]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - arch/parisc/mm/fault.c
parisc: implement full version of access_ok()
[mirror_ubuntu-eoan-kernel.git] / arch / parisc / mm / fault.c
CommitLineData
071327ec 1/*
1da177e4
LT
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 *
7 * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
8 * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
9 * Copyright 1999 Hewlett Packard Co.
10 *
11 */
12
13#include <linux/mm.h>
14#include <linux/ptrace.h>
15#include <linux/sched.h>
16#include <linux/interrupt.h>
17#include <linux/module.h>
18
19#include <asm/uaccess.h>
20#include <asm/traps.h>
21
22#define PRINT_USER_FAULTS /* (turn this on if you want user faults to be */
23 /* dumped to the console via printk) */
24
25
1da177e4
LT
26/* Various important other fields */
27#define bit22set(x) (x & 0x00000200)
28#define bits23_25set(x) (x & 0x000001c0)
29#define isGraphicsFlushRead(x) ((x & 0xfc003fdf) == 0x04001a80)
30 /* extended opcode is 0x6a */
31
32#define BITSSET 0x1c0 /* for identifying LDCW */
33
34
35DEFINE_PER_CPU(struct exception_data, exception_data);
36
37/*
38 * parisc_acctyp(unsigned int inst) --
39 * Given a PA-RISC memory access instruction, determine if the
40 * the instruction would perform a memory read or memory write
41 * operation.
42 *
43 * This function assumes that the given instruction is a memory access
44 * instruction (i.e. you should really only call it if you know that
45 * the instruction has generated some sort of a memory access fault).
46 *
47 * Returns:
48 * VM_READ if read operation
49 * VM_WRITE if write operation
50 * VM_EXEC if execute operation
51 */
52static unsigned long
53parisc_acctyp(unsigned long code, unsigned int inst)
54{
55 if (code == 6 || code == 16)
56 return VM_EXEC;
57
58 switch (inst & 0xf0000000) {
59 case 0x40000000: /* load */
60 case 0x50000000: /* new load */
61 return VM_READ;
62
63 case 0x60000000: /* store */
64 case 0x70000000: /* new store */
65 return VM_WRITE;
66
67 case 0x20000000: /* coproc */
68 case 0x30000000: /* coproc2 */
69 if (bit22set(inst))
70 return VM_WRITE;
71
72 case 0x0: /* indexed/memory management */
73 if (bit22set(inst)) {
74 /*
75 * Check for the 'Graphics Flush Read' instruction.
76 * It resembles an FDC instruction, except for bits
77 * 20 and 21. Any combination other than zero will
78 * utilize the block mover functionality on some
79 * older PA-RISC platforms. The case where a block
80 * move is performed from VM to graphics IO space
81 * should be treated as a READ.
82 *
83 * The significance of bits 20,21 in the FDC
84 * instruction is:
85 *
86 * 00 Flush data cache (normal instruction behavior)
87 * 01 Graphics flush write (IO space -> VM)
88 * 10 Graphics flush read (VM -> IO space)
89 * 11 Graphics flush read/write (VM <-> IO space)
90 */
91 if (isGraphicsFlushRead(inst))
92 return VM_READ;
93 return VM_WRITE;
94 } else {
95 /*
96 * Check for LDCWX and LDCWS (semaphore instructions).
97 * If bits 23 through 25 are all 1's it is one of
98 * the above two instructions and is a write.
99 *
100 * Note: With the limited bits we are looking at,
101 * this will also catch PROBEW and PROBEWI. However,
102 * these should never get in here because they don't
103 * generate exceptions of the type:
104 * Data TLB miss fault/data page fault
105 * Data memory protection trap
106 */
107 if (bits23_25set(inst) == BITSSET)
108 return VM_WRITE;
109 }
110 return VM_READ; /* Default */
111 }
112 return VM_READ; /* Default */
113}
114
115#undef bit22set
116#undef bits23_25set
117#undef isGraphicsFlushRead
118#undef BITSSET
119
120
121#if 0
122/* This is the treewalk to find a vma which is the highest that has
123 * a start < addr. We're using find_vma_prev instead right now, but
124 * we might want to use this at some point in the future. Probably
125 * not, but I want it committed to CVS so I don't lose it :-)
126 */
127 while (tree != vm_avl_empty) {
128 if (tree->vm_start > addr) {
129 tree = tree->vm_avl_left;
130 } else {
131 prev = tree;
132 if (prev->vm_next == NULL)
133 break;
134 if (prev->vm_next->vm_start > addr)
135 break;
136 tree = tree->vm_avl_right;
137 }
138 }
139#endif
140
c61c25eb
KM
141int fixup_exception(struct pt_regs *regs)
142{
143 const struct exception_table_entry *fix;
144
61dbbaeb
HD
145 /* If we only stored 32bit addresses in the exception table we can drop
146 * out if we faulted on a 64bit address. */
147 if ((sizeof(regs->iaoq[0]) > sizeof(fix->insn))
148 && (regs->iaoq[0] >> 32))
149 return 0;
150
c61c25eb
KM
151 fix = search_exception_tables(regs->iaoq[0]);
152 if (fix) {
153 struct exception_data *d;
154 d = &__get_cpu_var(exception_data);
155 d->fault_ip = regs->iaoq[0];
156 d->fault_space = regs->isr;
157 d->fault_addr = regs->ior;
158
159 regs->iaoq[0] = ((fix->fixup) & ~3);
160 /*
161 * NOTE: In some cases the faulting instruction
162 * may be in the delay slot of a branch. We
163 * don't want to take the branch, so we don't
164 * increment iaoq[1], instead we set it to be
165 * iaoq[0]+4, and clear the B bit in the PSW
166 */
167 regs->iaoq[1] = regs->iaoq[0] + 4;
168 regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */
169
170 return 1;
171 }
172
173 return 0;
174}
175
1da177e4
LT
176void do_page_fault(struct pt_regs *regs, unsigned long code,
177 unsigned long address)
178{
179 struct vm_area_struct *vma, *prev_vma;
2d8b22de
JDA
180 struct task_struct *tsk;
181 struct mm_struct *mm;
1da177e4 182 unsigned long acc_type;
83c54070 183 int fault;
2d8b22de 184 unsigned int flags;
1da177e4 185
2d8b22de 186 if (in_atomic())
1da177e4
LT
187 goto no_context;
188
2d8b22de
JDA
189 tsk = current;
190 mm = tsk->mm;
191 if (!mm)
192 goto no_context;
193
194 flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
759496ba
JW
195 if (user_mode(regs))
196 flags |= FAULT_FLAG_USER;
0772dac1
FP
197
198 acc_type = parisc_acctyp(code, regs->iir);
759496ba
JW
199 if (acc_type & VM_WRITE)
200 flags |= FAULT_FLAG_WRITE;
38057477 201retry:
1da177e4
LT
202 down_read(&mm->mmap_sem);
203 vma = find_vma_prev(mm, address, &prev_vma);
204 if (!vma || address < vma->vm_start)
205 goto check_expansion;
206/*
207 * Ok, we have a good vm_area for this memory access. We still need to
208 * check the access permissions.
209 */
210
211good_area:
212
1da177e4
LT
213 if ((vma->vm_flags & acc_type) != acc_type)
214 goto bad_area;
215
216 /*
217 * If for any reason at all we couldn't handle the fault, make
218 * sure we exit gracefully rather than endlessly redo the
219 * fault.
220 */
221
759496ba 222 fault = handle_mm_fault(mm, vma, address, flags);
38057477
KC
223
224 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
225 return;
226
83c54070 227 if (unlikely(fault & VM_FAULT_ERROR)) {
1da177e4 228 /*
67a5a59d 229 * We hit a shared mapping outside of the file, or some
6e346228
LT
230 * other thing happened to us that made us unable to
231 * handle the page fault gracefully.
1da177e4 232 */
83c54070
NP
233 if (fault & VM_FAULT_OOM)
234 goto out_of_memory;
235 else if (fault & VM_FAULT_SIGBUS)
236 goto bad_area;
237 BUG();
1da177e4 238 }
38057477
KC
239 if (flags & FAULT_FLAG_ALLOW_RETRY) {
240 if (fault & VM_FAULT_MAJOR)
241 current->maj_flt++;
242 else
243 current->min_flt++;
244 if (fault & VM_FAULT_RETRY) {
245 flags &= ~FAULT_FLAG_ALLOW_RETRY;
246
247 /*
248 * No need to up_read(&mm->mmap_sem) as we would
249 * have already released it in __lock_page_or_retry
250 * in mm/filemap.c.
251 */
252
253 goto retry;
254 }
255 }
1da177e4
LT
256 up_read(&mm->mmap_sem);
257 return;
258
259check_expansion:
260 vma = prev_vma;
261 if (vma && (expand_stack(vma, address) == 0))
262 goto good_area;
263
264/*
265 * Something tried to access memory that isn't in our memory map..
266 */
267bad_area:
268 up_read(&mm->mmap_sem);
269
270 if (user_mode(regs)) {
271 struct siginfo si;
272
273#ifdef PRINT_USER_FAULTS
274 printk(KERN_DEBUG "\n");
275 printk(KERN_DEBUG "do_page_fault() pid=%d command='%s' type=%lu address=0x%08lx\n",
19c5870c 276 task_pid_nr(tsk), tsk->comm, code, address);
1da177e4
LT
277 if (vma) {
278 printk(KERN_DEBUG "vm_start = 0x%08lx, vm_end = 0x%08lx\n",
279 vma->vm_start, vma->vm_end);
280 }
281 show_regs(regs);
282#endif
283 /* FIXME: actually we need to get the signo and code correct */
284 si.si_signo = SIGSEGV;
285 si.si_errno = 0;
286 si.si_code = SEGV_MAPERR;
287 si.si_addr = (void __user *) address;
288 force_sig_info(SIGSEGV, &si, current);
289 return;
290 }
291
292no_context:
293
c61c25eb
KM
294 if (!user_mode(regs) && fixup_exception(regs)) {
295 return;
1da177e4
LT
296 }
297
298 parisc_terminate("Bad Address (null pointer deref?)", regs, code, address);
299
300 out_of_memory:
301 up_read(&mm->mmap_sem);
53e30d02
NP
302 if (!user_mode(regs))
303 goto no_context;
304 pagefault_out_of_memory();
1da177e4 305}