]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - arch/powerpc/include/asm/book3s/64/mmu-hash.h
powerpc/mm: Fix build break when PPC_NATIVE=n
[mirror_ubuntu-focal-kernel.git] / arch / powerpc / include / asm / book3s / 64 / mmu-hash.h
CommitLineData
11a6f6ab
AK
1#ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
2#define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
8d2169e8
DG
3/*
4 * PowerPC64 memory management structures
5 *
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15#include <asm/asm-compat.h>
16#include <asm/page.h>
891121e6 17#include <asm/bug.h>
8d2169e8 18
78f1dbde
AK
19/*
20 * This is necessary to get the definition of PGTABLE_RANGE which we
21 * need for various slices related matters. Note that this isn't the
22 * complete pgtable.h but only a portion of it.
23 */
3dfcb315 24#include <asm/book3s/64/pgtable.h>
cf9427b8 25#include <asm/bug.h>
dad6f37c 26#include <asm/processor.h>
78f1dbde 27
8d2169e8
DG
28/*
29 * SLB
30 */
31
32#define SLB_NUM_BOLTED 3
33#define SLB_CACHE_ENTRIES 8
46db2f86 34#define SLB_MIN_SIZE 32
8d2169e8
DG
35
36/* Bits in the SLB ESID word */
37#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
38
39/* Bits in the SLB VSID word */
40#define SLB_VSID_SHIFT 12
1189be65
PM
41#define SLB_VSID_SHIFT_1T 24
42#define SLB_VSID_SSIZE_SHIFT 62
8d2169e8
DG
43#define SLB_VSID_B ASM_CONST(0xc000000000000000)
44#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
45#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
46#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
47#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
48#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
49#define SLB_VSID_L ASM_CONST(0x0000000000000100)
50#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
51#define SLB_VSID_LP ASM_CONST(0x0000000000000030)
52#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
53#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
54#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
55#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
56#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
57
58#define SLB_VSID_KERNEL (SLB_VSID_KP)
59#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
60
61#define SLBIE_C (0x08000000)
1189be65 62#define SLBIE_SSIZE_SHIFT 25
8d2169e8
DG
63
64/*
65 * Hash table
66 */
67
68#define HPTES_PER_GROUP 8
69
2454c7e9 70#define HPTE_V_SSIZE_SHIFT 62
8d2169e8 71#define HPTE_V_AVPN_SHIFT 7
2454c7e9 72#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
8d2169e8 73#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
91bbbe22 74#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
8d2169e8
DG
75#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
76#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
77#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
78#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
79#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
80
50de596d
AK
81/*
82 * ISA 3.0 have a different HPTE format.
83 */
84#define HPTE_R_3_0_SSIZE_SHIFT 58
8d2169e8
DG
85#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
86#define HPTE_R_TS ASM_CONST(0x4000000000000000)
de56a948 87#define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
8d2169e8 88#define HPTE_R_RPN_SHIFT 12
de56a948 89#define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
8d2169e8 90#define HPTE_R_PP ASM_CONST(0x0000000000000003)
8550e2fa 91#define HPTE_R_PPP ASM_CONST(0x8000000000000003)
8d2169e8 92#define HPTE_R_N ASM_CONST(0x0000000000000004)
de56a948
PM
93#define HPTE_R_G ASM_CONST(0x0000000000000008)
94#define HPTE_R_M ASM_CONST(0x0000000000000010)
95#define HPTE_R_I ASM_CONST(0x0000000000000020)
96#define HPTE_R_W ASM_CONST(0x0000000000000040)
97#define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
8d2169e8
DG
98#define HPTE_R_C ASM_CONST(0x0000000000000080)
99#define HPTE_R_R ASM_CONST(0x0000000000000100)
de56a948 100#define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
8d2169e8 101
b7abc5c5
SS
102#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
103#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
104
8d2169e8 105/* Values for PP (assumes Ks=0, Kp=1) */
8d2169e8
DG
106#define PP_RWXX 0 /* Supervisor read/write, User none */
107#define PP_RWRX 1 /* Supervisor read/write, User read */
108#define PP_RWRW 2 /* Supervisor read/write, User read/write */
109#define PP_RXRX 3 /* Supervisor read, User read */
697d3899 110#define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
8d2169e8 111
b4072df4
PM
112/* Fields for tlbiel instruction in architecture 2.06 */
113#define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
114#define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
115#define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
116#define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
117#define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
118#define TLBIEL_INVAL_SET_SHIFT 12
119
120#define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
45706bb5 121#define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */
c3ab300e 122#define POWER9_TLB_SETS_HASH 256 /* # sets in POWER9 TLB Hash mode */
1a472c9d 123#define POWER9_TLB_SETS_RADIX 128 /* # sets in POWER9 TLB Radix mode */
b4072df4 124
8d2169e8
DG
125#ifndef __ASSEMBLY__
126
7025776e
BH
127struct mmu_hash_ops {
128 void (*hpte_invalidate)(unsigned long slot,
129 unsigned long vpn,
130 int bpsize, int apsize,
131 int ssize, int local);
132 long (*hpte_updatepp)(unsigned long slot,
133 unsigned long newpp,
134 unsigned long vpn,
135 int bpsize, int apsize,
136 int ssize, unsigned long flags);
137 void (*hpte_updateboltedpp)(unsigned long newpp,
138 unsigned long ea,
139 int psize, int ssize);
140 long (*hpte_insert)(unsigned long hpte_group,
141 unsigned long vpn,
142 unsigned long prpn,
143 unsigned long rflags,
144 unsigned long vflags,
145 int psize, int apsize,
146 int ssize);
147 long (*hpte_remove)(unsigned long hpte_group);
148 int (*hpte_removebolted)(unsigned long ea,
149 int psize, int ssize);
150 void (*flush_hash_range)(unsigned long number, int local);
151 void (*hugepage_invalidate)(unsigned long vsid,
152 unsigned long addr,
153 unsigned char *hpte_slot_array,
154 int psize, int ssize, int local);
155 /*
156 * Special for kexec.
157 * To be called in real mode with interrupts disabled. No locks are
158 * taken as such, concurrent access on pre POWER5 hardware could result
159 * in a deadlock.
160 * The linear mapping is destroyed as well.
161 */
162 void (*hpte_clear_all)(void);
163};
164extern struct mmu_hash_ops mmu_hash_ops;
165
8e561e7e 166struct hash_pte {
12f04f2b
AB
167 __be64 v;
168 __be64 r;
8e561e7e 169};
8d2169e8 170
8e561e7e 171extern struct hash_pte *htab_address;
8d2169e8
DG
172extern unsigned long htab_size_bytes;
173extern unsigned long htab_hash_mask;
174
cf9427b8
AK
175
176static inline int shift_to_mmu_psize(unsigned int shift)
177{
178 int psize;
179
180 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
181 if (mmu_psize_defs[psize].shift == shift)
182 return psize;
183 return -1;
184}
185
186static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
187{
188 if (mmu_psize_defs[mmu_psize].shift)
189 return mmu_psize_defs[mmu_psize].shift;
190 BUG();
191}
8d2169e8
DG
192
193#endif /* __ASSEMBLY__ */
194
2454c7e9
PM
195/*
196 * Segment sizes.
197 * These are the values used by hardware in the B field of
198 * SLB entries and the first dword of MMU hashtable entries.
199 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
200 */
201#define MMU_SEGSIZE_256M 0
202#define MMU_SEGSIZE_1T 1
203
5524a27d
AK
204/*
205 * encode page number shift.
206 * in order to fit the 78 bit va in a 64 bit variable we shift the va by
207 * 12 bits. This enable us to address upto 76 bit va.
208 * For hpt hash from a va we can ignore the page size bits of va and for
209 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
210 * we work in all cases including 4k page size.
211 */
212#define VPN_SHIFT 12
1189be65 213
b1022fbd
AK
214/*
215 * HPTE Large Page (LP) details
216 */
217#define LP_SHIFT 12
218#define LP_BITS 8
219#define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT)
220
8d2169e8
DG
221#ifndef __ASSEMBLY__
222
73d16a6e
IM
223static inline int slb_vsid_shift(int ssize)
224{
225 if (ssize == MMU_SEGSIZE_256M)
226 return SLB_VSID_SHIFT;
227 return SLB_VSID_SHIFT_1T;
228}
229
5524a27d
AK
230static inline int segment_shift(int ssize)
231{
232 if (ssize == MMU_SEGSIZE_256M)
233 return SID_SHIFT;
234 return SID_SHIFT_1T;
235}
236
8d2169e8 237/*
1189be65 238 * The current system page and segment sizes
8d2169e8 239 */
1189be65
PM
240extern int mmu_kernel_ssize;
241extern int mmu_highuser_ssize;
584f8b71 242extern u16 mmu_slb_size;
572fb578 243extern unsigned long tce_alloc_start, tce_alloc_end;
8d2169e8
DG
244
245/*
246 * If the processor supports 64k normal pages but not 64k cache
247 * inhibited pages, we have to be prepared to switch processes
248 * to use 4k pages when they create cache-inhibited mappings.
249 * If this is the case, mmu_ci_restrictions will be set to 1.
250 */
251extern int mmu_ci_restrictions;
252
5524a27d
AK
253/*
254 * This computes the AVPN and B fields of the first dword of a HPTE,
255 * for use when we want to match an existing PTE. The bottom 7 bits
256 * of the returned value are zero.
257 */
258static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
259 int ssize)
260{
261 unsigned long v;
262 /*
263 * The AVA field omits the low-order 23 bits of the 78 bits VA.
264 * These bits are not needed in the PTE, because the
265 * low-order b of these bits are part of the byte offset
266 * into the virtual page and, if b < 23, the high-order
267 * 23-b of these bits are always used in selecting the
268 * PTEGs to be searched
269 */
270 v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
271 v <<= HPTE_V_AVPN_SHIFT;
50de596d
AK
272 if (!cpu_has_feature(CPU_FTR_ARCH_300))
273 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
5524a27d
AK
274 return v;
275}
276
8d2169e8
DG
277/*
278 * This function sets the AVPN and L fields of the HPTE appropriately
b1022fbd 279 * using the base page size and actual page size.
8d2169e8 280 */
b1022fbd
AK
281static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
282 int actual_psize, int ssize)
8d2169e8 283{
1189be65 284 unsigned long v;
b1022fbd
AK
285 v = hpte_encode_avpn(vpn, base_psize, ssize);
286 if (actual_psize != MMU_PAGE_4K)
8d2169e8
DG
287 v |= HPTE_V_LARGE;
288 return v;
289}
290
291/*
292 * This function sets the ARPN, and LP fields of the HPTE appropriately
293 * for the page size. We assume the pa is already "clean" that is properly
294 * aligned for the requested page size
295 */
b1022fbd 296static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
50de596d 297 int actual_psize, int ssize)
8d2169e8 298{
50de596d
AK
299
300 if (cpu_has_feature(CPU_FTR_ARCH_300))
301 pa |= ((unsigned long) ssize) << HPTE_R_3_0_SSIZE_SHIFT;
302
8d2169e8 303 /* A 4K page needs no special encoding */
b1022fbd 304 if (actual_psize == MMU_PAGE_4K)
8d2169e8
DG
305 return pa & HPTE_R_RPN;
306 else {
b1022fbd
AK
307 unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
308 unsigned int shift = mmu_psize_defs[actual_psize].shift;
309 return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
8d2169e8 310 }
8d2169e8
DG
311}
312
313/*
5524a27d 314 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
8d2169e8 315 */
5524a27d
AK
316static inline unsigned long hpt_vpn(unsigned long ea,
317 unsigned long vsid, int ssize)
1189be65 318{
5524a27d
AK
319 unsigned long mask;
320 int s_shift = segment_shift(ssize);
321
322 mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
323 return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
1189be65 324}
8d2169e8 325
1189be65
PM
326/*
327 * This hashes a virtual address
328 */
5524a27d
AK
329static inline unsigned long hpt_hash(unsigned long vpn,
330 unsigned int shift, int ssize)
8d2169e8 331{
5524a27d 332 int mask;
1189be65
PM
333 unsigned long hash, vsid;
334
5524a27d 335 /* VPN_SHIFT can be atmost 12 */
1189be65 336 if (ssize == MMU_SEGSIZE_256M) {
5524a27d
AK
337 mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
338 hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
339 ((vpn & mask) >> (shift - VPN_SHIFT));
1189be65 340 } else {
5524a27d
AK
341 mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
342 vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
343 hash = vsid ^ (vsid << 25) ^
344 ((vpn & mask) >> (shift - VPN_SHIFT)) ;
1189be65
PM
345 }
346 return hash & 0x7fffffffffUL;
8d2169e8
DG
347}
348
aefa5688
AK
349#define HPTE_LOCAL_UPDATE 0x1
350#define HPTE_NOHPTE_UPDATE 0x2
351
8d2169e8
DG
352extern int __hash_page_4K(unsigned long ea, unsigned long access,
353 unsigned long vsid, pte_t *ptep, unsigned long trap,
aefa5688 354 unsigned long flags, int ssize, int subpage_prot);
8d2169e8
DG
355extern int __hash_page_64K(unsigned long ea, unsigned long access,
356 unsigned long vsid, pte_t *ptep, unsigned long trap,
aefa5688 357 unsigned long flags, int ssize);
8d2169e8 358struct mm_struct;
0895ecda 359unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
aefa5688
AK
360extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
361 unsigned long access, unsigned long trap,
362 unsigned long flags);
363extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
364 unsigned long dsisr);
a4fe3ce7 365int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
aefa5688
AK
366 pte_t *ptep, unsigned long trap, unsigned long flags,
367 int ssize, unsigned int shift, unsigned int mmu_psize);
6d492ecc
AK
368#ifdef CONFIG_TRANSPARENT_HUGEPAGE
369extern int __hash_page_thp(unsigned long ea, unsigned long access,
370 unsigned long vsid, pmd_t *pmdp, unsigned long trap,
aefa5688 371 unsigned long flags, int ssize, unsigned int psize);
6d492ecc
AK
372#else
373static inline int __hash_page_thp(unsigned long ea, unsigned long access,
374 unsigned long vsid, pmd_t *pmdp,
aefa5688 375 unsigned long trap, unsigned long flags,
6d492ecc
AK
376 int ssize, unsigned int psize)
377{
378 BUG();
ff1e7683 379 return -1;
6d492ecc
AK
380}
381#endif
4b8692c0
BH
382extern void hash_failure_debug(unsigned long ea, unsigned long access,
383 unsigned long vsid, unsigned long trap,
d8139ebf
AK
384 int ssize, int psize, int lpsize,
385 unsigned long pte);
8d2169e8 386extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
bc033b63 387 unsigned long pstart, unsigned long prot,
1189be65 388 int psize, int ssize);
f6026df1
AB
389int htab_remove_mapping(unsigned long vstart, unsigned long vend,
390 int psize, int ssize);
41151e77 391extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
fa28237c 392extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
8d2169e8 393
8d2169e8
DG
394extern void hpte_init_native(void);
395extern void hpte_init_lpar(void);
8d2169e8 396extern void hpte_init_beat(void);
7f2c8577 397extern void hpte_init_beat_v3(void);
8d2169e8 398
8d2169e8
DG
399extern void slb_initialize(void);
400extern void slb_flush_and_rebolt(void);
8d2169e8 401
67439b76 402extern void slb_vmalloc_update(void);
46db2f86 403extern void slb_set_size(u16 size);
8d2169e8
DG
404#endif /* __ASSEMBLY__ */
405
406/*
f033d659 407 * VSID allocation (256MB segment)
8d2169e8 408 *
c60ac569
AK
409 * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
410 * from mmu context id and effective segment id of the address.
8d2169e8 411 *
c60ac569
AK
412 * For user processes max context id is limited to ((1ul << 19) - 5)
413 * for kernel space, we use the top 4 context ids to map address as below
414 * NOTE: each context only support 64TB now.
415 * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
416 * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
417 * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
418 * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
8d2169e8
DG
419 *
420 * The proto-VSIDs are then scrambled into real VSIDs with the
421 * multiplicative hash:
422 *
423 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
8d2169e8 424 *
f033d659 425 * VSID_MULTIPLIER is prime, so in particular it is
8d2169e8
DG
426 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
427 * Because the modulus is 2^n-1 we can compute it efficiently without
c60ac569
AK
428 * a divide or extra multiply (see below). The scramble function gives
429 * robust scattering in the hash table (at least based on some initial
430 * results).
8d2169e8 431 *
c60ac569
AK
432 * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
433 * bad address. This enables us to consolidate bad address handling in
434 * hash_page.
8d2169e8 435 *
c60ac569
AK
436 * We also need to avoid the last segment of the last context, because that
437 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
438 * because of the modulo operation in vsid scramble. But the vmemmap
439 * (which is what uses region 0xf) will never be close to 64TB in size
440 * (it's 56 bytes per page of system memory).
8d2169e8 441 */
8d2169e8 442
e39d1a47 443#define CONTEXT_BITS 19
af81d787
AK
444#define ESID_BITS 18
445#define ESID_BITS_1T 6
e39d1a47 446
c60ac569
AK
447/*
448 * 256MB segment
af81d787 449 * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
c60ac569
AK
450 * available for user + kernel mapping. The top 4 contexts are used for
451 * kernel mapping. Each segment contains 2^28 bytes. Each
452 * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
453 * (19 == 37 + 28 - 46).
454 */
455#define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 5)
456
048ee099
AK
457/*
458 * This should be computed such that protovosid * vsid_mulitplier
459 * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
460 */
461#define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
af81d787 462#define VSID_BITS_256M (CONTEXT_BITS + ESID_BITS)
1189be65 463#define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
8d2169e8 464
1189be65 465#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
af81d787 466#define VSID_BITS_1T (CONTEXT_BITS + ESID_BITS_1T)
1189be65
PM
467#define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
468
8d2169e8 469
af81d787 470#define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
8d2169e8
DG
471
472/*
473 * This macro generates asm code to compute the VSID scramble
474 * function. Used in slb_allocate() and do_stab_bolted. The function
475 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
476 *
027dfac6 477 * rt = register containing the proto-VSID and into which the
8d2169e8
DG
478 * VSID will be stored
479 * rx = scratch register (clobbered)
480 *
481 * - rt and rx must be different registers
1189be65 482 * - The answer will end up in the low VSID_BITS bits of rt. The higher
8d2169e8
DG
483 * bits may contain other garbage, so you may need to mask the
484 * result.
485 */
1189be65
PM
486#define ASM_VSID_SCRAMBLE(rt, rx, size) \
487 lis rx,VSID_MULTIPLIER_##size@h; \
488 ori rx,rx,VSID_MULTIPLIER_##size@l; \
8d2169e8
DG
489 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
490 \
1189be65
PM
491 srdi rx,rt,VSID_BITS_##size; \
492 clrldi rt,rt,(64-VSID_BITS_##size); \
8d2169e8 493 add rt,rt,rx; /* add high and low bits */ \
c60ac569
AK
494 /* NOTE: explanation based on VSID_BITS_##size = 36 \
495 * Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
8d2169e8
DG
496 * 2^36-1+2^28-1. That in particular means that if r3 >= \
497 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
498 * the bit clear, r3 already has the answer we want, if it \
499 * doesn't, the answer is the low 36 bits of r3+1. So in all \
500 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
501 addi rx,rt,1; \
1189be65 502 srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
8d2169e8
DG
503 add rt,rt,rx
504
78f1dbde 505/* 4 bits per slice and we have one slice per 1TB */
dd1842a2 506#define SLICE_ARRAY_SIZE (H_PGTABLE_RANGE >> 41)
8d2169e8
DG
507
508#ifndef __ASSEMBLY__
509
d28513bc
DG
510#ifdef CONFIG_PPC_SUBPAGE_PROT
511/*
512 * For the sub-page protection option, we extend the PGD with one of
513 * these. Basically we have a 3-level tree, with the top level being
514 * the protptrs array. To optimize speed and memory consumption when
515 * only addresses < 4GB are being protected, pointers to the first
516 * four pages of sub-page protection words are stored in the low_prot
517 * array.
518 * Each page of sub-page protection words protects 1GB (4 bytes
519 * protects 64k). For the 3-level tree, each page of pointers then
520 * protects 8TB.
521 */
522struct subpage_prot_table {
523 unsigned long maxaddr; /* only addresses < this are protected */
dad6f37c 524 unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
d28513bc
DG
525 unsigned int *low_prot[4];
526};
527
528#define SBP_L1_BITS (PAGE_SHIFT - 2)
529#define SBP_L2_BITS (PAGE_SHIFT - 3)
530#define SBP_L1_COUNT (1 << SBP_L1_BITS)
531#define SBP_L2_COUNT (1 << SBP_L2_BITS)
532#define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
533#define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
534
535extern void subpage_prot_free(struct mm_struct *mm);
536extern void subpage_prot_init_new_context(struct mm_struct *mm);
537#else
538static inline void subpage_prot_free(struct mm_struct *mm) {}
539static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
540#endif /* CONFIG_PPC_SUBPAGE_PROT */
541
8d2169e8 542#if 0
1189be65
PM
543/*
544 * The code below is equivalent to this function for arguments
545 * < 2^VSID_BITS, which is all this should ever be called
546 * with. However gcc is not clever enough to compute the
547 * modulus (2^n-1) without a second multiply.
548 */
34692708 549#define vsid_scramble(protovsid, size) \
1189be65 550 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
8d2169e8 551
1189be65
PM
552#else /* 1 */
553#define vsid_scramble(protovsid, size) \
554 ({ \
555 unsigned long x; \
556 x = (protovsid) * VSID_MULTIPLIER_##size; \
557 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
558 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
559 })
8d2169e8 560#endif /* 1 */
8d2169e8 561
1189be65
PM
562/* Returns the segment size indicator for a user address */
563static inline int user_segment_size(unsigned long addr)
8d2169e8 564{
1189be65
PM
565 /* Use 1T segments if possible for addresses >= 1T */
566 if (addr >= (1UL << SID_SHIFT_1T))
567 return mmu_highuser_ssize;
568 return MMU_SEGSIZE_256M;
8d2169e8
DG
569}
570
1189be65
PM
571static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
572 int ssize)
573{
c60ac569
AK
574 /*
575 * Bad address. We return VSID 0 for that
576 */
dd1842a2 577 if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE)
c60ac569
AK
578 return 0;
579
1189be65 580 if (ssize == MMU_SEGSIZE_256M)
af81d787 581 return vsid_scramble((context << ESID_BITS)
1189be65 582 | (ea >> SID_SHIFT), 256M);
af81d787 583 return vsid_scramble((context << ESID_BITS_1T)
1189be65
PM
584 | (ea >> SID_SHIFT_1T), 1T);
585}
586
c60ac569
AK
587/*
588 * This is only valid for addresses >= PAGE_OFFSET
589 *
590 * For kernel space, we use the top 4 context ids to map address as below
591 * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
592 * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
593 * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
594 * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
595 */
596static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
597{
598 unsigned long context;
599
600 /*
601 * kernel take the top 4 context from the available range
602 */
603 context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
604 return get_vsid(context, ea, ssize);
605}
5c3c7ede
DG
606
607unsigned htab_shift_for_mem_size(unsigned long mem_size);
608
8d2169e8
DG
609#endif /* __ASSEMBLY__ */
610
11a6f6ab 611#endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */