlb->max_size = 0;
601 }
602 return retval;
603}
604
605/**
606 * pdc_mem_map_hpa - Find fixed module information.
607 * @address: The return buffer
608 * @mod_path: pointer to dev path structure.
609 *
610 * This call was developed for S700 workstations to allow the kernel to find
611 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
612 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
613 * call.
614 *
615 * This call is supported by all existing S700 workstations (up to Gecko).
616 */
617int pdc_mem_map_hpa(struct pdc_memory_map *address,
618 struct pdc_module_path *mod_path)
619{
620 int retval;
09690b18 621 unsigned long flags;
1da177e4 622
09690b18 623 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
624 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
625 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
626 __pa(pdc_result2));
627 memcpy(address, pdc_result, sizeof(*address));
09690b18 628 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
629
630 return retval;
631}
632#endif /* !CONFIG_PA20 */
633
634/**
635 * pdc_lan_station_id - Get the LAN address.
636 * @lan_addr: The return buffer.
637 * @hpa: The network device HPA.
638 *
639 * Get the LAN station address when it is not directly available from the LAN hardware.
640 */
641int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
642{
643 int retval;
09690b18 644 unsigned long flags;
1da177e4 645
09690b18 646 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
647 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
648 __pa(pdc_result), hpa);
649 if (retval < 0) {
650 /* FIXME: else read MAC from NVRAM */
651 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
652 } else {
653 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
654 }
09690b18 655 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
656
657 return retval;
658}
659EXPORT_SYMBOL(pdc_lan_station_id);
660
661/**
662 * pdc_stable_read - Read data from Stable Storage.
663 * @staddr: Stable Storage address to access.
664 * @memaddr: The memory address where Stable Storage data shall be copied.
7022672e 665 * @count: number of bytes to transfer. count is multiple of 4.
1da177e4
LT
666 *
667 * This PDC call reads from the Stable Storage address supplied in staddr
668 * and copies count bytes to the memory address memaddr.
669 * The call will fail if staddr+count > PDC_STABLE size.
670 */
671int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
672{
673 int retval;
09690b18 674 unsigned long flags;
1da177e4 675
09690b18 676 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
677 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
678 __pa(pdc_result), count);
679 convert_to_wide(pdc_result);
680 memcpy(memaddr, pdc_result, count);
09690b18 681 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
682
683 return retval;
684}
685EXPORT_SYMBOL(pdc_stable_read);
686
687/**
688 * pdc_stable_write - Write data to Stable Storage.
689 * @staddr: Stable Storage address to access.
690 * @memaddr: The memory address where Stable Storage data shall be read from.
7022672e 691 * @count: number of bytes to transfer. count is multiple of 4.
1da177e4
LT
692 *
693 * This PDC call reads count bytes from the supplied memaddr address,
694 * and copies count bytes to the Stable Storage address staddr.
695 * The call will fail if staddr+count > PDC_STABLE size.
696 */
697int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
698{
699 int retval;
09690b18 700 unsigned long flags;
1da177e4 701
09690b18 702 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
703 memcpy(pdc_result, memaddr, count);
704 convert_to_wide(pdc_result);
705 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
706 __pa(pdc_result), count);
09690b18 707 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
708
709 return retval;
710}
711EXPORT_SYMBOL(pdc_stable_write);
712
713/**
714 * pdc_stable_get_size - Get Stable Storage size in bytes.
715 * @size: pointer where the size will be stored.
716 *
717 * This PDC call returns the number of bytes in the processor's Stable
718 * Storage, which is the number of contiguous bytes implemented in Stable
719 * Storage starting from staddr=0. size in an unsigned 64-bit integer
720 * which is a multiple of four.
721 */
722int pdc_stable_get_size(unsigned long *size)
723{
724 int retval;
09690b18 725 unsigned long flags;
1da177e4 726
09690b18 727 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
728 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
729 *size = pdc_result[0];
09690b18 730 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
731
732 return retval;
733}
734EXPORT_SYMBOL(pdc_stable_get_size);
735
736/**
737 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
738 *
739 * This PDC call is meant to be used to check the integrity of the current
740 * contents of Stable Storage.
741 */
742int pdc_stable_verify_contents(void)
743{
744 int retval;
09690b18 745 unsigned long flags;
1da177e4 746
09690b18 747 spin_lock_irqsave(&pdc_lock, flags);
1da177e4 748 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
09690b18 749 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
750
751 return retval;
752}
753EXPORT_SYMBOL(pdc_stable_verify_contents);
754
755/**
756 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
757 * the validity indicator.
758 *
759 * This PDC call will erase all contents of Stable Storage. Use with care!
760 */
761int pdc_stable_initialize(void)
762{
763 int retval;
09690b18 764 unsigned long flags;
1da177e4 765
09690b18 766 spin_lock_irqsave(&pdc_lock, flags);
1da177e4 767 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
09690b18 768 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
769
770 return retval;
771}
772EXPORT_SYMBOL(pdc_stable_initialize);
773
774/**
775 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
776 * @hwpath: fully bc.mod style path to the device.
777 * @initiator: the array to return the result into
778 *
779 * Get the SCSI operational parameters from PDC.
780 * Needed since HPUX never used BIOS or symbios card NVRAM.
781 * Most ncr/sym cards won't have an entry and just use whatever
782 * capabilities of the card are (eg Ultra, LVD). But there are
783 * several cases where it's useful:
784 * o set SCSI id for Multi-initiator clusters,
785 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
786 * o bus width exported is less than what the interface chip supports.
787 */
788int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
789{
790 int retval;
09690b18 791 unsigned long flags;
1da177e4 792
09690b18 793 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
794
795/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
796#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
797 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
798
799 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
800 __pa(pdc_result), __pa(hwpath));
801 if (retval < PDC_OK)
802 goto out;
803
804 if (pdc_result[0] < 16) {
805 initiator->host_id = pdc_result[0];
806 } else {
807 initiator->host_id = -1;
808 }
809
810 /*
811 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
812 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
813 */
814 switch (pdc_result[1]) {
815 case 1: initiator->factor = 50; break;
816 case 2: initiator->factor = 25; break;
817 case 5: initiator->factor = 12; break;
818 case 25: initiator->factor = 10; break;
819 case 20: initiator->factor = 12; break;
820 case 40: initiator->factor = 10; break;
821 default: initiator->factor = -1; break;
822 }
823
824 if (IS_SPROCKETS()) {
825 initiator->width = pdc_result[4];
826 initiator->mode = pdc_result[5];
827 } else {
828 initiator->width = -1;
829 initiator->mode = -1;
830 }
831
832 out:
09690b18
KM
833 spin_unlock_irqrestore(&pdc_lock, flags);
834
1da177e4
LT
835 return (retval >= PDC_OK);
836}
837EXPORT_SYMBOL(pdc_get_initiator);
838
839
840/**
841 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
842 * @num_entries: The return value.
843 * @hpa: The HPA for the device.
844 *
845 * This PDC function returns the number of entries in the specified cell's
846 * interrupt table.
847 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
848 */
849int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
850{
851 int retval;
09690b18 852 unsigned long flags;
1da177e4 853
09690b18 854 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
855 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
856 __pa(pdc_result), hpa);
857 convert_to_wide(pdc_result);
858 *num_entries = pdc_result[0];
09690b18 859 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
860
861 return retval;
862}
863
864/**
865 * pdc_pci_irt - Get the PCI interrupt routing table.
866 * @num_entries: The number of entries in the table.
867 * @hpa: The Hard Physical Address of the device.
868 * @tbl:
869 *
870 * Get the PCI interrupt routing table for the device at the given HPA.
871 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
872 */
873int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
874{
875 int retval;
09690b18 876 unsigned long flags;
1da177e4
LT
877
878 BUG_ON((unsigned long)tbl & 0x7);
879
09690b18 880 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
881 pdc_result[0] = num_entries;
882 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
883 __pa(pdc_result), hpa, __pa(tbl));
09690b18 884 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
885
886 return retval;
887}
888
889
890#if 0 /* UNTEST CODE - left here in case someone needs it */
891
892/**
893 * pdc_pci_config_read - read PCI config space.
894 * @hpa token from PDC to indicate which PCI device
895 * @pci_addr configuration space address to read from
896 *
897 * Read PCI Configuration space *before* linux PCI subsystem is running.
898 */
899unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
900{
901 int retval;
09690b18
KM
902 unsigned long flags;
903
904 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
905 pdc_result[0] = 0;
906 pdc_result[1] = 0;
907 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
908 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
09690b18
KM
909 spin_unlock_irqrestore(&pdc_lock, flags);
910
1da177e4
LT
911 return retval ? ~0 : (unsigned int) pdc_result[0];
912}
913
914
915/**
916 * pdc_pci_config_write - read PCI config space.
917 * @hpa token from PDC to indicate which PCI device
918 * @pci_addr configuration space address to write
919 * @val value we want in the 32-bit register
920 *
921 * Write PCI Configuration space *before* linux PCI subsystem is running.
922 */
923void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
924{
925 int retval;
09690b18
KM
926 unsigned long flags;
927
928 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
929 pdc_result[0] = 0;
930 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
931 __pa(pdc_result), hpa,
932 cfg_addr&~3UL, 4UL, (unsigned long) val);
09690b18
KM
933 spin_unlock_irqrestore(&pdc_lock, flags);
934
1da177e4
LT
935 return retval;
936}
937#endif /* UNTESTED CODE */
938
939/**
940 * pdc_tod_read - Read the Time-Of-Day clock.
941 * @tod: The return buffer:
942 *
943 * Read the Time-Of-Day clock
944 */
945int pdc_tod_read(struct pdc_tod *tod)
946{
947 int retval;
09690b18 948 unsigned long flags;
1da177e4 949
09690b18 950 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
951 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
952 convert_to_wide(pdc_result);
953 memcpy(tod, pdc_result, sizeof(*tod));
09690b18 954 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
955
956 return retval;
957}
958EXPORT_SYMBOL(pdc_tod_read);
959
c9c2877d
HD
960int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
961{
962 int retval;
963 unsigned long flags;
964
965 spin_lock_irqsave(&pdc_lock, flags);
966 retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
967 convert_to_wide(pdc_result);
968 memcpy(rinfo, pdc_result, sizeof(*rinfo));
969 spin_unlock_irqrestore(&pdc_lock, flags);
970
971 return retval;
972}
973
974int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
975 unsigned long *pdt_entries_ptr)
976{
977 int retval;
978 unsigned long flags;
979
980 spin_lock_irqsave(&pdc_lock, flags);
981 retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
982 __pa(pdc_result2));
983 if (retval == PDC_OK) {
984 convert_to_wide(pdc_result);
985 memcpy(pret, pdc_result, sizeof(*pret));
986 convert_to_wide(pdc_result2);
987 memcpy(pdt_entries_ptr, pdc_result2,
988 pret->pdt_entries * sizeof(*pdt_entries_ptr));
989 }
990 spin_unlock_irqrestore(&pdc_lock, flags);
991
992 return retval;
993}
994
1da177e4
LT
995/**
996 * pdc_tod_set - Set the Time-Of-Day clock.
997 * @sec: The number of seconds since epoch.
998 * @usec: The number of micro seconds.
999 *
1000 * Set the Time-Of-Day clock.
1001 */
1002int pdc_tod_set(unsigned long sec, unsigned long usec)
1003{
1004 int retval;
09690b18 1005 unsigned long flags;
1da177e4 1006
09690b18 1007 spin_lock_irqsave(&pdc_lock, flags);
1da177e4 1008 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
09690b18 1009 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1010
1011 return retval;
1012}
1013EXPORT_SYMBOL(pdc_tod_set);
1014
a8f44e38 1015#ifdef CONFIG_64BIT
1da177e4
LT
1016int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1017 struct pdc_memory_table *tbl, unsigned long entries)
1018{
1019 int retval;
09690b18 1020 unsigned long flags;
1da177e4 1021
09690b18 1022 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
1023 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1024 convert_to_wide(pdc_result);
1025 memcpy(r_addr, pdc_result, sizeof(*r_addr));
1026 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
09690b18 1027 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1028
1029 return retval;
1030}
a8f44e38 1031#endif /* CONFIG_64BIT */
1da177e4
LT
1032
1033/* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
1034 * so I guessed at unsigned long. Someone who knows what this does, can fix
1035 * it later. :)
1036 */
1037int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1038{
1039 int retval;
09690b18 1040 unsigned long flags;
1da177e4 1041
09690b18 1042 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
1043 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1044 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
09690b18 1045 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1046
1047 return retval;
1048}
1049
1050/*
1051 * pdc_do_reset - Reset the system.
1052 *
1053 * Reset the system.
1054 */
1055int pdc_do_reset(void)
1056{
1057 int retval;
09690b18 1058 unsigned long flags;
1da177e4 1059
09690b18 1060 spin_lock_irqsave(&pdc_lock, flags);
1da177e4 1061 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
09690b18 1062 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1063
1064 return retval;
1065}
1066
1067/*
1068 * pdc_soft_power_info - Enable soft power switch.
1069 * @power_reg: address of soft power register
1070 *
1071 * Return the absolute address of the soft power switch register
1072 */
1073int __init pdc_soft_power_info(unsigned long *power_reg)
1074{
1075 int retval;
09690b18 1076 unsigned long flags;
1da177e4
LT
1077
1078 *power_reg = (unsigned long) (-1);
1079
09690b18 1080 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
1081 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1082 if (retval == PDC_OK) {
1083 convert_to_wide(pdc_result);
1084 *power_reg = f_extend(pdc_result[0]);
1085 }
09690b18 1086 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1087
1088 return retval;
1089}
1090
1091/*
1092 * pdc_soft_power_button - Control the soft power button behaviour
1093 * @sw_control: 0 for hardware control, 1 for software control
1094 *
1095 *
1096 * This PDC function places the soft power button under software or
1097 * hardware control.
1098 * Under software control the OS may control to when to allow to shut
1099 * down the system. Under hardware control pressing the power button
1100 * powers off the system immediately.
1101 */
1102int pdc_soft_power_button(int sw_control)
1103{
1104 int retval;
09690b18
KM
1105 unsigned long flags;
1106
1107 spin_lock_irqsave(&pdc_lock, flags);
1da177e4 1108 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
09690b18
KM
1109 spin_unlock_irqrestore(&pdc_lock, flags);
1110
1da177e4
LT
1111 return retval;
1112}
1113
1114/*
1115 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1116 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1117 * who knows what other platform firmware might do with this OS "hook".
1118 */
1119void pdc_io_reset(void)
1120{
09690b18
KM
1121 unsigned long flags;
1122
1123 spin_lock_irqsave(&pdc_lock, flags);
1da177e4 1124 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
09690b18 1125 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1126}
1127
1128/*
1129 * pdc_io_reset_devices - Hack to Stop USB controller
1130 *
1131 * If PDC used the usb controller, the usb controller
1132 * is still running and will crash the machines during iommu
1133 * setup, because of still running DMA. This PDC call
1134 * stops the USB controller.
1135 * Normally called after calling pdc_io_reset().
1136 */
1137void pdc_io_reset_devices(void)
1138{
09690b18
KM
1139 unsigned long flags;
1140
1141 spin_lock_irqsave(&pdc_lock, flags);
1da177e4 1142 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
09690b18 1143 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1144}
1145
ef1afd4d
KM
1146/* locked by pdc_console_lock */
1147static int __attribute__((aligned(8))) iodc_retbuf[32];
1148static char __attribute__((aligned(64))) iodc_dbuf[4096];
1da177e4
LT
1149
1150/**
721fdf34
KM
1151 * pdc_iodc_print - Console print using IODC.
1152 * @str: the string to output.
1153 * @count: length of str
1da177e4
LT
1154 *
1155 * Note that only these special chars are architected for console IODC io:
1156 * BEL, BS, CR, and LF. Others are passed through.
1157 * Since the HP console requires CR+LF to perform a 'newline', we translate
1158 * "\n" to "\r\n".
1159 */
ef1afd4d 1160int pdc_iodc_print(const unsigned char *str, unsigned count)
1da177e4 1161{
721fdf34 1162 unsigned int i;
c53421b1 1163 unsigned long flags;
1da177e4 1164
fbea6684 1165 for (i = 0; i < count;) {
721fdf34
KM
1166 switch(str[i]) {
1167 case '\n':
1168 iodc_dbuf[i+0] = '\r';
1169 iodc_dbuf[i+1] = '\n';
1170 i += 2;
ef1afd4d 1171 goto print;
721fdf34
KM
1172 default:
1173 iodc_dbuf[i] = str[i];
d9b68e5e 1174 i++;
721fdf34
KM
1175 break;
1176 }
1177 }
1da177e4 1178
ef1afd4d 1179print:
1da177e4
LT
1180 spin_lock_irqsave(&pdc_lock, flags);
1181 real32_call(PAGE0->mem_cons.iodc_io,
1182 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1183 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
721fdf34 1184 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1da177e4 1185 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4 1186
721fdf34 1187 return i;
1da177e4
LT
1188}
1189
1190/**
1191 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1192 *
1193 * Read a character (non-blocking) from the PDC console, returns -1 if
1194 * key is not present.
1195 */
1196int pdc_iodc_getc(void)
1197{
1da177e4
LT
1198 int ch;
1199 int status;
ef1afd4d 1200 unsigned long flags;
1da177e4
LT
1201
1202 /* Bail if no console input device. */
1203 if (!PAGE0->mem_kbd.iodc_io)
1204 return 0;
1205
1206 /* wait for a keyboard (rs232)-input */
1207 spin_lock_irqsave(&pdc_lock, flags);
1208 real32_call(PAGE0->mem_kbd.iodc_io,
1209 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1210 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1211 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1212
1213 ch = *iodc_dbuf;
1214 status = *iodc_retbuf;
1215 spin_unlock_irqrestore(&pdc_lock, flags);
1216
1217 if (status == 0)
1218 return -1;
1219
1220 return ch;
1221}
1222
1223int pdc_sti_call(unsigned long func, unsigned long flags,
1224 unsigned long inptr, unsigned long outputr,
1225 unsigned long glob_cfg)
1226{
1227 int retval;
09690b18 1228 unsigned long irqflags;
1da177e4 1229
09690b18 1230 spin_lock_irqsave(&pdc_lock, irqflags);
1da177e4 1231 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
09690b18 1232 spin_unlock_irqrestore(&pdc_lock, irqflags);
1da177e4
LT
1233
1234 return retval;
1235}
1236EXPORT_SYMBOL(pdc_sti_call);
1237
a8f44e38 1238#ifdef CONFIG_64BIT
1da177e4
LT
1239/**
1240 * pdc_pat_cell_get_number - Returns the cell number.
1241 * @cell_info: The return buffer.
1242 *
1243 * This PDC call returns the cell number of the cell from which the call
1244 * is made.
1245 */
1246int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1247{
1248 int retval;
09690b18 1249 unsigned long flags;
1da177e4 1250
09690b18 1251 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
1252 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1253 memcpy(cell_info, pdc_result, sizeof(*cell_info));
09690b18 1254 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1255
1256 return retval;
1257}
1258
1259/**
1260 * pdc_pat_cell_module - Retrieve the cell's module information.
1261 * @actcnt: The number of bytes written to mem_addr.
1262 * @ploc: The physical location.
1263 * @mod: The module index.
1264 * @view_type: The view of the address type.
1265 * @mem_addr: The return buffer.
1266 *
1267 * This PDC call returns information about each module attached to the cell
1268 * at the specified location.
1269 */
1270int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1271 unsigned long view_type, void *mem_addr)
1272{
1273 int retval;
09690b18 1274 unsigned long flags;
1da177e4
LT
1275 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1276
09690b18 1277 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
1278 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1279 ploc, mod, view_type, __pa(&result));
1280 if(!retval) {
1281 *actcnt = pdc_result[0];
1282 memcpy(mem_addr, &result, *actcnt);
1283 }
09690b18 1284 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1285
1286 return retval;
1287}
1288
1289/**
1290 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1291 * @cpu_info: The return buffer.
1292 * @hpa: The Hard Physical Address of the CPU.
1293 *
1294 * Retrieve the cpu number for the cpu at the specified HPA.
1295 */
637250cc 1296int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1da177e4
LT
1297{
1298 int retval;
09690b18 1299 unsigned long flags;
1da177e4 1300
09690b18 1301 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
1302 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1303 __pa(&pdc_result), hpa);
1304 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
09690b18 1305 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1306
1307 return retval;
1308}
1309
1310/**
1311 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1312 * @num_entries: The return value.
1313 * @cell_num: The target cell.
1314 *
1315 * This PDC function returns the number of entries in the specified cell's
1316 * interrupt table.
1317 */
1318int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1319{
1320 int retval;
09690b18 1321 unsigned long flags;
1da177e4 1322
09690b18 1323 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
1324 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1325 __pa(pdc_result), cell_num);
1326 *num_entries = pdc_result[0];
09690b18 1327 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1328
1329 return retval;
1330}
1331
1332/**
1333 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1334 * @r_addr: The return buffer.
1335 * @cell_num: The target cell.
1336 *
1337 * This PDC function returns the actual interrupt table for the specified cell.
1338 */
1339int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1340{
1341 int retval;
09690b18 1342 unsigned long flags;
1da177e4 1343
09690b18 1344 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
1345 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1346 __pa(r_addr), cell_num);
09690b18 1347 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1348
1349 return retval;
1350}
1351
1352/**
1353 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1354 * @actlen: The return buffer.
1355 * @mem_addr: Pointer to the memory buffer.
1356 * @count: The number of bytes to read from the buffer.
1357 * @offset: The offset with respect to the beginning of the buffer.
1358 *
1359 */
1360int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1361 unsigned long count, unsigned long offset)
1362{
1363 int retval;
09690b18 1364 unsigned long flags;
1da177e4 1365
09690b18 1366 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
1367 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1368 __pa(pdc_result2), count, offset);
1369 *actual_len = pdc_result[0];
1370 memcpy(mem_addr, pdc_result2, *actual_len);
09690b18 1371 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1372
1373 return retval;
1374}
1375
1376/**
1377 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1378 * @pci_addr: PCI configuration space address for which the read request is being made.
1379 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1380 * @mem_addr: Pointer to return memory buffer.
1381 *
1382 */
1383int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1384{
1385 int retval;
09690b18
KM
1386 unsigned long flags;
1387
1388 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
1389 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1390 __pa(pdc_result), pci_addr, pci_size);
1391 switch(pci_size) {
49ea1480
HD
1392 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; break;
1393 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; break;
1394 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; break;
1da177e4 1395 }
09690b18 1396 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1397
1398 return retval;
1399}
1400
1401/**
1402 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1403 * @pci_addr: PCI configuration space address for which the write request is being made.
1404 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1405 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1406 * written to PCI Config space.
1407 *
1408 */
1409int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1410{
1411 int retval;
09690b18 1412 unsigned long flags;
1da177e4 1413
09690b18 1414 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
1415 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1416 pci_addr, pci_size, val);
09690b18 1417 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1418
1419 return retval;
1420}
c9c2877d
HD
1421
1422/**
1423 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1424 * @rinfo: memory pdt information
1425 *
1426 */
1427int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1428{
1429 int retval;
1430 unsigned long flags;
1431
1432 spin_lock_irqsave(&pdc_lock, flags);
1433 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1434 __pa(&pdc_result));
1435 if (retval == PDC_OK)
1436 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1437 spin_unlock_irqrestore(&pdc_lock, flags);
1438
1439 return retval;
1440}
1441
1442/**
1443 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1444 * @pret: array of PDT entries
1445 * @pdt_entries_ptr: ptr to hold number of PDT entries
1446 * @max_entries: maximum number of entries to be read
1447 *
1448 */
1449int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1450 unsigned long *pdt_entries_ptr, unsigned long max_entries)
1451{
1452 int retval;
1453 unsigned long flags, entries;
1454
1455 spin_lock_irqsave(&pdc_lock, flags);
1456 /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1457 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1458 __pa(&pdc_result), parisc_cell_num, __pa(&pdc_result2));
1459
1460 if (retval == PDC_OK) {
1461 /* build up return value as for PDC_PAT_MEM_PD_READ */
1462 entries = min(pdc_result[0], max_entries);
1463 pret->pdt_entries = entries;
1464 pret->actual_count_bytes = entries * sizeof(unsigned long);
1465 memcpy(pdt_entries_ptr, &pdc_result2, pret->actual_count_bytes);
1466 }
1467
1468 spin_unlock_irqrestore(&pdc_lock, flags);
1469 WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1470
1471 return retval;
1472}
1473/**
1474 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1475 * @pret: array of PDT entries
1476 * @pdt_entries_ptr: ptr to hold number of PDT entries
1477 *
1478 */
1479int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1480 unsigned long *pdt_entries_ptr, unsigned long count,
1481 unsigned long offset)
1482{
1483 int retval;
f520e552 1484 unsigned long flags, entries;
c9c2877d
HD
1485
1486 spin_lock_irqsave(&pdc_lock, flags);
1487 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
f520e552 1488 __pa(&pdc_result), __pa(pdt_entries_ptr),
c9c2877d 1489 count, offset);
f520e552
HD
1490
1491 if (retval == PDC_OK) {
1492 entries = min(pdc_result[0], count);
1493 pret->actual_count_bytes = entries;
1494 pret->pdt_entries = entries / sizeof(unsigned long);
1495 }
1496
c9c2877d
HD
1497 spin_unlock_irqrestore(&pdc_lock, flags);
1498
1499 return retval;
1500}
25a9b765
HD
1501
1502/**
1503 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1504 * @pret: ptr to hold returned information
1505 * @phys_addr: physical address to examine
1506 *
1507 */
1508int pdc_pat_mem_get_dimm_phys_location(
1509 struct pdc_pat_mem_phys_mem_location *pret,
1510 unsigned long phys_addr)
1511{
1512 int retval;
1513 unsigned long flags;
1514
1515 spin_lock_irqsave(&pdc_lock, flags);
1516 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1517 __pa(&pdc_result), phys_addr);
1518
1519 if (retval == PDC_OK)
1520 memcpy(pret, &pdc_result, sizeof(*pret));
1521
1522 spin_unlock_irqrestore(&pdc_lock, flags);
1523
1524 return retval;
1525}
a8f44e38 1526#endif /* CONFIG_64BIT */
1da177e4
LT
1527
1528
1529/***************** 32-bit real-mode calls ***********/
1530/* The struct below is used
1531 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1532 * real32_call_asm() then uses this stack in narrow real mode
1533 */
1534
1535struct narrow_stack {
1536 /* use int, not long which is 64 bits */
1537 unsigned int arg13;
1538 unsigned int arg12;
1539 unsigned int arg11;
1540 unsigned int arg10;
1541 unsigned int arg9;
1542 unsigned int arg8;
1543 unsigned int arg7;
1544 unsigned int arg6;
1545 unsigned int arg5;
1546 unsigned int arg4;
1547 unsigned int arg3;
1548 unsigned int arg2;
1549 unsigned int arg1;
1550 unsigned int arg0;
1551 unsigned int frame_marker[8];
1552 unsigned int sp;
1553 /* in reality, there's nearly 8k of stack after this */
1554};
1555
1556long real32_call(unsigned long fn, ...)
1557{
1558 va_list args;
1559 extern struct narrow_stack real_stack;
1560 extern unsigned long real32_call_asm(unsigned int *,
1561 unsigned int *,
1562 unsigned int);
1563
1564 va_start(args, fn);
1565 real_stack.arg0 = va_arg(args, unsigned int);
1566 real_stack.arg1 = va_arg(args, unsigned int);
1567 real_stack.arg2 = va_arg(args, unsigned int);
1568 real_stack.arg3 = va_arg(args, unsigned int);
1569 real_stack.arg4 = va_arg(args, unsigned int);
1570 real_stack.arg5 = va_arg(args, unsigned int);
1571 real_stack.arg6 = va_arg(args, unsigned int);
1572 real_stack.arg7 = va_arg(args, unsigned int);
1573 real_stack.arg8 = va_arg(args, unsigned int);
1574 real_stack.arg9 = va_arg(args, unsigned int);
1575 real_stack.arg10 = va_arg(args, unsigned int);
1576 real_stack.arg11 = va_arg(args, unsigned int);
1577 real_stack.arg12 = va_arg(args, unsigned int);
1578 real_stack.arg13 = va_arg(args, unsigned int);
1579 va_end(args);
1580
1581 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1582}
1583
a8f44e38 1584#ifdef CONFIG_64BIT
1da177e4
LT
1585/***************** 64-bit real-mode calls ***********/
1586
1587struct wide_stack {
1588 unsigned long arg0;
1589 unsigned long arg1;
1590 unsigned long arg2;
1591 unsigned long arg3;
1592 unsigned long arg4;
1593 unsigned long arg5;
1594 unsigned long arg6;
1595 unsigned long arg7;
1596 unsigned long arg8;
1597 unsigned long arg9;
1598 unsigned long arg10;
1599 unsigned long arg11;
1600 unsigned long arg12;
1601 unsigned long arg13;
1602 unsigned long frame_marker[2]; /* rp, previous sp */
1603 unsigned long sp;
1604 /* in reality, there's nearly 8k of stack after this */
1605};
1606
1607long real64_call(unsigned long fn, ...)
1608{
1609 va_list args;
1610 extern struct wide_stack real64_stack;
1611 extern unsigned long real64_call_asm(unsigned long *,
1612 unsigned long *,
1613 unsigned long);
1614
1615 va_start(args, fn);
1616 real64_stack.arg0 = va_arg(args, unsigned long);
1617 real64_stack.arg1 = va_arg(args, unsigned long);
1618 real64_stack.arg2 = va_arg(args, unsigned long);
1619 real64_stack.arg3 = va_arg(args, unsigned long);
1620 real64_stack.arg4 = va_arg(args, unsigned long);
1621 real64_stack.arg5 = va_arg(args, unsigned long);
1622 real64_stack.arg6 = va_arg(args, unsigned long);
1623 real64_stack.arg7 = va_arg(args, unsigned long);
1624 real64_stack.arg8 = va_arg(args, unsigned long);
1625 real64_stack.arg9 = va_arg(args, unsigned long);
1626 real64_stack.arg10 = va_arg(args, unsigned long);
1627 real64_stack.arg11 = va_arg(args, unsigned long);
1628 real64_stack.arg12 = va_arg(args, unsigned long);
1629 real64_stack.arg13 = va_arg(args, unsigned long);
1630 va_end(args);
1631
1632 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1633}
1634
a8f44e38 1635#endif /* CONFIG_64BIT */
1da177e4 1636