]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/powerpc/include/asm/barrier.h
locking/arch: Rename set_mb() to smp_store_mb()
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / include / asm / barrier.h
CommitLineData
ae3a197e
DH
1/*
2 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
3 */
4#ifndef _ASM_POWERPC_BARRIER_H
5#define _ASM_POWERPC_BARRIER_H
6
7/*
8 * Memory barrier.
9 * The sync instruction guarantees that all memory accesses initiated
10 * by this processor have been performed (with respect to all other
11 * mechanisms that access memory). The eieio instruction is a barrier
12 * providing an ordering (separately) for (a) cacheable stores and (b)
13 * loads and stores to non-cacheable memory (e.g. I/O devices).
14 *
15 * mb() prevents loads and stores being reordered across this point.
16 * rmb() prevents loads being reordered across this point.
17 * wmb() prevents stores being reordered across this point.
18 * read_barrier_depends() prevents data-dependent loads being reordered
19 * across this point (nop on PPC).
20 *
21 * *mb() variants without smp_ prefix must order all types of memory
22 * operations with one another. sync is the only instruction sufficient
23 * to do this.
24 *
25 * For the smp_ barriers, ordering is for cacheable memory operations
26 * only. We have to use the sync instruction for smp_mb(), since lwsync
27 * doesn't order loads with respect to previous stores. Lwsync can be
28 * used for smp_rmb() and smp_wmb().
29 *
30 * However, on CPUs that don't support lwsync, lwsync actually maps to a
31 * heavy-weight sync, so smp_wmb() can be a lighter-weight eieio.
32 */
33#define mb() __asm__ __volatile__ ("sync" : : : "memory")
34#define rmb() __asm__ __volatile__ ("sync" : : : "memory")
35#define wmb() __asm__ __volatile__ ("sync" : : : "memory")
ae3a197e 36
b92b8b35 37#define smp_store_mb(var, value) do { WRITE_ONCE(var, value); mb(); } while (0)
ae3a197e 38
ae3a197e
DH
39#ifdef __SUBARCH_HAS_LWSYNC
40# define SMPWMB LWSYNC
41#else
42# define SMPWMB eieio
43#endif
44
47933ad4 45#define __lwsync() __asm__ __volatile__ (stringify_in_c(LWSYNC) : : :"memory")
1077fa36
AD
46#define dma_rmb() __lwsync()
47#define dma_wmb() __asm__ __volatile__ (stringify_in_c(SMPWMB) : : :"memory")
48
49#ifdef CONFIG_SMP
50#define smp_lwsync() __lwsync()
47933ad4 51
ae3a197e 52#define smp_mb() mb()
47933ad4 53#define smp_rmb() __lwsync()
ae3a197e 54#define smp_wmb() __asm__ __volatile__ (stringify_in_c(SMPWMB) : : :"memory")
ae3a197e 55#else
1077fa36 56#define smp_lwsync() barrier()
47933ad4 57
ae3a197e
DH
58#define smp_mb() barrier()
59#define smp_rmb() barrier()
60#define smp_wmb() barrier()
ae3a197e
DH
61#endif /* CONFIG_SMP */
62
8a449718
AD
63#define read_barrier_depends() do { } while (0)
64#define smp_read_barrier_depends() do { } while (0)
65
ae3a197e
DH
66/*
67 * This is a barrier which prevents following instructions from being
68 * started until the value of the argument x is known. For example, if
69 * x is a variable loaded from memory, this prevents following
70 * instructions from being executed until the load has been performed.
71 */
72#define data_barrier(x) \
73 asm volatile("twi 0,%0,0; isync" : : "r" (x) : "memory");
74
47933ad4
PZ
75#define smp_store_release(p, v) \
76do { \
77 compiletime_assert_atomic_type(*p); \
1077fa36 78 smp_lwsync(); \
47933ad4
PZ
79 ACCESS_ONCE(*p) = (v); \
80} while (0)
81
82#define smp_load_acquire(p) \
83({ \
84 typeof(*p) ___p1 = ACCESS_ONCE(*p); \
85 compiletime_assert_atomic_type(*p); \
1077fa36 86 smp_lwsync(); \
47933ad4
PZ
87 ___p1; \
88})
89
c645073f
PZ
90#define smp_mb__before_atomic() smp_mb()
91#define smp_mb__after_atomic() smp_mb()
92
ae3a197e 93#endif /* _ASM_POWERPC_BARRIER_H */