]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/powerpc/include/asm/nohash/32/pgtable.h
powerpc/8xx: Provide ptep_get() with 16k pages
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / include / asm / nohash / 32 / pgtable.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
17ed9e31
AK
2#ifndef _ASM_POWERPC_NOHASH_32_PGTABLE_H
3#define _ASM_POWERPC_NOHASH_32_PGTABLE_H
f88df14b 4
d1953c88 5#include <asm-generic/pgtable-nopmd.h>
f88df14b
DG
6
7#ifndef __ASSEMBLY__
8#include <linux/sched.h>
9#include <linux/threads.h>
6b622669 10#include <asm/mmu.h> /* For sub-arch specific PPC_PIN_SIZE */
f88df14b 11
b98ac05d
BH
12#ifdef CONFIG_44x
13extern int icache_44x_need_flush;
14#endif
15
f88df14b
DG
16#endif /* __ASSEMBLY__ */
17
9b081e10
CL
18#define PTE_INDEX_SIZE PTE_SHIFT
19#define PMD_INDEX_SIZE 0
20#define PUD_INDEX_SIZE 0
21#define PGD_INDEX_SIZE (32 - PGDIR_SHIFT)
22
23#define PMD_CACHE_INDEX PMD_INDEX_SIZE
fae22116 24#define PUD_CACHE_INDEX PUD_INDEX_SIZE
9b081e10
CL
25
26#ifndef __ASSEMBLY__
27#define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE)
28#define PMD_TABLE_SIZE 0
29#define PUD_TABLE_SIZE 0
30#define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
974b9b2c
MR
31
32#define PMD_MASKED_BITS (PTE_TABLE_SIZE - 1)
9b081e10
CL
33#endif /* __ASSEMBLY__ */
34
35#define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
36#define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
37
f88df14b
DG
38/*
39 * The normal case is that PTEs are 32-bits and we have a 1-page
40 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
41 *
42 * For any >32-bit physical address platform, we can use the following
43 * two level page table layout where the pgdir is 8KB and the MS 13 bits
44 * are an index to the second level table. The combined pgdir/pmd first
45 * level has 2048 entries and the second level has 512 64-bit PTE entries.
46 * -Matt
47 */
f88df14b 48/* PGDIR_SHIFT determines what a top-level page table entry can map */
9b081e10 49#define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
f88df14b
DG
50#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
51#define PGDIR_MASK (~(PGDIR_SIZE-1))
52
9b081e10
CL
53/* Bits to mask out from a PGD to get to the PUD page */
54#define PGD_MASKED_BITS 0
f88df14b
DG
55
56#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
d016bf7e 57#define FIRST_USER_ADDRESS 0UL
f88df14b 58
f88df14b 59#define pte_ERROR(e) \
a7696b36 60 pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
0aeafb0c 61 (unsigned long long)pte_val(e))
f88df14b 62#define pgd_ERROR(e) \
a7696b36 63 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
f88df14b 64
a67beca0
CL
65#ifndef __ASSEMBLY__
66
67int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
68
69#endif /* !__ASSEMBLY__ */
70
71
f637a49e
BH
72/*
73 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
74 * value (for now) on others, from where we can start layout kernel
75 * virtual space that goes below PKMAP and FIXMAP
76 */
a67beca0
CL
77#include <asm/fixmap.h>
78
f637a49e
BH
79/*
80 * ioremap_bot starts at that address. Early ioremaps move down from there,
81 * until mem_init() at which point this becomes the top of the vmalloc
82 * and ioremap space
83 */
f2902a2f
CH
84#ifdef CONFIG_HIGHMEM
85#define IOREMAP_TOP PKMAP_BASE
8b31e49d 86#else
f2902a2f 87#define IOREMAP_TOP FIXADDR_START
8b31e49d 88#endif
f637a49e 89
4a45b746
CL
90/* PPC32 shares vmalloc area with ioremap */
91#define IOREMAP_START VMALLOC_START
92#define IOREMAP_END VMALLOC_END
93
f88df14b
DG
94/*
95 * Just any arbitrary offset to the start of the vmalloc VM area: the
f637a49e 96 * current 16MB value just means that there will be a 64MB "hole" after the
f88df14b
DG
97 * physical memory until the kernel virtual memory starts. That means that
98 * any out-of-bounds memory accesses will hopefully be caught.
99 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
100 * area for the same reason. ;)
101 *
102 * We no longer map larger than phys RAM with the BATs so we don't have
103 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry
104 * about clashes between our early calls to ioremap() that start growing down
e974cd4b 105 * from IOREMAP_TOP being run into the VM area allocations (growing upwards
f88df14b
DG
106 * from VMALLOC_START). For this reason we have ioremap_bot to check when
107 * we actually run into our mappings setup in the early boot with the VM
108 * system. This really does become a problem for machines with good amounts
109 * of RAM. -- Cort
110 */
111#define VMALLOC_OFFSET (0x1000000) /* 16M */
112#ifdef PPC_PIN_SIZE
d3f3d3bf 113#define VMALLOC_START (((ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
f88df14b
DG
114#else
115#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
116#endif
3d4247fc
CL
117
118#ifdef CONFIG_KASAN_VMALLOC
e96d904e 119#define VMALLOC_END ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT)
3d4247fc 120#else
f88df14b 121#define VMALLOC_END ioremap_bot
3d4247fc 122#endif
f88df14b
DG
123
124/*
125 * Bits in a linux-style PTE. These match the bits in the
126 * (hardware-defined) PowerPC PTE as closely as possible.
127 */
128
129#if defined(CONFIG_40x)
17ed9e31 130#include <asm/nohash/32/pte-40x.h>
f88df14b 131#elif defined(CONFIG_44x)
17ed9e31 132#include <asm/nohash/32/pte-44x.h>
76acc2c1 133#elif defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT)
17ed9e31 134#include <asm/nohash/pte-book3e.h>
f88df14b 135#elif defined(CONFIG_FSL_BOOKE)
17ed9e31 136#include <asm/nohash/32/pte-fsl-booke.h>
968159c0 137#elif defined(CONFIG_PPC_8xx)
17ed9e31 138#include <asm/nohash/32/pte-8xx.h>
4ee7084e 139#endif
f88df14b 140
56623153
CL
141/*
142 * Location of the PFN in the PTE. Most 32-bit platforms use the same
143 * as _PAGE_SHIFT here (ie, naturally aligned).
144 * Platform who don't just pre-define the value so we don't override it here.
145 */
146#ifndef PTE_RPN_SHIFT
147#define PTE_RPN_SHIFT (PAGE_SHIFT)
148#endif
149
150/*
151 * The mask covered by the RPN must be a ULL on 32-bit platforms with
152 * 64-bit PTEs.
153 */
154#if defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
155#define PTE_RPN_MASK (~((1ULL << PTE_RPN_SHIFT) - 1))
156#else
157#define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1))
158#endif
159
160/*
161 * _PAGE_CHG_MASK masks of bits that are to be preserved across
162 * pgprot changes.
163 */
164#define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL)
f88df14b
DG
165
166#ifndef __ASSEMBLY__
f88df14b 167
9bf2b5cd 168#define pte_clear(mm, addr, ptep) \
06f52524 169 do { pte_update(mm, addr, ptep, ~0, 0, 0); } while (0)
f88df14b 170
a0da4bc1 171#ifndef pte_mkwrite
aa9cd505
CL
172static inline pte_t pte_mkwrite(pte_t pte)
173{
a0da4bc1 174 return __pte(pte_val(pte) | _PAGE_RW);
aa9cd505 175}
a0da4bc1 176#endif
aa9cd505
CL
177
178static inline pte_t pte_mkdirty(pte_t pte)
179{
180 return __pte(pte_val(pte) | _PAGE_DIRTY);
181}
182
183static inline pte_t pte_mkyoung(pte_t pte)
184{
185 return __pte(pte_val(pte) | _PAGE_ACCESSED);
186}
187
a0da4bc1 188#ifndef pte_wrprotect
aa9cd505
CL
189static inline pte_t pte_wrprotect(pte_t pte)
190{
a0da4bc1 191 return __pte(pte_val(pte) & ~_PAGE_RW);
aa9cd505 192}
a0da4bc1 193#endif
aa9cd505 194
daba7902
CL
195static inline pte_t pte_mkexec(pte_t pte)
196{
197 return __pte(pte_val(pte) | _PAGE_EXEC);
198}
199
f88df14b
DG
200#define pmd_none(pmd) (!pmd_val(pmd))
201#define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
202#define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
f281b5d5
AK
203static inline void pmd_clear(pmd_t *pmdp)
204{
205 *pmdp = __pmd(0);
206}
207
f88df14b 208/*
c605782b
BH
209 * PTE updates. This function is called whenever an existing
210 * valid PTE is updated. This does -not- include set_pte_at()
211 * which nowadays only sets a new PTE.
212 *
213 * Depending on the type of MMU, we may need to use atomic updates
214 * and the PTE may be either 32 or 64 bit wide. In the later case,
215 * when using atomic updates, only the low part of the PTE is
216 * accessed atomically.
f88df14b 217 *
c605782b
BH
218 * In addition, on 44x, we also maintain a global flag indicating
219 * that an executable user mapping was modified, which is needed
220 * to properly flush the virtually tagged instruction cache of
221 * those implementations.
6ad41bfb
CL
222 *
223 * On the 8xx, the page tables are a bit special. For 16k pages, we have
b250c8c0
CL
224 * 4 identical entries. For 512k pages, we have 128 entries as if it was
225 * 4k pages, but they are flagged as 512k pages for the hardware.
226 * For other page sizes, we have a single entry in the table.
f88df14b 227 */
6ad41bfb 228#ifdef CONFIG_PPC_8xx
687993cc
MR
229static pmd_t *pmd_off(struct mm_struct *mm, unsigned long addr);
230
6ad41bfb
CL
231static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
232 unsigned long clr, unsigned long set, int huge)
f88df14b 233{
6ad41bfb
CL
234 pte_basic_t *entry = &p->pte;
235 pte_basic_t old = pte_val(*p);
236 pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
237 int num, i;
687993cc 238 pmd_t *pmd = pmd_off(mm, addr);
6ad41bfb
CL
239
240 if (!huge)
241 num = PAGE_SIZE / SZ_4K;
b250c8c0
CL
242 else if ((pmd_val(*pmd) & _PMD_PAGE_MASK) != _PMD_PAGE_8M)
243 num = SZ_512K / SZ_4K;
6ad41bfb
CL
244 else
245 num = 1;
246
b250c8c0 247 for (i = 0; i < num; i++, entry++, new += SZ_4K)
6ad41bfb 248 *entry = new;
1bc54c03 249
f88df14b
DG
250 return old;
251}
6ad41bfb 252#else
06f52524
CL
253static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
254 unsigned long clr, unsigned long set, int huge)
f88df14b 255{
2db99aeb
CL
256 pte_basic_t old = pte_val(*p);
257 pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
55c8fc3f 258
55c8fc3f 259 *p = __pte(new);
1bc54c03 260
b98ac05d 261#ifdef CONFIG_44x
ea3cc330 262 if ((old & _PAGE_USER) && (old & _PAGE_EXEC))
b98ac05d
BH
263 icache_44x_need_flush = 1;
264#endif
f88df14b
DG
265 return old;
266}
6ad41bfb 267#endif
f88df14b 268
f88df14b 269#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
c7fa7701
CL
270static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
271 unsigned long addr, pte_t *ptep)
f88df14b
DG
272{
273 unsigned long old;
06f52524 274 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
f88df14b
DG
275 return (old & _PAGE_ACCESSED) != 0;
276}
277#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
c7fa7701 278 __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep)
f88df14b 279
f88df14b
DG
280#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
281static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
282 pte_t *ptep)
283{
06f52524 284 return __pte(pte_update(mm, addr, ptep, ~0, 0, 0));
f88df14b
DG
285}
286
c0e1c8c2
CL
287#if defined(CONFIG_PPC_8xx) && defined(CONFIG_PPC_16K_PAGES)
288#define __HAVE_ARCH_PTEP_GET
289static inline pte_t ptep_get(pte_t *ptep)
290{
291 pte_t pte = {READ_ONCE(ptep->pte), 0, 0, 0};
292
293 return pte;
294}
295#endif
296
f88df14b
DG
297#define __HAVE_ARCH_PTEP_SET_WRPROTECT
298static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
299 pte_t *ptep)
300{
26973fa5
CL
301 unsigned long clr = ~pte_val(pte_wrprotect(__pte(~0)));
302 unsigned long set = pte_val(pte_wrprotect(__pte(0)));
303
06f52524 304 pte_update(mm, addr, ptep, clr, set, 0);
f88df14b
DG
305}
306
e4c1112c 307static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
b3603e17 308 pte_t *ptep, pte_t entry,
e4c1112c
AK
309 unsigned long address,
310 int psize)
f88df14b 311{
26973fa5
CL
312 pte_t pte_set = pte_mkyoung(pte_mkdirty(pte_mkwrite(pte_mkexec(__pte(0)))));
313 pte_t pte_clr = pte_mkyoung(pte_mkdirty(pte_mkwrite(pte_mkexec(__pte(~0)))));
314 unsigned long set = pte_val(entry) & pte_val(pte_set);
315 unsigned long clr = ~pte_val(entry) & ~pte_val(pte_clr);
b12c07a4 316 int huge = psize > mmu_virtual_psize ? 1 : 0;
a7b9f671 317
b12c07a4 318 pte_update(vma->vm_mm, address, ptep, clr, set, huge);
bd5050e3
AK
319
320 flush_tlb_page(vma, address);
f88df14b
DG
321}
322
45201c87
CL
323static inline int pte_young(pte_t pte)
324{
325 return pte_val(pte) & _PAGE_ACCESSED;
326}
327
f88df14b 328#define __HAVE_ARCH_PTE_SAME
45201c87 329#define pte_same(A,B) ((pte_val(A) ^ pte_val(B)) == 0)
f88df14b
DG
330
331/*
332 * Note that on Book E processors, the pmd contains the kernel virtual
333 * (lowmem) address of the pte page. The physical address is less useful
334 * because everything runs with translation enabled (even the TLB miss
335 * handler). On everything else the pmd contains the physical address
336 * of the pte page. -- paulus
337 */
338#ifndef CONFIG_BOOKE
f88df14b 339#define pmd_page(pmd) \
43b5fefc 340 pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
f88df14b
DG
341#else
342#define pmd_page_vaddr(pmd) \
32ea4c14 343 ((unsigned long)(pmd_val(pmd) & ~(PTE_TABLE_SIZE - 1)))
f88df14b 344#define pmd_page(pmd) \
af892e0f 345 pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
f88df14b
DG
346#endif
347
f88df14b
DG
348/*
349 * Encode and decode a swap entry.
350 * Note that the bits we use in a PTE for representing a swap entry
45201c87 351 * must not include the _PAGE_PRESENT bit.
780fc564 352 * -- paulus
f88df14b
DG
353 */
354#define __swp_type(entry) ((entry).val & 0x1f)
355#define __swp_offset(entry) ((entry).val >> 5)
356#define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
357#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
358#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
359
f88df14b
DG
360#endif /* !__ASSEMBLY__ */
361
17ed9e31 362#endif /* __ASM_POWERPC_NOHASH_32_PGTABLE_H */