]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/powerpc/include/asm/io.h
Merge tag 'drm-misc-fixes-2018-06-21' of git://anongit.freedesktop.org/drm/drm-misc...
[mirror_ubuntu-jammy-kernel.git] / arch / powerpc / include / asm / io.h
CommitLineData
047ea784
PM
1#ifndef _ASM_POWERPC_IO_H
2#define _ASM_POWERPC_IO_H
88ced031 3#ifdef __KERNEL__
1da177e4 4
be135f40
AB
5#define ARCH_HAS_IOREMAP_WC
6
b41e5fff 7/*
1da177e4
LT
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
1269277a
DW
14/* Check of existence of legacy devices */
15extern int check_legacy_ioport(unsigned long base_port);
8d8a0241
OH
16#define I8042_DATA_REG 0x60
17#define FDC_BASE 0x3f0
1269277a 18
e1612de9
HM
19#if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
20extern struct pci_dev *isa_bridge_pcidev;
21/*
22 * has legacy ISA devices ?
23 */
ac237b65 24#define arch_has_dev_port() (isa_bridge_pcidev != NULL || isa_io_special)
e1612de9
HM
25#endif
26
b41e5fff 27#include <linux/device.h>
1da177e4
LT
28#include <linux/compiler.h>
29#include <asm/page.h>
30#include <asm/byteorder.h>
feaf7cf1 31#include <asm/synch.h>
1da177e4 32#include <asm/delay.h>
68a64357 33#include <asm/mmu.h>
24bfa6a9 34#include <asm/ppc_asm.h>
1da177e4 35
68a64357
BH
36#ifdef CONFIG_PPC64
37#include <asm/paca.h>
38#endif
39
1da177e4
LT
40#define SIO_CONFIG_RA 0x398
41#define SIO_CONFIG_RD 0x399
42
43#define SLOW_DOWN_IO
44
68a64357
BH
45/* 32 bits uses slightly different variables for the various IO
46 * bases. Most of this file only uses _IO_BASE though which we
47 * define properly based on the platform
48 */
49#ifndef CONFIG_PCI
50#define _IO_BASE 0
51#define _ISA_MEM_BASE 0
52#define PCI_DRAM_OFFSET 0
53#elif defined(CONFIG_PPC32)
54#define _IO_BASE isa_io_base
55#define _ISA_MEM_BASE isa_mem_base
56#define PCI_DRAM_OFFSET pci_dram_offset
57#else
58#define _IO_BASE pci_io_base
25e81f92 59#define _ISA_MEM_BASE isa_mem_base
68a64357
BH
60#define PCI_DRAM_OFFSET 0
61#endif
62
63extern unsigned long isa_io_base;
68a64357
BH
64extern unsigned long pci_io_base;
65extern unsigned long pci_dram_offset;
66
25e81f92
BH
67extern resource_size_t isa_mem_base;
68
3fafe9c2
BH
69/* Boolean set by platform if PIO accesses are suppored while _IO_BASE
70 * is not set or addresses cannot be translated to MMIO. This is typically
71 * set when the platform supports "special" PIO accesses via a non memory
72 * mapped mechanism, and allows things like the early udbg UART code to
73 * function.
74 */
75extern bool isa_io_special;
76
ecd73cc5
BH
77#ifdef CONFIG_PPC32
78#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
79#error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
80#endif
68a64357
BH
81#endif
82
4cb3cee0
BH
83/*
84 *
85 * Low level MMIO accessors
86 *
87 * This provides the non-bus specific accessors to MMIO. Those are PowerPC
88 * specific and thus shouldn't be used in generic code. The accessors
89 * provided here are:
90 *
91 * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
92 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
93 * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
94 *
95 * Those operate directly on a kernel virtual address. Note that the prototype
96 * for the out_* accessors has the arguments in opposite order from the usual
97 * linux PCI accessors. Unlike those, they take the address first and the value
98 * next.
99 *
100 * Note: I might drop the _ns suffix on the stream operations soon as it is
101 * simply normal for stream operations to not swap in the first place.
102 *
103 */
104
68a64357 105#ifdef CONFIG_PPC64
048c8bc9 106#define IO_SET_SYNC_FLAG() do { local_paca->io_sync = 1; } while(0)
68a64357
BH
107#else
108#define IO_SET_SYNC_FLAG()
109#endif
4cb3cee0 110
0f3d6bcd
TP
111/* gcc 4.0 and older doesn't have 'Z' constraint */
112#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0)
15cba23e 113#define DEF_MMIO_IN_X(name, size, insn) \
0f3d6bcd 114static inline u##size name(const volatile u##size __iomem *addr) \
4cb3cee0 115{ \
0f3d6bcd
TP
116 u##size ret; \
117 __asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync" \
cfab3bdf 118 : "=r" (ret) : "r" (addr), "m" (*addr) : "memory"); \
4cb3cee0
BH
119 return ret; \
120}
121
15cba23e 122#define DEF_MMIO_OUT_X(name, size, insn) \
0f3d6bcd 123static inline void name(volatile u##size __iomem *addr, u##size val) \
4cb3cee0 124{ \
0f3d6bcd 125 __asm__ __volatile__("sync;"#insn" %1,0,%2" \
cfab3bdf
BH
126 : "=m" (*addr) : "r" (val), "r" (addr) : "memory"); \
127 IO_SET_SYNC_FLAG(); \
4cb3cee0 128}
0f3d6bcd 129#else /* newer gcc */
15cba23e 130#define DEF_MMIO_IN_X(name, size, insn) \
0f3d6bcd
TP
131static inline u##size name(const volatile u##size __iomem *addr) \
132{ \
133 u##size ret; \
134 __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync" \
135 : "=r" (ret) : "Z" (*addr) : "memory"); \
136 return ret; \
137}
138
15cba23e 139#define DEF_MMIO_OUT_X(name, size, insn) \
0f3d6bcd
TP
140static inline void name(volatile u##size __iomem *addr, u##size val) \
141{ \
142 __asm__ __volatile__("sync;"#insn" %1,%y0" \
143 : "=Z" (*addr) : "r" (val) : "memory"); \
144 IO_SET_SYNC_FLAG(); \
145}
146#endif
4cb3cee0 147
15cba23e 148#define DEF_MMIO_IN_D(name, size, insn) \
0f3d6bcd
TP
149static inline u##size name(const volatile u##size __iomem *addr) \
150{ \
151 u##size ret; \
152 __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
153 : "=r" (ret) : "m" (*addr) : "memory"); \
154 return ret; \
155}
4cb3cee0 156
15cba23e 157#define DEF_MMIO_OUT_D(name, size, insn) \
0f3d6bcd
TP
158static inline void name(volatile u##size __iomem *addr, u##size val) \
159{ \
160 __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0" \
161 : "=m" (*addr) : "r" (val) : "memory"); \
162 IO_SET_SYNC_FLAG(); \
163}
4cb3cee0 164
15cba23e
IM
165DEF_MMIO_IN_D(in_8, 8, lbz);
166DEF_MMIO_OUT_D(out_8, 8, stb);
4cb3cee0 167
15cba23e
IM
168#ifdef __BIG_ENDIAN__
169DEF_MMIO_IN_D(in_be16, 16, lhz);
170DEF_MMIO_IN_D(in_be32, 32, lwz);
171DEF_MMIO_IN_X(in_le16, 16, lhbrx);
172DEF_MMIO_IN_X(in_le32, 32, lwbrx);
4cb3cee0 173
15cba23e
IM
174DEF_MMIO_OUT_D(out_be16, 16, sth);
175DEF_MMIO_OUT_D(out_be32, 32, stw);
176DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
177DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
178#else
179DEF_MMIO_IN_X(in_be16, 16, lhbrx);
180DEF_MMIO_IN_X(in_be32, 32, lwbrx);
181DEF_MMIO_IN_D(in_le16, 16, lhz);
182DEF_MMIO_IN_D(in_le32, 32, lwz);
183
184DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
185DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
186DEF_MMIO_OUT_D(out_le16, 16, sth);
187DEF_MMIO_OUT_D(out_le32, 32, stw);
188
189#endif /* __BIG_ENDIAN */
4cb3cee0 190
68a64357 191#ifdef __powerpc64__
15cba23e
IM
192
193#ifdef __BIG_ENDIAN__
194DEF_MMIO_OUT_D(out_be64, 64, std);
195DEF_MMIO_IN_D(in_be64, 64, ld);
68a64357 196
4cb3cee0
BH
197/* There is no asm instructions for 64 bits reverse loads and stores */
198static inline u64 in_le64(const volatile u64 __iomem *addr)
199{
bda76dd1 200 return swab64(in_be64(addr));
4cb3cee0
BH
201}
202
203static inline void out_le64(volatile u64 __iomem *addr, u64 val)
204{
bda76dd1 205 out_be64(addr, swab64(val));
4cb3cee0 206}
15cba23e
IM
207#else
208DEF_MMIO_OUT_D(out_le64, 64, std);
209DEF_MMIO_IN_D(in_le64, 64, ld);
210
211/* There is no asm instructions for 64 bits reverse loads and stores */
212static inline u64 in_be64(const volatile u64 __iomem *addr)
213{
214 return swab64(in_le64(addr));
215}
216
217static inline void out_be64(volatile u64 __iomem *addr, u64 val)
218{
219 out_le64(addr, swab64(val));
220}
221
222#endif
68a64357 223#endif /* __powerpc64__ */
4cb3cee0
BH
224
225/*
226 * Low level IO stream instructions are defined out of line for now
227 */
228extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
229extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
230extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
231extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
232extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
233extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
234
235/* The _ns naming is historical and will be removed. For now, just #define
236 * the non _ns equivalent names
237 */
238#define _insw _insw_ns
239#define _insl _insl_ns
240#define _outsw _outsw_ns
241#define _outsl _outsl_ns
242
68a64357
BH
243
244/*
245 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
246 */
247
248extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
249extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
250 unsigned long n);
251extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
252 unsigned long n);
253
4cb3cee0
BH
254/*
255 *
256 * PCI and standard ISA accessors
257 *
258 * Those are globally defined linux accessors for devices on PCI or ISA
259 * busses. They follow the Linux defined semantics. The current implementation
260 * for PowerPC is as close as possible to the x86 version of these, and thus
261 * provides fairly heavy weight barriers for the non-raw versions
262 *
ecd73cc5
BH
263 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
264 * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
265 * own implementation of some or all of the accessors.
4cb3cee0
BH
266 */
267
68a64357
BH
268/*
269 * Include the EEH definitions when EEH is enabled only so they don't get
270 * in the way when building for 32 bits
271 */
272#ifdef CONFIG_EEH
4cb3cee0 273#include <asm/eeh.h>
68a64357 274#endif
4cb3cee0
BH
275
276/* Shortcut to the MMIO argument pointer */
277#define PCI_IO_ADDR volatile void __iomem *
278
279/* Indirect IO address tokens:
280 *
ecd73cc5
BH
281 * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
282 * on all MMIOs. (Note that this is all 64 bits only for now)
4cb3cee0 283 *
446957ba 284 * To help platforms who may need to differentiate MMIO addresses in
4cb3cee0
BH
285 * their hooks, a bitfield is reserved for use by the platform near the
286 * top of MMIO addresses (not PIO, those have to cope the hard way).
287 *
288 * This bit field is 12 bits and is at the top of the IO virtual
289 * addresses PCI_IO_INDIRECT_TOKEN_MASK.
290 *
291 * The kernel virtual space is thus:
292 *
293 * 0xD000000000000000 : vmalloc
294 * 0xD000080000000000 : PCI PHB IO space
295 * 0xD000080080000000 : ioremap
296 * 0xD0000fffffffffff : end of ioremap region
297 *
298 * Since the top 4 bits are reserved as the region ID, we use thus
299 * the next 12 bits and keep 4 bits available for the future if the
300 * virtual address space is ever to be extended.
301 *
302 * The direct IO mapping operations will then mask off those bits
303 * before doing the actual access, though that only happen when
ecd73cc5 304 * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
4cb3cee0 305 * mechanism
ecd73cc5
BH
306 *
307 * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
308 * all PIO functions call through a hook.
4cb3cee0
BH
309 */
310
ecd73cc5 311#ifdef CONFIG_PPC_INDIRECT_MMIO
4cb3cee0
BH
312#define PCI_IO_IND_TOKEN_MASK 0x0fff000000000000ul
313#define PCI_IO_IND_TOKEN_SHIFT 48
314#define PCI_FIX_ADDR(addr) \
315 ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
316#define PCI_GET_ADDR_TOKEN(addr) \
317 (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \
318 PCI_IO_IND_TOKEN_SHIFT)
319#define PCI_SET_ADDR_TOKEN(addr, token) \
320do { \
321 unsigned long __a = (unsigned long)(addr); \
322 __a &= ~PCI_IO_IND_TOKEN_MASK; \
323 __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \
324 (addr) = (void __iomem *)__a; \
325} while(0)
326#else
327#define PCI_FIX_ADDR(addr) (addr)
328#endif
329
757db1ed
BH
330
331/*
332 * Non ordered and non-swapping "raw" accessors
333 */
334
335static inline unsigned char __raw_readb(const volatile void __iomem *addr)
336{
337 return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
338}
339static inline unsigned short __raw_readw(const volatile void __iomem *addr)
340{
341 return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
342}
343static inline unsigned int __raw_readl(const volatile void __iomem *addr)
344{
345 return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
346}
347static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
348{
349 *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
350}
351static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
352{
353 *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
354}
355static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
356{
357 *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
358}
359
360#ifdef __powerpc64__
361static inline unsigned long __raw_readq(const volatile void __iomem *addr)
362{
363 return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
364}
365static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
366{
367 *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
368}
a84bf321 369
8056fe28
ME
370static inline void __raw_writeq_be(unsigned long v, volatile void __iomem *addr)
371{
372 __raw_writeq((__force unsigned long)cpu_to_be64(v), addr);
373}
374
a84bf321 375/*
d381d7ca
BH
376 * Real mode versions of the above. Those instructions are only supposed
377 * to be used in hypervisor real mode as per the architecture spec.
a84bf321 378 */
d381d7ca
BH
379static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr)
380{
381 __asm__ __volatile__("stbcix %0,0,%1"
382 : : "r" (val), "r" (paddr) : "memory");
383}
384
385static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr)
386{
387 __asm__ __volatile__("sthcix %0,0,%1"
388 : : "r" (val), "r" (paddr) : "memory");
389}
390
391static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr)
392{
393 __asm__ __volatile__("stwcix %0,0,%1"
394 : : "r" (val), "r" (paddr) : "memory");
395}
396
a84bf321
AP
397static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
398{
399 __asm__ __volatile__("stdcix %0,0,%1"
400 : : "r" (val), "r" (paddr) : "memory");
401}
402
8056fe28
ME
403static inline void __raw_rm_writeq_be(u64 val, volatile void __iomem *paddr)
404{
405 __raw_rm_writeq((__force u64)cpu_to_be64(val), paddr);
406}
407
d381d7ca
BH
408static inline u8 __raw_rm_readb(volatile void __iomem *paddr)
409{
410 u8 ret;
411 __asm__ __volatile__("lbzcix %0,0, %1"
412 : "=r" (ret) : "r" (paddr) : "memory");
413 return ret;
414}
415
416static inline u16 __raw_rm_readw(volatile void __iomem *paddr)
417{
418 u16 ret;
419 __asm__ __volatile__("lhzcix %0,0, %1"
420 : "=r" (ret) : "r" (paddr) : "memory");
421 return ret;
422}
423
424static inline u32 __raw_rm_readl(volatile void __iomem *paddr)
425{
426 u32 ret;
427 __asm__ __volatile__("lwzcix %0,0, %1"
428 : "=r" (ret) : "r" (paddr) : "memory");
429 return ret;
430}
431
432static inline u64 __raw_rm_readq(volatile void __iomem *paddr)
433{
434 u64 ret;
435 __asm__ __volatile__("ldcix %0,0, %1"
436 : "=r" (ret) : "r" (paddr) : "memory");
437 return ret;
438}
757db1ed
BH
439#endif /* __powerpc64__ */
440
68a64357 441/*
757db1ed
BH
442 *
443 * PCI PIO and MMIO accessors.
444 *
445 *
68a64357
BH
446 * On 32 bits, PIO operations have a recovery mechanism in case they trigger
447 * machine checks (which they occasionally do when probing non existing
448 * IO ports on some platforms, like PowerMac and 8xx).
449 * I always found it to be of dubious reliability and I am tempted to get
450 * rid of it one of these days. So if you think it's important to keep it,
451 * please voice up asap. We never had it for 64 bits and I do not intend
452 * to port it over
453 */
454
455#ifdef CONFIG_PPC32
456
457#define __do_in_asm(name, op) \
4cfbdfff 458static inline unsigned int name(unsigned int port) \
68a64357
BH
459{ \
460 unsigned int x; \
461 __asm__ __volatile__( \
462 "sync\n" \
463 "0:" op " %0,0,%1\n" \
464 "1: twi 0,%0,0\n" \
465 "2: isync\n" \
466 "3: nop\n" \
467 "4:\n" \
468 ".section .fixup,\"ax\"\n" \
469 "5: li %0,-1\n" \
470 " b 4b\n" \
471 ".previous\n" \
24bfa6a9
NP
472 EX_TABLE(0b, 5b) \
473 EX_TABLE(1b, 5b) \
474 EX_TABLE(2b, 5b) \
475 EX_TABLE(3b, 5b) \
68a64357 476 : "=&r" (x) \
cfab3bdf
BH
477 : "r" (port + _IO_BASE) \
478 : "memory"); \
68a64357
BH
479 return x; \
480}
481
482#define __do_out_asm(name, op) \
4cfbdfff 483static inline void name(unsigned int val, unsigned int port) \
68a64357
BH
484{ \
485 __asm__ __volatile__( \
486 "sync\n" \
487 "0:" op " %0,0,%1\n" \
488 "1: sync\n" \
489 "2:\n" \
24bfa6a9
NP
490 EX_TABLE(0b, 2b) \
491 EX_TABLE(1b, 2b) \
cfab3bdf
BH
492 : : "r" (val), "r" (port + _IO_BASE) \
493 : "memory"); \
68a64357
BH
494}
495
496__do_in_asm(_rec_inb, "lbzx")
497__do_in_asm(_rec_inw, "lhbrx")
498__do_in_asm(_rec_inl, "lwbrx")
499__do_out_asm(_rec_outb, "stbx")
500__do_out_asm(_rec_outw, "sthbrx")
501__do_out_asm(_rec_outl, "stwbrx")
502
503#endif /* CONFIG_PPC32 */
504
4cb3cee0 505/* The "__do_*" operations below provide the actual "base" implementation
42b2aa86 506 * for each of the defined accessors. Some of them use the out_* functions
4cb3cee0
BH
507 * directly, some of them still use EEH, though we might change that in the
508 * future. Those macros below provide the necessary argument swapping and
509 * handling of the IO base for PIO.
510 *
511 * They are themselves used by the macros that define the actual accessors
512 * and can be used by the hooks if any.
513 *
514 * Note that PIO operations are always defined in terms of their corresonding
515 * MMIO operations. That allows platforms like iSeries who want to modify the
516 * behaviour of both to only hook on the MMIO version and get both. It's also
517 * possible to hook directly at the toplevel PIO operation if they have to
518 * be handled differently
519 */
520#define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val)
521#define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val)
522#define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val)
523#define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val)
524#define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
525#define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
526#define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
68a64357
BH
527
528#ifdef CONFIG_EEH
4cb3cee0
BH
529#define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr))
530#define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr))
531#define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr))
532#define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr))
533#define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr))
534#define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr))
535#define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr))
68a64357
BH
536#else /* CONFIG_EEH */
537#define __do_readb(addr) in_8(PCI_FIX_ADDR(addr))
538#define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr))
539#define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr))
540#define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr))
541#define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr))
542#define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr))
543#define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr))
544#endif /* !defined(CONFIG_EEH) */
545
546#ifdef CONFIG_PPC32
547#define __do_outb(val, port) _rec_outb(val, port)
548#define __do_outw(val, port) _rec_outw(val, port)
549#define __do_outl(val, port) _rec_outl(val, port)
550#define __do_inb(port) _rec_inb(port)
551#define __do_inw(port) _rec_inw(port)
552#define __do_inl(port) _rec_inl(port)
553#else /* CONFIG_PPC32 */
554#define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
555#define __do_outw(val, port) writew(val,(PCI_IO_ADDR)_IO_BASE+port);
556#define __do_outl(val, port) writel(val,(PCI_IO_ADDR)_IO_BASE+port);
557#define __do_inb(port) readb((PCI_IO_ADDR)_IO_BASE + port);
558#define __do_inw(port) readw((PCI_IO_ADDR)_IO_BASE + port);
559#define __do_inl(port) readl((PCI_IO_ADDR)_IO_BASE + port);
560#endif /* !CONFIG_PPC32 */
561
562#ifdef CONFIG_EEH
4cb3cee0
BH
563#define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
564#define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
565#define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
68a64357
BH
566#else /* CONFIG_EEH */
567#define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n))
568#define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n))
569#define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n))
570#endif /* !CONFIG_EEH */
4cb3cee0
BH
571#define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n))
572#define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n))
573#define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n))
574
68a64357
BH
575#define __do_insb(p, b, n) readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
576#define __do_insw(p, b, n) readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
577#define __do_insl(p, b, n) readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
578#define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
579#define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
580#define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
581
582#define __do_memset_io(addr, c, n) \
583 _memset_io(PCI_FIX_ADDR(addr), c, n)
584#define __do_memcpy_toio(dst, src, n) \
585 _memcpy_toio(PCI_FIX_ADDR(dst), src, n)
586
587#ifdef CONFIG_EEH
588#define __do_memcpy_fromio(dst, src, n) \
589 eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
590#else /* CONFIG_EEH */
591#define __do_memcpy_fromio(dst, src, n) \
592 _memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
593#endif /* !CONFIG_EEH */
4cb3cee0 594
21176fed
ME
595#ifdef CONFIG_PPC_INDIRECT_PIO
596#define DEF_PCI_HOOK_pio(x) x
597#else
598#define DEF_PCI_HOOK_pio(x) NULL
599#endif
600
601#ifdef CONFIG_PPC_INDIRECT_MMIO
602#define DEF_PCI_HOOK_mem(x) x
4cb3cee0 603#else
21176fed 604#define DEF_PCI_HOOK_mem(x) NULL
4cb3cee0
BH
605#endif
606
607/* Structure containing all the hooks */
608extern struct ppc_pci_io {
609
7cfb62a2
IK
610#define DEF_PCI_AC_RET(name, ret, at, al, space, aa) ret (*name) at;
611#define DEF_PCI_AC_NORET(name, at, al, space, aa) void (*name) at;
4cb3cee0
BH
612
613#include <asm/io-defs.h>
614
615#undef DEF_PCI_AC_RET
616#undef DEF_PCI_AC_NORET
617
618} ppc_pci_io;
619
620/* The inline wrappers */
7cfb62a2 621#define DEF_PCI_AC_RET(name, ret, at, al, space, aa) \
4cb3cee0
BH
622static inline ret name at \
623{ \
21176fed 624 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \
4cb3cee0
BH
625 return ppc_pci_io.name al; \
626 return __do_##name al; \
627}
628
7cfb62a2 629#define DEF_PCI_AC_NORET(name, at, al, space, aa) \
4cb3cee0
BH
630static inline void name at \
631{ \
21176fed 632 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \
4cb3cee0
BH
633 ppc_pci_io.name al; \
634 else \
635 __do_##name al; \
636}
637
638#include <asm/io-defs.h>
639
640#undef DEF_PCI_AC_RET
641#undef DEF_PCI_AC_NORET
642
643/* Some drivers check for the presence of readq & writeq with
644 * a #ifdef, so we make them happy here.
645 */
68a64357 646#ifdef __powerpc64__
4cb3cee0
BH
647#define readq readq
648#define writeq writeq
68a64357
BH
649#endif
650
4cb3cee0
BH
651/*
652 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
653 * access
654 */
655#define xlate_dev_mem_ptr(p) __va(p)
656
657/*
658 * Convert a virtual cached pointer to an uncached pointer
659 */
660#define xlate_dev_kmem_ptr(p) p
caf81329 661
4cb3cee0
BH
662/*
663 * We don't do relaxed operations yet, at least not with this semantic
664 */
5da59057
WD
665#define readb_relaxed(addr) readb(addr)
666#define readw_relaxed(addr) readw(addr)
667#define readl_relaxed(addr) readl(addr)
668#define readq_relaxed(addr) readq(addr)
669#define writeb_relaxed(v, addr) writeb(v, addr)
670#define writew_relaxed(v, addr) writew(v, addr)
671#define writel_relaxed(v, addr) writel(v, addr)
672#define writeq_relaxed(v, addr) writeq(v, addr)
1da177e4 673
ef237039
LG
674#include <asm-generic/iomap.h>
675
68a64357
BH
676#ifdef CONFIG_PPC32
677#define mmiowb()
678#else
4cb3cee0
BH
679/*
680 * Enforce synchronisation of stores vs. spin_unlock
c03983ac 681 * (this does it explicitly, though our implementation of spin_unlock
4cb3cee0
BH
682 * does it implicitely too)
683 */
f007cacf
PM
684static inline void mmiowb(void)
685{
292f86f0
HD
686 unsigned long tmp;
687
688 __asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
689 : "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
690 : "memory");
f007cacf 691}
68a64357 692#endif /* !CONFIG_PPC32 */
1da177e4 693
4cb3cee0
BH
694static inline void iosync(void)
695{
696 __asm__ __volatile__ ("sync" : : : "memory");
697}
698
699/* Enforce in-order execution of data I/O.
700 * No distinction between read/write on PPC; use eieio for all three.
701 * Those are fairly week though. They don't provide a barrier between
702 * MMIO and cacheable storage nor do they provide a barrier vs. locks,
703 * they only provide barriers between 2 __raw MMIO operations and
704 * possibly break write combining.
705 */
706#define iobarrier_rw() eieio()
707#define iobarrier_r() eieio()
708#define iobarrier_w() eieio()
709
710
1da177e4
LT
711/*
712 * output pause versions need a delay at least for the
713 * w83c105 ide controller in a p610.
714 */
715#define inb_p(port) inb(port)
716#define outb_p(val, port) (udelay(1), outb((val), (port)))
717#define inw_p(port) inw(port)
718#define outw_p(val, port) (udelay(1), outw((val), (port)))
719#define inl_p(port) inl(port)
720#define outl_p(val, port) (udelay(1), outl((val), (port)))
721
1da177e4
LT
722
723#define IO_SPACE_LIMIT ~(0UL)
724
725
1da177e4
LT
726/**
727 * ioremap - map bus memory into CPU space
728 * @address: bus address of the memory
729 * @size: size of the resource to map
730 *
731 * ioremap performs a platform specific sequence of operations to
732 * make bus memory CPU accessible via the readb/readw/readl/writeb/
733 * writew/writel functions and the other mmio helpers. The returned
734 * address is not guaranteed to be usable directly as a virtual
735 * address.
4cb3cee0
BH
736 *
737 * We provide a few variations of it:
738 *
739 * * ioremap is the standard one and provides non-cacheable guarded mappings
740 * and can be hooked by the platform via ppc_md
741 *
40f1ce7f
AB
742 * * ioremap_prot allows to specify the page flags as an argument and can
743 * also be hooked by the platform via ppc_md.
4cb3cee0
BH
744 *
745 * * ioremap_nocache is identical to ioremap
746 *
be135f40
AB
747 * * ioremap_wc enables write combining
748 *
4cb3cee0
BH
749 * * iounmap undoes such a mapping and can be hooked
750 *
3d5134ee
BH
751 * * __ioremap_at (and the pending __iounmap_at) are low level functions to
752 * create hand-made mappings for use only by the PCI code and cannot
753 * currently be hooked. Must be page aligned.
4cb3cee0
BH
754 *
755 * * __ioremap is the low level implementation used by ioremap and
40f1ce7f 756 * ioremap_prot and cannot be hooked (but can be used by a hook on one
4cb3cee0
BH
757 * of the previous ones)
758 *
1cdab55d
BH
759 * * __ioremap_caller is the same as above but takes an explicit caller
760 * reference rather than using __builtin_return_address(0)
761 *
4cb3cee0
BH
762 * * __iounmap, is the low level implementation used by iounmap and cannot
763 * be hooked (but can be used by a hook on iounmap)
764 *
1da177e4 765 */
68a64357 766extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
40f1ce7f
AB
767extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
768 unsigned long flags);
be135f40 769extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
1da177e4 770#define ioremap_nocache(addr, size) ioremap((addr), (size))
4c73e892 771#define ioremap_uc(addr, size) ioremap((addr), (size))
f855b2f5
OH
772#define ioremap_cache(addr, size) \
773 ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL))
a1f242ff 774
68a64357 775extern void iounmap(volatile void __iomem *addr);
4cb3cee0 776
68a64357 777extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
4cb3cee0 778 unsigned long flags);
1cdab55d
BH
779extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
780 unsigned long flags, void *caller);
781
68a64357 782extern void __iounmap(volatile void __iomem *addr);
4cb3cee0 783
3d5134ee
BH
784extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
785 unsigned long size, unsigned long flags);
786extern void __iounmap_at(void *ea, unsigned long size);
1da177e4 787
4cb3cee0 788/*
ecd73cc5 789 * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
4cb3cee0
BH
790 * which needs some additional definitions here. They basically allow PIO
791 * space overall to be 1GB. This will work as long as we never try to use
792 * iomap to map MMIO below 1GB which should be fine on ppc64
793 */
794#define HAVE_ARCH_PIO_SIZE 1
795#define PIO_OFFSET 0x00000000UL
3d5134ee
BH
796#define PIO_MASK (FULL_IO_SIZE - 1)
797#define PIO_RESERVED (FULL_IO_SIZE)
4cb3cee0
BH
798
799#define mmio_read16be(addr) readw_be(addr)
800#define mmio_read32be(addr) readl_be(addr)
801#define mmio_write16be(val, addr) writew_be(val, addr)
802#define mmio_write32be(val, addr) writel_be(val, addr)
803#define mmio_insb(addr, dst, count) readsb(addr, dst, count)
804#define mmio_insw(addr, dst, count) readsw(addr, dst, count)
805#define mmio_insl(addr, dst, count) readsl(addr, dst, count)
806#define mmio_outsb(addr, src, count) writesb(addr, src, count)
807#define mmio_outsw(addr, src, count) writesw(addr, src, count)
808#define mmio_outsl(addr, src, count) writesl(addr, src, count)
809
1da177e4
LT
810/**
811 * virt_to_phys - map virtual addresses to physical
812 * @address: address to remap
813 *
814 * The returned physical address is the physical (CPU) mapping for
815 * the memory address given. It is only valid to use this function on
816 * addresses directly mapped or allocated via kmalloc.
817 *
818 * This function does not give bus mappings for DMA transfers. In
819 * almost all conceivable cases a device driver should not be using
820 * this function
821 */
822static inline unsigned long virt_to_phys(volatile void * address)
823{
824 return __pa((unsigned long)address);
825}
826
827/**
828 * phys_to_virt - map physical address to virtual
829 * @address: address to remap
830 *
831 * The returned virtual address is a current CPU mapping for
832 * the memory address given. It is only valid to use this function on
833 * addresses that have a kernel mapping
834 *
835 * This function does not handle bus mappings for DMA transfers. In
836 * almost all conceivable cases a device driver should not be using
837 * this function
838 */
839static inline void * phys_to_virt(unsigned long address)
840{
841 return (void *)__va(address);
842}
843
844/*
845 * Change "struct page" to physical address.
846 */
4ee7084e 847#define page_to_phys(page) ((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT)
1da177e4 848
68a64357
BH
849/*
850 * 32 bits still uses virt_to_bus() for it's implementation of DMA
851 * mappings se we have to keep it defined here. We also have some old
852 * drivers (shame shame shame) that use bus_to_virt() and haven't been
853 * fixed yet so I need to define it here.
854 */
855#ifdef CONFIG_PPC32
856
857static inline unsigned long virt_to_bus(volatile void * address)
858{
859 if (address == NULL)
860 return 0;
861 return __pa(address) + PCI_DRAM_OFFSET;
862}
863
864static inline void * bus_to_virt(unsigned long address)
865{
866 if (address == 0)
867 return NULL;
868 return __va(address - PCI_DRAM_OFFSET);
869}
870
871#define page_to_bus(page) (page_to_phys(page) + PCI_DRAM_OFFSET)
872
873#endif /* CONFIG_PPC32 */
874
5427828e
VB
875/* access ports */
876#define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v))
877#define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
878
879#define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v))
880#define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
68a64357 881
12cdac34
SW
882#define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v))
883#define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
884
dc967d7f
TT
885/* Clear and set bits in one shot. These macros can be used to clear and
886 * set multiple bits in a register using a single read-modify-write. These
887 * macros can also be used to set a multiple-bit bit pattern using a mask,
888 * by specifying the mask in the 'clear' parameter and the new bit pattern
889 * in the 'set' parameter.
890 */
891
892#define clrsetbits(type, addr, clear, set) \
893 out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
894
895#ifdef __powerpc64__
896#define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
897#define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
898#endif
899
900#define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
901#define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
902
903#define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
e2d75505 904#define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
dc967d7f
TT
905
906#define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
907
1da177e4
LT
908#endif /* __KERNEL__ */
909
047ea784 910#endif /* _ASM_POWERPC_IO_H */