]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/powerpc/include/asm/mmu-hash64.h
powerpc/mm: make a separate copy for book3s
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / include / asm / mmu-hash64.h
CommitLineData
8d2169e8
DG
1#ifndef _ASM_POWERPC_MMU_HASH64_H_
2#define _ASM_POWERPC_MMU_HASH64_H_
3/*
4 * PowerPC64 memory management structures
5 *
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15#include <asm/asm-compat.h>
16#include <asm/page.h>
891121e6 17#include <asm/bug.h>
8d2169e8 18
78f1dbde
AK
19/*
20 * This is necessary to get the definition of PGTABLE_RANGE which we
21 * need for various slices related matters. Note that this isn't the
22 * complete pgtable.h but only a portion of it.
23 */
3dfcb315 24#include <asm/book3s/64/pgtable.h>
cf9427b8 25#include <asm/bug.h>
dad6f37c 26#include <asm/processor.h>
78f1dbde 27
8d2169e8
DG
28/*
29 * SLB
30 */
31
32#define SLB_NUM_BOLTED 3
33#define SLB_CACHE_ENTRIES 8
46db2f86 34#define SLB_MIN_SIZE 32
8d2169e8
DG
35
36/* Bits in the SLB ESID word */
37#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
38
39/* Bits in the SLB VSID word */
40#define SLB_VSID_SHIFT 12
1189be65
PM
41#define SLB_VSID_SHIFT_1T 24
42#define SLB_VSID_SSIZE_SHIFT 62
8d2169e8
DG
43#define SLB_VSID_B ASM_CONST(0xc000000000000000)
44#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
45#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
46#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
47#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
48#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
49#define SLB_VSID_L ASM_CONST(0x0000000000000100)
50#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
51#define SLB_VSID_LP ASM_CONST(0x0000000000000030)
52#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
53#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
54#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
55#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
56#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
57
58#define SLB_VSID_KERNEL (SLB_VSID_KP)
59#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
60
61#define SLBIE_C (0x08000000)
1189be65 62#define SLBIE_SSIZE_SHIFT 25
8d2169e8
DG
63
64/*
65 * Hash table
66 */
67
68#define HPTES_PER_GROUP 8
69
2454c7e9 70#define HPTE_V_SSIZE_SHIFT 62
8d2169e8 71#define HPTE_V_AVPN_SHIFT 7
2454c7e9 72#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
8d2169e8 73#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
91bbbe22 74#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
8d2169e8
DG
75#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
76#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
77#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
78#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
79#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
80
81#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
82#define HPTE_R_TS ASM_CONST(0x4000000000000000)
de56a948 83#define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
8d2169e8 84#define HPTE_R_RPN_SHIFT 12
de56a948 85#define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
8d2169e8
DG
86#define HPTE_R_PP ASM_CONST(0x0000000000000003)
87#define HPTE_R_N ASM_CONST(0x0000000000000004)
de56a948
PM
88#define HPTE_R_G ASM_CONST(0x0000000000000008)
89#define HPTE_R_M ASM_CONST(0x0000000000000010)
90#define HPTE_R_I ASM_CONST(0x0000000000000020)
91#define HPTE_R_W ASM_CONST(0x0000000000000040)
92#define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
8d2169e8
DG
93#define HPTE_R_C ASM_CONST(0x0000000000000080)
94#define HPTE_R_R ASM_CONST(0x0000000000000100)
de56a948 95#define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
8d2169e8 96
b7abc5c5
SS
97#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
98#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
99
8d2169e8 100/* Values for PP (assumes Ks=0, Kp=1) */
8d2169e8
DG
101#define PP_RWXX 0 /* Supervisor read/write, User none */
102#define PP_RWRX 1 /* Supervisor read/write, User read */
103#define PP_RWRW 2 /* Supervisor read/write, User read/write */
104#define PP_RXRX 3 /* Supervisor read, User read */
697d3899 105#define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
8d2169e8 106
b4072df4
PM
107/* Fields for tlbiel instruction in architecture 2.06 */
108#define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
109#define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
110#define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
111#define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
112#define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
113#define TLBIEL_INVAL_SET_SHIFT 12
114
115#define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
45706bb5 116#define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */
b4072df4 117
8d2169e8
DG
118#ifndef __ASSEMBLY__
119
8e561e7e 120struct hash_pte {
12f04f2b
AB
121 __be64 v;
122 __be64 r;
8e561e7e 123};
8d2169e8 124
8e561e7e 125extern struct hash_pte *htab_address;
8d2169e8
DG
126extern unsigned long htab_size_bytes;
127extern unsigned long htab_hash_mask;
128
129/*
130 * Page size definition
131 *
132 * shift : is the "PAGE_SHIFT" value for that page size
133 * sllp : is a bit mask with the value of SLB L || LP to be or'ed
134 * directly to a slbmte "vsid" value
135 * penc : is the HPTE encoding mask for the "LP" field:
136 *
137 */
138struct mmu_psize_def
139{
140 unsigned int shift; /* number of bits */
b1022fbd 141 int penc[MMU_PAGE_COUNT]; /* HPTE encoding */
8d2169e8
DG
142 unsigned int tlbiel; /* tlbiel supported for that page size */
143 unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
144 unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
145};
cf9427b8
AK
146extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
147
148static inline int shift_to_mmu_psize(unsigned int shift)
149{
150 int psize;
151
152 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
153 if (mmu_psize_defs[psize].shift == shift)
154 return psize;
155 return -1;
156}
157
158static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
159{
160 if (mmu_psize_defs[mmu_psize].shift)
161 return mmu_psize_defs[mmu_psize].shift;
162 BUG();
163}
8d2169e8
DG
164
165#endif /* __ASSEMBLY__ */
166
2454c7e9
PM
167/*
168 * Segment sizes.
169 * These are the values used by hardware in the B field of
170 * SLB entries and the first dword of MMU hashtable entries.
171 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
172 */
173#define MMU_SEGSIZE_256M 0
174#define MMU_SEGSIZE_1T 1
175
5524a27d
AK
176/*
177 * encode page number shift.
178 * in order to fit the 78 bit va in a 64 bit variable we shift the va by
179 * 12 bits. This enable us to address upto 76 bit va.
180 * For hpt hash from a va we can ignore the page size bits of va and for
181 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
182 * we work in all cases including 4k page size.
183 */
184#define VPN_SHIFT 12
1189be65 185
b1022fbd
AK
186/*
187 * HPTE Large Page (LP) details
188 */
189#define LP_SHIFT 12
190#define LP_BITS 8
191#define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT)
192
8d2169e8
DG
193#ifndef __ASSEMBLY__
194
73d16a6e
IM
195static inline int slb_vsid_shift(int ssize)
196{
197 if (ssize == MMU_SEGSIZE_256M)
198 return SLB_VSID_SHIFT;
199 return SLB_VSID_SHIFT_1T;
200}
201
5524a27d
AK
202static inline int segment_shift(int ssize)
203{
204 if (ssize == MMU_SEGSIZE_256M)
205 return SID_SHIFT;
206 return SID_SHIFT_1T;
207}
208
8d2169e8 209/*
1189be65 210 * The current system page and segment sizes
8d2169e8 211 */
8d2169e8
DG
212extern int mmu_linear_psize;
213extern int mmu_virtual_psize;
214extern int mmu_vmalloc_psize;
cec08e7a 215extern int mmu_vmemmap_psize;
8d2169e8 216extern int mmu_io_psize;
1189be65
PM
217extern int mmu_kernel_ssize;
218extern int mmu_highuser_ssize;
584f8b71 219extern u16 mmu_slb_size;
572fb578 220extern unsigned long tce_alloc_start, tce_alloc_end;
8d2169e8
DG
221
222/*
223 * If the processor supports 64k normal pages but not 64k cache
224 * inhibited pages, we have to be prepared to switch processes
225 * to use 4k pages when they create cache-inhibited mappings.
226 * If this is the case, mmu_ci_restrictions will be set to 1.
227 */
228extern int mmu_ci_restrictions;
229
5524a27d
AK
230/*
231 * This computes the AVPN and B fields of the first dword of a HPTE,
232 * for use when we want to match an existing PTE. The bottom 7 bits
233 * of the returned value are zero.
234 */
235static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
236 int ssize)
237{
238 unsigned long v;
239 /*
240 * The AVA field omits the low-order 23 bits of the 78 bits VA.
241 * These bits are not needed in the PTE, because the
242 * low-order b of these bits are part of the byte offset
243 * into the virtual page and, if b < 23, the high-order
244 * 23-b of these bits are always used in selecting the
245 * PTEGs to be searched
246 */
247 v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
248 v <<= HPTE_V_AVPN_SHIFT;
249 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
250 return v;
251}
252
8d2169e8
DG
253/*
254 * This function sets the AVPN and L fields of the HPTE appropriately
b1022fbd 255 * using the base page size and actual page size.
8d2169e8 256 */
b1022fbd
AK
257static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
258 int actual_psize, int ssize)
8d2169e8 259{
1189be65 260 unsigned long v;
b1022fbd
AK
261 v = hpte_encode_avpn(vpn, base_psize, ssize);
262 if (actual_psize != MMU_PAGE_4K)
8d2169e8
DG
263 v |= HPTE_V_LARGE;
264 return v;
265}
266
267/*
268 * This function sets the ARPN, and LP fields of the HPTE appropriately
269 * for the page size. We assume the pa is already "clean" that is properly
270 * aligned for the requested page size
271 */
b1022fbd
AK
272static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
273 int actual_psize)
8d2169e8 274{
8d2169e8 275 /* A 4K page needs no special encoding */
b1022fbd 276 if (actual_psize == MMU_PAGE_4K)
8d2169e8
DG
277 return pa & HPTE_R_RPN;
278 else {
b1022fbd
AK
279 unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
280 unsigned int shift = mmu_psize_defs[actual_psize].shift;
281 return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
8d2169e8 282 }
8d2169e8
DG
283}
284
285/*
5524a27d 286 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
8d2169e8 287 */
5524a27d
AK
288static inline unsigned long hpt_vpn(unsigned long ea,
289 unsigned long vsid, int ssize)
1189be65 290{
5524a27d
AK
291 unsigned long mask;
292 int s_shift = segment_shift(ssize);
293
294 mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
295 return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
1189be65 296}
8d2169e8 297
1189be65
PM
298/*
299 * This hashes a virtual address
300 */
5524a27d
AK
301static inline unsigned long hpt_hash(unsigned long vpn,
302 unsigned int shift, int ssize)
8d2169e8 303{
5524a27d 304 int mask;
1189be65
PM
305 unsigned long hash, vsid;
306
5524a27d 307 /* VPN_SHIFT can be atmost 12 */
1189be65 308 if (ssize == MMU_SEGSIZE_256M) {
5524a27d
AK
309 mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
310 hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
311 ((vpn & mask) >> (shift - VPN_SHIFT));
1189be65 312 } else {
5524a27d
AK
313 mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
314 vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
315 hash = vsid ^ (vsid << 25) ^
316 ((vpn & mask) >> (shift - VPN_SHIFT)) ;
1189be65
PM
317 }
318 return hash & 0x7fffffffffUL;
8d2169e8
DG
319}
320
aefa5688
AK
321#define HPTE_LOCAL_UPDATE 0x1
322#define HPTE_NOHPTE_UPDATE 0x2
323
8d2169e8
DG
324extern int __hash_page_4K(unsigned long ea, unsigned long access,
325 unsigned long vsid, pte_t *ptep, unsigned long trap,
aefa5688 326 unsigned long flags, int ssize, int subpage_prot);
8d2169e8
DG
327extern int __hash_page_64K(unsigned long ea, unsigned long access,
328 unsigned long vsid, pte_t *ptep, unsigned long trap,
aefa5688 329 unsigned long flags, int ssize);
8d2169e8 330struct mm_struct;
0895ecda 331unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
aefa5688
AK
332extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
333 unsigned long access, unsigned long trap,
334 unsigned long flags);
335extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
336 unsigned long dsisr);
a4fe3ce7 337int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
aefa5688
AK
338 pte_t *ptep, unsigned long trap, unsigned long flags,
339 int ssize, unsigned int shift, unsigned int mmu_psize);
6d492ecc
AK
340#ifdef CONFIG_TRANSPARENT_HUGEPAGE
341extern int __hash_page_thp(unsigned long ea, unsigned long access,
342 unsigned long vsid, pmd_t *pmdp, unsigned long trap,
aefa5688 343 unsigned long flags, int ssize, unsigned int psize);
6d492ecc
AK
344#else
345static inline int __hash_page_thp(unsigned long ea, unsigned long access,
346 unsigned long vsid, pmd_t *pmdp,
aefa5688 347 unsigned long trap, unsigned long flags,
6d492ecc
AK
348 int ssize, unsigned int psize)
349{
350 BUG();
ff1e7683 351 return -1;
6d492ecc
AK
352}
353#endif
4b8692c0
BH
354extern void hash_failure_debug(unsigned long ea, unsigned long access,
355 unsigned long vsid, unsigned long trap,
d8139ebf
AK
356 int ssize, int psize, int lpsize,
357 unsigned long pte);
8d2169e8 358extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
bc033b63 359 unsigned long pstart, unsigned long prot,
1189be65 360 int psize, int ssize);
f6026df1
AB
361int htab_remove_mapping(unsigned long vstart, unsigned long vend,
362 int psize, int ssize);
41151e77 363extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
fa28237c 364extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
8d2169e8 365
8d2169e8
DG
366extern void hpte_init_native(void);
367extern void hpte_init_lpar(void);
8d2169e8 368extern void hpte_init_beat(void);
7f2c8577 369extern void hpte_init_beat_v3(void);
8d2169e8 370
8d2169e8
DG
371extern void slb_initialize(void);
372extern void slb_flush_and_rebolt(void);
8d2169e8 373
67439b76 374extern void slb_vmalloc_update(void);
46db2f86 375extern void slb_set_size(u16 size);
8d2169e8
DG
376#endif /* __ASSEMBLY__ */
377
378/*
f033d659 379 * VSID allocation (256MB segment)
8d2169e8 380 *
c60ac569
AK
381 * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
382 * from mmu context id and effective segment id of the address.
8d2169e8 383 *
c60ac569
AK
384 * For user processes max context id is limited to ((1ul << 19) - 5)
385 * for kernel space, we use the top 4 context ids to map address as below
386 * NOTE: each context only support 64TB now.
387 * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
388 * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
389 * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
390 * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
8d2169e8
DG
391 *
392 * The proto-VSIDs are then scrambled into real VSIDs with the
393 * multiplicative hash:
394 *
395 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
8d2169e8 396 *
f033d659 397 * VSID_MULTIPLIER is prime, so in particular it is
8d2169e8
DG
398 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
399 * Because the modulus is 2^n-1 we can compute it efficiently without
c60ac569
AK
400 * a divide or extra multiply (see below). The scramble function gives
401 * robust scattering in the hash table (at least based on some initial
402 * results).
8d2169e8 403 *
c60ac569
AK
404 * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
405 * bad address. This enables us to consolidate bad address handling in
406 * hash_page.
8d2169e8 407 *
c60ac569
AK
408 * We also need to avoid the last segment of the last context, because that
409 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
410 * because of the modulo operation in vsid scramble. But the vmemmap
411 * (which is what uses region 0xf) will never be close to 64TB in size
412 * (it's 56 bytes per page of system memory).
8d2169e8 413 */
8d2169e8 414
e39d1a47 415#define CONTEXT_BITS 19
af81d787
AK
416#define ESID_BITS 18
417#define ESID_BITS_1T 6
e39d1a47 418
c60ac569
AK
419/*
420 * 256MB segment
af81d787 421 * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
c60ac569
AK
422 * available for user + kernel mapping. The top 4 contexts are used for
423 * kernel mapping. Each segment contains 2^28 bytes. Each
424 * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
425 * (19 == 37 + 28 - 46).
426 */
427#define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 5)
428
048ee099
AK
429/*
430 * This should be computed such that protovosid * vsid_mulitplier
431 * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
432 */
433#define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
af81d787 434#define VSID_BITS_256M (CONTEXT_BITS + ESID_BITS)
1189be65 435#define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
8d2169e8 436
1189be65 437#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
af81d787 438#define VSID_BITS_1T (CONTEXT_BITS + ESID_BITS_1T)
1189be65
PM
439#define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
440
8d2169e8 441
af81d787 442#define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
8d2169e8
DG
443
444/*
445 * This macro generates asm code to compute the VSID scramble
446 * function. Used in slb_allocate() and do_stab_bolted. The function
447 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
448 *
449 * rt = register continaing the proto-VSID and into which the
450 * VSID will be stored
451 * rx = scratch register (clobbered)
452 *
453 * - rt and rx must be different registers
1189be65 454 * - The answer will end up in the low VSID_BITS bits of rt. The higher
8d2169e8
DG
455 * bits may contain other garbage, so you may need to mask the
456 * result.
457 */
1189be65
PM
458#define ASM_VSID_SCRAMBLE(rt, rx, size) \
459 lis rx,VSID_MULTIPLIER_##size@h; \
460 ori rx,rx,VSID_MULTIPLIER_##size@l; \
8d2169e8
DG
461 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
462 \
1189be65
PM
463 srdi rx,rt,VSID_BITS_##size; \
464 clrldi rt,rt,(64-VSID_BITS_##size); \
8d2169e8 465 add rt,rt,rx; /* add high and low bits */ \
c60ac569
AK
466 /* NOTE: explanation based on VSID_BITS_##size = 36 \
467 * Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
8d2169e8
DG
468 * 2^36-1+2^28-1. That in particular means that if r3 >= \
469 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
470 * the bit clear, r3 already has the answer we want, if it \
471 * doesn't, the answer is the low 36 bits of r3+1. So in all \
472 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
473 addi rx,rt,1; \
1189be65 474 srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
8d2169e8
DG
475 add rt,rt,rx
476
78f1dbde
AK
477/* 4 bits per slice and we have one slice per 1TB */
478#define SLICE_ARRAY_SIZE (PGTABLE_RANGE >> 41)
8d2169e8
DG
479
480#ifndef __ASSEMBLY__
481
d28513bc
DG
482#ifdef CONFIG_PPC_SUBPAGE_PROT
483/*
484 * For the sub-page protection option, we extend the PGD with one of
485 * these. Basically we have a 3-level tree, with the top level being
486 * the protptrs array. To optimize speed and memory consumption when
487 * only addresses < 4GB are being protected, pointers to the first
488 * four pages of sub-page protection words are stored in the low_prot
489 * array.
490 * Each page of sub-page protection words protects 1GB (4 bytes
491 * protects 64k). For the 3-level tree, each page of pointers then
492 * protects 8TB.
493 */
494struct subpage_prot_table {
495 unsigned long maxaddr; /* only addresses < this are protected */
dad6f37c 496 unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
d28513bc
DG
497 unsigned int *low_prot[4];
498};
499
500#define SBP_L1_BITS (PAGE_SHIFT - 2)
501#define SBP_L2_BITS (PAGE_SHIFT - 3)
502#define SBP_L1_COUNT (1 << SBP_L1_BITS)
503#define SBP_L2_COUNT (1 << SBP_L2_BITS)
504#define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
505#define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
506
507extern void subpage_prot_free(struct mm_struct *mm);
508extern void subpage_prot_init_new_context(struct mm_struct *mm);
509#else
510static inline void subpage_prot_free(struct mm_struct *mm) {}
511static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
512#endif /* CONFIG_PPC_SUBPAGE_PROT */
513
8d2169e8 514typedef unsigned long mm_context_id_t;
851d2e2f 515struct spinlock;
8d2169e8
DG
516
517typedef struct {
518 mm_context_id_t id;
d0f13e3c
BH
519 u16 user_psize; /* page size index */
520
521#ifdef CONFIG_PPC_MM_SLICES
522 u64 low_slices_psize; /* SLB page size encodings */
78f1dbde 523 unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
d0f13e3c
BH
524#else
525 u16 sllp; /* SLB page size encoding */
8d2169e8
DG
526#endif
527 unsigned long vdso_base;
d28513bc
DG
528#ifdef CONFIG_PPC_SUBPAGE_PROT
529 struct subpage_prot_table spt;
530#endif /* CONFIG_PPC_SUBPAGE_PROT */
851d2e2f
THFL
531#ifdef CONFIG_PPC_ICSWX
532 struct spinlock *cop_lockp; /* guard acop and cop_pid */
533 unsigned long acop; /* mask of enabled coprocessor types */
534 unsigned int cop_pid; /* pid value used with coprocessors */
535#endif /* CONFIG_PPC_ICSWX */
5c1f6ee9
AK
536#ifdef CONFIG_PPC_64K_PAGES
537 /* for 4K PTE fragment support */
538 void *pte_frag;
539#endif
15b244a8
AK
540#ifdef CONFIG_SPAPR_TCE_IOMMU
541 struct list_head iommu_group_mem_list;
542#endif
8d2169e8
DG
543} mm_context_t;
544
545
8d2169e8 546#if 0
1189be65
PM
547/*
548 * The code below is equivalent to this function for arguments
549 * < 2^VSID_BITS, which is all this should ever be called
550 * with. However gcc is not clever enough to compute the
551 * modulus (2^n-1) without a second multiply.
552 */
34692708 553#define vsid_scramble(protovsid, size) \
1189be65 554 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
8d2169e8 555
1189be65
PM
556#else /* 1 */
557#define vsid_scramble(protovsid, size) \
558 ({ \
559 unsigned long x; \
560 x = (protovsid) * VSID_MULTIPLIER_##size; \
561 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
562 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
563 })
8d2169e8 564#endif /* 1 */
8d2169e8 565
1189be65
PM
566/* Returns the segment size indicator for a user address */
567static inline int user_segment_size(unsigned long addr)
8d2169e8 568{
1189be65
PM
569 /* Use 1T segments if possible for addresses >= 1T */
570 if (addr >= (1UL << SID_SHIFT_1T))
571 return mmu_highuser_ssize;
572 return MMU_SEGSIZE_256M;
8d2169e8
DG
573}
574
1189be65
PM
575static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
576 int ssize)
577{
c60ac569
AK
578 /*
579 * Bad address. We return VSID 0 for that
580 */
581 if ((ea & ~REGION_MASK) >= PGTABLE_RANGE)
582 return 0;
583
1189be65 584 if (ssize == MMU_SEGSIZE_256M)
af81d787 585 return vsid_scramble((context << ESID_BITS)
1189be65 586 | (ea >> SID_SHIFT), 256M);
af81d787 587 return vsid_scramble((context << ESID_BITS_1T)
1189be65
PM
588 | (ea >> SID_SHIFT_1T), 1T);
589}
590
c60ac569
AK
591/*
592 * This is only valid for addresses >= PAGE_OFFSET
593 *
594 * For kernel space, we use the top 4 context ids to map address as below
595 * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
596 * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
597 * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
598 * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
599 */
600static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
601{
602 unsigned long context;
603
604 /*
605 * kernel take the top 4 context from the available range
606 */
607 context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
608 return get_vsid(context, ea, ssize);
609}
8d2169e8
DG
610#endif /* __ASSEMBLY__ */
611
612#endif /* _ASM_POWERPC_MMU_HASH64_H_ */