]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - arch/powerpc/include/asm/mmu-hash64.h
powerpc/boot: don't clobber r6 and r7 in epapr boot
[mirror_ubuntu-focal-kernel.git] / arch / powerpc / include / asm / mmu-hash64.h
CommitLineData
8d2169e8
DG
1#ifndef _ASM_POWERPC_MMU_HASH64_H_
2#define _ASM_POWERPC_MMU_HASH64_H_
3/*
4 * PowerPC64 memory management structures
5 *
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15#include <asm/asm-compat.h>
16#include <asm/page.h>
17
78f1dbde
AK
18/*
19 * This is necessary to get the definition of PGTABLE_RANGE which we
20 * need for various slices related matters. Note that this isn't the
21 * complete pgtable.h but only a portion of it.
22 */
23#include <asm/pgtable-ppc64.h>
cf9427b8 24#include <asm/bug.h>
dad6f37c 25#include <asm/processor.h>
78f1dbde 26
8d2169e8
DG
27/*
28 * SLB
29 */
30
31#define SLB_NUM_BOLTED 3
32#define SLB_CACHE_ENTRIES 8
46db2f86 33#define SLB_MIN_SIZE 32
8d2169e8
DG
34
35/* Bits in the SLB ESID word */
36#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
37
38/* Bits in the SLB VSID word */
39#define SLB_VSID_SHIFT 12
1189be65
PM
40#define SLB_VSID_SHIFT_1T 24
41#define SLB_VSID_SSIZE_SHIFT 62
8d2169e8
DG
42#define SLB_VSID_B ASM_CONST(0xc000000000000000)
43#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
44#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
45#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
46#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
47#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
48#define SLB_VSID_L ASM_CONST(0x0000000000000100)
49#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
50#define SLB_VSID_LP ASM_CONST(0x0000000000000030)
51#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
52#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
53#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
54#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
55#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
56
57#define SLB_VSID_KERNEL (SLB_VSID_KP)
58#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
59
60#define SLBIE_C (0x08000000)
1189be65 61#define SLBIE_SSIZE_SHIFT 25
8d2169e8
DG
62
63/*
64 * Hash table
65 */
66
67#define HPTES_PER_GROUP 8
68
2454c7e9 69#define HPTE_V_SSIZE_SHIFT 62
8d2169e8 70#define HPTE_V_AVPN_SHIFT 7
2454c7e9 71#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
8d2169e8 72#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
91bbbe22 73#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
8d2169e8
DG
74#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
75#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
76#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
77#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
78#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
79
80#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
81#define HPTE_R_TS ASM_CONST(0x4000000000000000)
de56a948 82#define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
8d2169e8 83#define HPTE_R_RPN_SHIFT 12
de56a948 84#define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
8d2169e8
DG
85#define HPTE_R_PP ASM_CONST(0x0000000000000003)
86#define HPTE_R_N ASM_CONST(0x0000000000000004)
de56a948
PM
87#define HPTE_R_G ASM_CONST(0x0000000000000008)
88#define HPTE_R_M ASM_CONST(0x0000000000000010)
89#define HPTE_R_I ASM_CONST(0x0000000000000020)
90#define HPTE_R_W ASM_CONST(0x0000000000000040)
91#define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
8d2169e8
DG
92#define HPTE_R_C ASM_CONST(0x0000000000000080)
93#define HPTE_R_R ASM_CONST(0x0000000000000100)
de56a948 94#define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
8d2169e8 95
b7abc5c5
SS
96#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
97#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
98
8d2169e8 99/* Values for PP (assumes Ks=0, Kp=1) */
8d2169e8
DG
100#define PP_RWXX 0 /* Supervisor read/write, User none */
101#define PP_RWRX 1 /* Supervisor read/write, User read */
102#define PP_RWRW 2 /* Supervisor read/write, User read/write */
103#define PP_RXRX 3 /* Supervisor read, User read */
697d3899 104#define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
8d2169e8 105
b4072df4
PM
106/* Fields for tlbiel instruction in architecture 2.06 */
107#define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
108#define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
109#define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
110#define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
111#define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
112#define TLBIEL_INVAL_SET_SHIFT 12
113
114#define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
115
8d2169e8
DG
116#ifndef __ASSEMBLY__
117
8e561e7e 118struct hash_pte {
12f04f2b
AB
119 __be64 v;
120 __be64 r;
8e561e7e 121};
8d2169e8 122
8e561e7e 123extern struct hash_pte *htab_address;
8d2169e8
DG
124extern unsigned long htab_size_bytes;
125extern unsigned long htab_hash_mask;
126
127/*
128 * Page size definition
129 *
130 * shift : is the "PAGE_SHIFT" value for that page size
131 * sllp : is a bit mask with the value of SLB L || LP to be or'ed
132 * directly to a slbmte "vsid" value
133 * penc : is the HPTE encoding mask for the "LP" field:
134 *
135 */
136struct mmu_psize_def
137{
138 unsigned int shift; /* number of bits */
b1022fbd 139 int penc[MMU_PAGE_COUNT]; /* HPTE encoding */
8d2169e8
DG
140 unsigned int tlbiel; /* tlbiel supported for that page size */
141 unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
142 unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
143};
cf9427b8
AK
144extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
145
146static inline int shift_to_mmu_psize(unsigned int shift)
147{
148 int psize;
149
150 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
151 if (mmu_psize_defs[psize].shift == shift)
152 return psize;
153 return -1;
154}
155
156static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
157{
158 if (mmu_psize_defs[mmu_psize].shift)
159 return mmu_psize_defs[mmu_psize].shift;
160 BUG();
161}
8d2169e8
DG
162
163#endif /* __ASSEMBLY__ */
164
2454c7e9
PM
165/*
166 * Segment sizes.
167 * These are the values used by hardware in the B field of
168 * SLB entries and the first dword of MMU hashtable entries.
169 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
170 */
171#define MMU_SEGSIZE_256M 0
172#define MMU_SEGSIZE_1T 1
173
5524a27d
AK
174/*
175 * encode page number shift.
176 * in order to fit the 78 bit va in a 64 bit variable we shift the va by
177 * 12 bits. This enable us to address upto 76 bit va.
178 * For hpt hash from a va we can ignore the page size bits of va and for
179 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
180 * we work in all cases including 4k page size.
181 */
182#define VPN_SHIFT 12
1189be65 183
b1022fbd
AK
184/*
185 * HPTE Large Page (LP) details
186 */
187#define LP_SHIFT 12
188#define LP_BITS 8
189#define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT)
190
8d2169e8
DG
191#ifndef __ASSEMBLY__
192
73d16a6e
IM
193static inline int slb_vsid_shift(int ssize)
194{
195 if (ssize == MMU_SEGSIZE_256M)
196 return SLB_VSID_SHIFT;
197 return SLB_VSID_SHIFT_1T;
198}
199
5524a27d
AK
200static inline int segment_shift(int ssize)
201{
202 if (ssize == MMU_SEGSIZE_256M)
203 return SID_SHIFT;
204 return SID_SHIFT_1T;
205}
206
8d2169e8 207/*
1189be65 208 * The current system page and segment sizes
8d2169e8 209 */
8d2169e8
DG
210extern int mmu_linear_psize;
211extern int mmu_virtual_psize;
212extern int mmu_vmalloc_psize;
cec08e7a 213extern int mmu_vmemmap_psize;
8d2169e8 214extern int mmu_io_psize;
1189be65
PM
215extern int mmu_kernel_ssize;
216extern int mmu_highuser_ssize;
584f8b71 217extern u16 mmu_slb_size;
572fb578 218extern unsigned long tce_alloc_start, tce_alloc_end;
8d2169e8
DG
219
220/*
221 * If the processor supports 64k normal pages but not 64k cache
222 * inhibited pages, we have to be prepared to switch processes
223 * to use 4k pages when they create cache-inhibited mappings.
224 * If this is the case, mmu_ci_restrictions will be set to 1.
225 */
226extern int mmu_ci_restrictions;
227
5524a27d
AK
228/*
229 * This computes the AVPN and B fields of the first dword of a HPTE,
230 * for use when we want to match an existing PTE. The bottom 7 bits
231 * of the returned value are zero.
232 */
233static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
234 int ssize)
235{
236 unsigned long v;
237 /*
238 * The AVA field omits the low-order 23 bits of the 78 bits VA.
239 * These bits are not needed in the PTE, because the
240 * low-order b of these bits are part of the byte offset
241 * into the virtual page and, if b < 23, the high-order
242 * 23-b of these bits are always used in selecting the
243 * PTEGs to be searched
244 */
245 v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
246 v <<= HPTE_V_AVPN_SHIFT;
247 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
248 return v;
249}
250
8d2169e8
DG
251/*
252 * This function sets the AVPN and L fields of the HPTE appropriately
b1022fbd 253 * using the base page size and actual page size.
8d2169e8 254 */
b1022fbd
AK
255static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
256 int actual_psize, int ssize)
8d2169e8 257{
1189be65 258 unsigned long v;
b1022fbd
AK
259 v = hpte_encode_avpn(vpn, base_psize, ssize);
260 if (actual_psize != MMU_PAGE_4K)
8d2169e8
DG
261 v |= HPTE_V_LARGE;
262 return v;
263}
264
265/*
266 * This function sets the ARPN, and LP fields of the HPTE appropriately
267 * for the page size. We assume the pa is already "clean" that is properly
268 * aligned for the requested page size
269 */
b1022fbd
AK
270static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
271 int actual_psize)
8d2169e8 272{
8d2169e8 273 /* A 4K page needs no special encoding */
b1022fbd 274 if (actual_psize == MMU_PAGE_4K)
8d2169e8
DG
275 return pa & HPTE_R_RPN;
276 else {
b1022fbd
AK
277 unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
278 unsigned int shift = mmu_psize_defs[actual_psize].shift;
279 return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
8d2169e8 280 }
8d2169e8
DG
281}
282
283/*
5524a27d 284 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
8d2169e8 285 */
5524a27d
AK
286static inline unsigned long hpt_vpn(unsigned long ea,
287 unsigned long vsid, int ssize)
1189be65 288{
5524a27d
AK
289 unsigned long mask;
290 int s_shift = segment_shift(ssize);
291
292 mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
293 return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
1189be65 294}
8d2169e8 295
1189be65
PM
296/*
297 * This hashes a virtual address
298 */
5524a27d
AK
299static inline unsigned long hpt_hash(unsigned long vpn,
300 unsigned int shift, int ssize)
8d2169e8 301{
5524a27d 302 int mask;
1189be65
PM
303 unsigned long hash, vsid;
304
5524a27d 305 /* VPN_SHIFT can be atmost 12 */
1189be65 306 if (ssize == MMU_SEGSIZE_256M) {
5524a27d
AK
307 mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
308 hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
309 ((vpn & mask) >> (shift - VPN_SHIFT));
1189be65 310 } else {
5524a27d
AK
311 mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
312 vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
313 hash = vsid ^ (vsid << 25) ^
314 ((vpn & mask) >> (shift - VPN_SHIFT)) ;
1189be65
PM
315 }
316 return hash & 0x7fffffffffUL;
8d2169e8
DG
317}
318
aefa5688
AK
319#define HPTE_LOCAL_UPDATE 0x1
320#define HPTE_NOHPTE_UPDATE 0x2
321
8d2169e8
DG
322extern int __hash_page_4K(unsigned long ea, unsigned long access,
323 unsigned long vsid, pte_t *ptep, unsigned long trap,
aefa5688 324 unsigned long flags, int ssize, int subpage_prot);
8d2169e8
DG
325extern int __hash_page_64K(unsigned long ea, unsigned long access,
326 unsigned long vsid, pte_t *ptep, unsigned long trap,
aefa5688 327 unsigned long flags, int ssize);
8d2169e8 328struct mm_struct;
0895ecda 329unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
aefa5688
AK
330extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
331 unsigned long access, unsigned long trap,
332 unsigned long flags);
333extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
334 unsigned long dsisr);
a4fe3ce7 335int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
aefa5688
AK
336 pte_t *ptep, unsigned long trap, unsigned long flags,
337 int ssize, unsigned int shift, unsigned int mmu_psize);
6d492ecc
AK
338#ifdef CONFIG_TRANSPARENT_HUGEPAGE
339extern int __hash_page_thp(unsigned long ea, unsigned long access,
340 unsigned long vsid, pmd_t *pmdp, unsigned long trap,
aefa5688 341 unsigned long flags, int ssize, unsigned int psize);
6d492ecc
AK
342#else
343static inline int __hash_page_thp(unsigned long ea, unsigned long access,
344 unsigned long vsid, pmd_t *pmdp,
aefa5688 345 unsigned long trap, unsigned long flags,
6d492ecc
AK
346 int ssize, unsigned int psize)
347{
348 BUG();
ff1e7683 349 return -1;
6d492ecc
AK
350}
351#endif
4b8692c0
BH
352extern void hash_failure_debug(unsigned long ea, unsigned long access,
353 unsigned long vsid, unsigned long trap,
d8139ebf
AK
354 int ssize, int psize, int lpsize,
355 unsigned long pte);
8d2169e8 356extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
bc033b63 357 unsigned long pstart, unsigned long prot,
1189be65 358 int psize, int ssize);
f6026df1
AB
359int htab_remove_mapping(unsigned long vstart, unsigned long vend,
360 int psize, int ssize);
41151e77 361extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
fa28237c 362extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
8d2169e8 363
8d2169e8
DG
364extern void hpte_init_native(void);
365extern void hpte_init_lpar(void);
8d2169e8 366extern void hpte_init_beat(void);
7f2c8577 367extern void hpte_init_beat_v3(void);
8d2169e8 368
8d2169e8
DG
369extern void slb_initialize(void);
370extern void slb_flush_and_rebolt(void);
8d2169e8 371
67439b76 372extern void slb_vmalloc_update(void);
46db2f86 373extern void slb_set_size(u16 size);
8d2169e8
DG
374#endif /* __ASSEMBLY__ */
375
376/*
f033d659 377 * VSID allocation (256MB segment)
8d2169e8 378 *
c60ac569
AK
379 * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
380 * from mmu context id and effective segment id of the address.
8d2169e8 381 *
c60ac569
AK
382 * For user processes max context id is limited to ((1ul << 19) - 5)
383 * for kernel space, we use the top 4 context ids to map address as below
384 * NOTE: each context only support 64TB now.
385 * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
386 * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
387 * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
388 * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
8d2169e8
DG
389 *
390 * The proto-VSIDs are then scrambled into real VSIDs with the
391 * multiplicative hash:
392 *
393 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
8d2169e8 394 *
f033d659 395 * VSID_MULTIPLIER is prime, so in particular it is
8d2169e8
DG
396 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
397 * Because the modulus is 2^n-1 we can compute it efficiently without
c60ac569
AK
398 * a divide or extra multiply (see below). The scramble function gives
399 * robust scattering in the hash table (at least based on some initial
400 * results).
8d2169e8 401 *
c60ac569
AK
402 * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
403 * bad address. This enables us to consolidate bad address handling in
404 * hash_page.
8d2169e8 405 *
c60ac569
AK
406 * We also need to avoid the last segment of the last context, because that
407 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
408 * because of the modulo operation in vsid scramble. But the vmemmap
409 * (which is what uses region 0xf) will never be close to 64TB in size
410 * (it's 56 bytes per page of system memory).
8d2169e8 411 */
8d2169e8 412
e39d1a47 413#define CONTEXT_BITS 19
af81d787
AK
414#define ESID_BITS 18
415#define ESID_BITS_1T 6
e39d1a47 416
c60ac569
AK
417/*
418 * 256MB segment
af81d787 419 * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
c60ac569
AK
420 * available for user + kernel mapping. The top 4 contexts are used for
421 * kernel mapping. Each segment contains 2^28 bytes. Each
422 * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
423 * (19 == 37 + 28 - 46).
424 */
425#define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 5)
426
048ee099
AK
427/*
428 * This should be computed such that protovosid * vsid_mulitplier
429 * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
430 */
431#define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
af81d787 432#define VSID_BITS_256M (CONTEXT_BITS + ESID_BITS)
1189be65 433#define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
8d2169e8 434
1189be65 435#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
af81d787 436#define VSID_BITS_1T (CONTEXT_BITS + ESID_BITS_1T)
1189be65
PM
437#define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
438
8d2169e8 439
af81d787 440#define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
8d2169e8
DG
441
442/*
443 * This macro generates asm code to compute the VSID scramble
444 * function. Used in slb_allocate() and do_stab_bolted. The function
445 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
446 *
447 * rt = register continaing the proto-VSID and into which the
448 * VSID will be stored
449 * rx = scratch register (clobbered)
450 *
451 * - rt and rx must be different registers
1189be65 452 * - The answer will end up in the low VSID_BITS bits of rt. The higher
8d2169e8
DG
453 * bits may contain other garbage, so you may need to mask the
454 * result.
455 */
1189be65
PM
456#define ASM_VSID_SCRAMBLE(rt, rx, size) \
457 lis rx,VSID_MULTIPLIER_##size@h; \
458 ori rx,rx,VSID_MULTIPLIER_##size@l; \
8d2169e8
DG
459 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
460 \
1189be65
PM
461 srdi rx,rt,VSID_BITS_##size; \
462 clrldi rt,rt,(64-VSID_BITS_##size); \
8d2169e8 463 add rt,rt,rx; /* add high and low bits */ \
c60ac569
AK
464 /* NOTE: explanation based on VSID_BITS_##size = 36 \
465 * Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
8d2169e8
DG
466 * 2^36-1+2^28-1. That in particular means that if r3 >= \
467 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
468 * the bit clear, r3 already has the answer we want, if it \
469 * doesn't, the answer is the low 36 bits of r3+1. So in all \
470 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
471 addi rx,rt,1; \
1189be65 472 srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
8d2169e8
DG
473 add rt,rt,rx
474
78f1dbde
AK
475/* 4 bits per slice and we have one slice per 1TB */
476#define SLICE_ARRAY_SIZE (PGTABLE_RANGE >> 41)
8d2169e8
DG
477
478#ifndef __ASSEMBLY__
479
d28513bc
DG
480#ifdef CONFIG_PPC_SUBPAGE_PROT
481/*
482 * For the sub-page protection option, we extend the PGD with one of
483 * these. Basically we have a 3-level tree, with the top level being
484 * the protptrs array. To optimize speed and memory consumption when
485 * only addresses < 4GB are being protected, pointers to the first
486 * four pages of sub-page protection words are stored in the low_prot
487 * array.
488 * Each page of sub-page protection words protects 1GB (4 bytes
489 * protects 64k). For the 3-level tree, each page of pointers then
490 * protects 8TB.
491 */
492struct subpage_prot_table {
493 unsigned long maxaddr; /* only addresses < this are protected */
dad6f37c 494 unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
d28513bc
DG
495 unsigned int *low_prot[4];
496};
497
498#define SBP_L1_BITS (PAGE_SHIFT - 2)
499#define SBP_L2_BITS (PAGE_SHIFT - 3)
500#define SBP_L1_COUNT (1 << SBP_L1_BITS)
501#define SBP_L2_COUNT (1 << SBP_L2_BITS)
502#define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
503#define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
504
505extern void subpage_prot_free(struct mm_struct *mm);
506extern void subpage_prot_init_new_context(struct mm_struct *mm);
507#else
508static inline void subpage_prot_free(struct mm_struct *mm) {}
509static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
510#endif /* CONFIG_PPC_SUBPAGE_PROT */
511
8d2169e8 512typedef unsigned long mm_context_id_t;
851d2e2f 513struct spinlock;
8d2169e8
DG
514
515typedef struct {
516 mm_context_id_t id;
d0f13e3c
BH
517 u16 user_psize; /* page size index */
518
519#ifdef CONFIG_PPC_MM_SLICES
520 u64 low_slices_psize; /* SLB page size encodings */
78f1dbde 521 unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
d0f13e3c
BH
522#else
523 u16 sllp; /* SLB page size encoding */
8d2169e8
DG
524#endif
525 unsigned long vdso_base;
d28513bc
DG
526#ifdef CONFIG_PPC_SUBPAGE_PROT
527 struct subpage_prot_table spt;
528#endif /* CONFIG_PPC_SUBPAGE_PROT */
851d2e2f
THFL
529#ifdef CONFIG_PPC_ICSWX
530 struct spinlock *cop_lockp; /* guard acop and cop_pid */
531 unsigned long acop; /* mask of enabled coprocessor types */
532 unsigned int cop_pid; /* pid value used with coprocessors */
533#endif /* CONFIG_PPC_ICSWX */
5c1f6ee9
AK
534#ifdef CONFIG_PPC_64K_PAGES
535 /* for 4K PTE fragment support */
536 void *pte_frag;
537#endif
8d2169e8
DG
538} mm_context_t;
539
540
8d2169e8 541#if 0
1189be65
PM
542/*
543 * The code below is equivalent to this function for arguments
544 * < 2^VSID_BITS, which is all this should ever be called
545 * with. However gcc is not clever enough to compute the
546 * modulus (2^n-1) without a second multiply.
547 */
34692708 548#define vsid_scramble(protovsid, size) \
1189be65 549 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
8d2169e8 550
1189be65
PM
551#else /* 1 */
552#define vsid_scramble(protovsid, size) \
553 ({ \
554 unsigned long x; \
555 x = (protovsid) * VSID_MULTIPLIER_##size; \
556 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
557 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
558 })
8d2169e8 559#endif /* 1 */
8d2169e8 560
1189be65
PM
561/* Returns the segment size indicator for a user address */
562static inline int user_segment_size(unsigned long addr)
8d2169e8 563{
1189be65
PM
564 /* Use 1T segments if possible for addresses >= 1T */
565 if (addr >= (1UL << SID_SHIFT_1T))
566 return mmu_highuser_ssize;
567 return MMU_SEGSIZE_256M;
8d2169e8
DG
568}
569
1189be65
PM
570static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
571 int ssize)
572{
c60ac569
AK
573 /*
574 * Bad address. We return VSID 0 for that
575 */
576 if ((ea & ~REGION_MASK) >= PGTABLE_RANGE)
577 return 0;
578
1189be65 579 if (ssize == MMU_SEGSIZE_256M)
af81d787 580 return vsid_scramble((context << ESID_BITS)
1189be65 581 | (ea >> SID_SHIFT), 256M);
af81d787 582 return vsid_scramble((context << ESID_BITS_1T)
1189be65
PM
583 | (ea >> SID_SHIFT_1T), 1T);
584}
585
c60ac569
AK
586/*
587 * This is only valid for addresses >= PAGE_OFFSET
588 *
589 * For kernel space, we use the top 4 context ids to map address as below
590 * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
591 * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
592 * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
593 * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
594 */
595static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
596{
597 unsigned long context;
598
599 /*
600 * kernel take the top 4 context from the available range
601 */
602 context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
603 return get_vsid(context, ea, ssize);
604}
8d2169e8
DG
605#endif /* __ASSEMBLY__ */
606
607#endif /* _ASM_POWERPC_MMU_HASH64_H_ */