]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/powerpc/include/asm/pgtable.h
powerpc/t2080rdb: Add T2080RDB board support
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / include / asm / pgtable.h
CommitLineData
047ea784
PM
1#ifndef _ASM_POWERPC_PGTABLE_H
2#define _ASM_POWERPC_PGTABLE_H
88ced031 3#ifdef __KERNEL__
047ea784 4
9c709f3b 5#ifndef __ASSEMBLY__
c34a51ce 6#include <linux/mmdebug.h>
9c709f3b
DG
7#include <asm/processor.h> /* For TASK_SIZE */
8#include <asm/mmu.h>
9#include <asm/page.h>
8d30c14c 10
9c709f3b 11struct mm_struct;
8d30c14c 12
9c709f3b
DG
13#endif /* !__ASSEMBLY__ */
14
f88df14b
DG
15#if defined(CONFIG_PPC64)
16# include <asm/pgtable-ppc64.h>
047ea784 17#else
f88df14b 18# include <asm/pgtable-ppc32.h>
e28f7faf 19#endif
1da177e4 20
cc3665a6
AK
21/*
22 * We save the slot number & secondary bit in the second half of the
23 * PTE page. We use the 8 bytes per each pte entry.
24 */
25#define PTE_PAGE_HIDX_OFFSET (PTRS_PER_PTE * 8)
26
1da177e4 27#ifndef __ASSEMBLY__
64b3d0e8 28
78f1dbde
AK
29#include <asm/tlbflush.h>
30
71087002
BH
31/* Generic accessors to PTE bits */
32static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
33static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
34static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
35static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
36static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; }
71087002
BH
37static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
38static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
39
c34a51ce
AK
40#ifdef CONFIG_NUMA_BALANCING
41
42static inline int pte_present(pte_t pte)
43{
44 return pte_val(pte) & (_PAGE_PRESENT | _PAGE_NUMA);
45}
46
c46a7c81
MG
47#define pte_present_nonuma pte_present_nonuma
48static inline int pte_present_nonuma(pte_t pte)
49{
50 return pte_val(pte) & (_PAGE_PRESENT);
51}
52
c34a51ce
AK
53#define pte_numa pte_numa
54static inline int pte_numa(pte_t pte)
55{
56 return (pte_val(pte) &
57 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
58}
59
60#define pte_mknonnuma pte_mknonnuma
61static inline pte_t pte_mknonnuma(pte_t pte)
62{
63 pte_val(pte) &= ~_PAGE_NUMA;
64 pte_val(pte) |= _PAGE_PRESENT | _PAGE_ACCESSED;
65 return pte;
66}
67
68#define pte_mknuma pte_mknuma
69static inline pte_t pte_mknuma(pte_t pte)
70{
71 /*
72 * We should not set _PAGE_NUMA on non present ptes. Also clear the
73 * present bit so that hash_page will return 1 and we collect this
74 * as numa fault.
75 */
76 if (pte_present(pte)) {
77 pte_val(pte) |= _PAGE_NUMA;
78 pte_val(pte) &= ~_PAGE_PRESENT;
79 } else
80 VM_BUG_ON(1);
81 return pte;
82}
83
56eecdb9
AK
84#define ptep_set_numa ptep_set_numa
85static inline void ptep_set_numa(struct mm_struct *mm, unsigned long addr,
86 pte_t *ptep)
87{
88 if ((pte_val(*ptep) & _PAGE_PRESENT) == 0)
89 VM_BUG_ON(1);
90
91 pte_update(mm, addr, ptep, _PAGE_PRESENT, _PAGE_NUMA, 0);
92 return;
93}
94
c34a51ce
AK
95#define pmd_numa pmd_numa
96static inline int pmd_numa(pmd_t pmd)
97{
98 return pte_numa(pmd_pte(pmd));
99}
100
56eecdb9
AK
101#define pmdp_set_numa pmdp_set_numa
102static inline void pmdp_set_numa(struct mm_struct *mm, unsigned long addr,
103 pmd_t *pmdp)
104{
105 if ((pmd_val(*pmdp) & _PAGE_PRESENT) == 0)
106 VM_BUG_ON(1);
107
108 pmd_hugepage_update(mm, addr, pmdp, _PAGE_PRESENT, _PAGE_NUMA);
109 return;
110}
111
c34a51ce
AK
112#define pmd_mknonnuma pmd_mknonnuma
113static inline pmd_t pmd_mknonnuma(pmd_t pmd)
114{
115 return pte_pmd(pte_mknonnuma(pmd_pte(pmd)));
116}
117
118#define pmd_mknuma pmd_mknuma
119static inline pmd_t pmd_mknuma(pmd_t pmd)
120{
121 return pte_pmd(pte_mknuma(pmd_pte(pmd)));
122}
123
124# else
125
126static inline int pte_present(pte_t pte)
127{
128 return pte_val(pte) & _PAGE_PRESENT;
129}
130#endif /* CONFIG_NUMA_BALANCING */
131
71087002
BH
132/* Conversion functions: convert a page and protection to a page entry,
133 * and a page entry and page directory to the page they refer to.
134 *
135 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
136 * long for now.
137 */
138static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) {
139 return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
140 pgprot_val(pgprot)); }
141static inline unsigned long pte_pfn(pte_t pte) {
142 return pte_val(pte) >> PTE_RPN_SHIFT; }
143
144/* Keep these as a macros to avoid include dependency mess */
145#define pte_page(x) pfn_to_page(pte_pfn(x))
146#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
147
148/* Generic modifiers for PTE bits */
149static inline pte_t pte_wrprotect(pte_t pte) {
150 pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
151static inline pte_t pte_mkclean(pte_t pte) {
152 pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
153static inline pte_t pte_mkold(pte_t pte) {
154 pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
155static inline pte_t pte_mkwrite(pte_t pte) {
156 pte_val(pte) |= _PAGE_RW; return pte; }
157static inline pte_t pte_mkdirty(pte_t pte) {
158 pte_val(pte) |= _PAGE_DIRTY; return pte; }
159static inline pte_t pte_mkyoung(pte_t pte) {
160 pte_val(pte) |= _PAGE_ACCESSED; return pte; }
161static inline pte_t pte_mkspecial(pte_t pte) {
162 pte_val(pte) |= _PAGE_SPECIAL; return pte; }
163static inline pte_t pte_mkhuge(pte_t pte) {
164 return pte; }
165static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
166{
167 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
168 return pte;
169}
170
171
8d30c14c
BH
172/* Insert a PTE, top-level function is out of line. It uses an inline
173 * low level function in the respective pgtable-* files
174 */
175extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
176 pte_t pte);
177
178/* This low level function performs the actual PTE insertion
179 * Setting the PTE depends on the MMU type and other factors. It's
180 * an horrible mess that I'm not going to try to clean up now but
181 * I'm keeping it in one place rather than spread around
182 */
183static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
184 pte_t *ptep, pte_t pte, int percpu)
185{
186#if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
187 /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
188 * helper pte_update() which does an atomic update. We need to do that
189 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
190 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
191 * the hash bits instead (ie, same as the non-SMP case)
192 */
193 if (percpu)
194 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
195 | (pte_val(pte) & ~_PAGE_HASHPTE));
196 else
197 pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte));
198
1660e9d3
PM
199#elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
200 /* Second case is 32-bit with 64-bit PTE. In this case, we
8d30c14c
BH
201 * can just store as long as we do the two halves in the right order
202 * with a barrier in between. This is possible because we take care,
203 * in the hash code, to pre-invalidate if the PTE was already hashed,
204 * which synchronizes us with any concurrent invalidation.
205 * In the percpu case, we also fallback to the simple update preserving
206 * the hash bits
207 */
208 if (percpu) {
209 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
210 | (pte_val(pte) & ~_PAGE_HASHPTE));
211 return;
212 }
213#if _PAGE_HASHPTE != 0
214 if (pte_val(*ptep) & _PAGE_HASHPTE)
215 flush_hash_entry(mm, ptep, addr);
216#endif
217 __asm__ __volatile__("\
218 stw%U0%X0 %2,%0\n\
219 eieio\n\
220 stw%U0%X0 %L2,%1"
221 : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
222 : "r" (pte) : "memory");
223
224#elif defined(CONFIG_PPC_STD_MMU_32)
225 /* Third case is 32-bit hash table in UP mode, we need to preserve
226 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
227 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
228 * and see we need to keep track that this PTE needs invalidating
229 */
230 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
231 | (pte_val(pte) & ~_PAGE_HASHPTE));
232
233#else
234 /* Anything else just stores the PTE normally. That covers all 64-bit
1660e9d3 235 * cases, and 32-bit non-hash with 32-bit PTEs.
8d30c14c
BH
236 */
237 *ptep = pte;
238#endif
239}
240
241
242#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
243extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
244 pte_t *ptep, pte_t entry, int dirty);
245
64b3d0e8
BH
246/*
247 * Macro to mark a page protection value as "uncacheable".
248 */
249
250#define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
251 _PAGE_WRITETHRU)
252
253#define pgprot_noncached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
254 _PAGE_NO_CACHE | _PAGE_GUARDED))
255
256#define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
257 _PAGE_NO_CACHE))
258
259#define pgprot_cached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
260 _PAGE_COHERENT))
261
262#define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
263 _PAGE_COHERENT | _PAGE_WRITETHRU))
264
09c188c4
GT
265#define pgprot_cached_noncoherent(prot) \
266 (__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
267
fe3cc0d9 268#define pgprot_writecombine pgprot_noncached_wc
64b3d0e8
BH
269
270struct file;
271extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
272 unsigned long size, pgprot_t vma_prot);
273#define __HAVE_PHYS_MEM_ACCESS_PROT
274
9c709f3b
DG
275/*
276 * ZERO_PAGE is a global shared page that is always zero: used
277 * for zero-mapped memory areas etc..
278 */
279extern unsigned long empty_zero_page[];
280#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
281
282extern pgd_t swapper_pg_dir[];
283
284extern void paging_init(void);
285
286/*
287 * kern_addr_valid is intended to indicate whether an address is a valid
288 * kernel address. Most 32-bit archs define it as always true (like this)
289 * but most 64-bit archs actually perform a test. What should we do here?
290 */
291#define kern_addr_valid(addr) (1)
292
1da177e4 293#include <asm-generic/pgtable.h>
1e3519f8
BH
294
295
296/*
297 * This gets called at the end of handling a page fault, when
298 * the kernel has put a new PTE into the page table for the process.
299 * We use it to ensure coherency between the i-cache and d-cache
300 * for the page which has just been mapped in.
301 * On machines which use an MMU hash table, we use this to put a
302 * corresponding HPTE into the hash table ahead of time, instead of
303 * waiting for the inevitable extra hash-table miss exception.
304 */
4b3073e1 305extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *);
1e3519f8 306
a4fe3ce7
DG
307extern int gup_hugepd(hugepd_t *hugepd, unsigned pdshift, unsigned long addr,
308 unsigned long end, int write, struct page **pages, int *nr);
309
e2b3d202
AK
310extern int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
311 unsigned long end, int write, struct page **pages, int *nr);
074c2eae
AK
312#ifndef CONFIG_TRANSPARENT_HUGEPAGE
313#define pmd_large(pmd) 0
314#define has_transparent_hugepage() 0
315#endif
29409997
AK
316pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
317 unsigned *shift);
f5e3fe09
BB
318
319static inline pte_t *lookup_linux_ptep(pgd_t *pgdir, unsigned long hva,
320 unsigned long *pte_sizep)
321{
322 pte_t *ptep;
323 unsigned long ps = *pte_sizep;
324 unsigned int shift;
325
326 ptep = find_linux_pte_or_hugepte(pgdir, hva, &shift);
327 if (!ptep)
328 return NULL;
329 if (shift)
330 *pte_sizep = 1ul << shift;
331 else
332 *pte_sizep = PAGE_SIZE;
333
334 if (ps > *pte_sizep)
335 return NULL;
336
337 return ptep;
338}
1da177e4
LT
339#endif /* __ASSEMBLY__ */
340
88ced031 341#endif /* __KERNEL__ */
047ea784 342#endif /* _ASM_POWERPC_PGTABLE_H */