]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/powerpc/kernel/kexec_elf_64.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / arch / powerpc / kernel / kexec_elf_64.c
CommitLineData
8e8e69d6 1// SPDX-License-Identifier: GPL-2.0-only
a0458284
TJB
2/*
3 * Load ELF vmlinux file for the kexec_file_load syscall.
4 *
5 * Copyright (C) 2004 Adam Litke (agl@us.ibm.com)
6 * Copyright (C) 2004 IBM Corp.
7 * Copyright (C) 2005 R Sharada (sharada@in.ibm.com)
8 * Copyright (C) 2006 Mohan Kumar M (mohan@in.ibm.com)
9 * Copyright (C) 2016 IBM Corporation
10 *
11 * Based on kexec-tools' kexec-elf-exec.c and kexec-elf-ppc64.c.
12 * Heavily modified for the kernel by
13 * Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>.
a0458284
TJB
14 */
15
16#define pr_fmt(fmt) "kexec_elf: " fmt
17
18#include <linux/elf.h>
19#include <linux/kexec.h>
20#include <linux/libfdt.h>
21#include <linux/module.h>
22#include <linux/of_fdt.h>
23#include <linux/slab.h>
24#include <linux/types.h>
25
26#define PURGATORY_STACK_SIZE (16 * 1024)
27
28#define elf_addr_to_cpu elf64_to_cpu
29
30#ifndef Elf_Rel
31#define Elf_Rel Elf64_Rel
32#endif /* Elf_Rel */
33
34struct elf_info {
35 /*
36 * Where the ELF binary contents are kept.
37 * Memory managed by the user of the struct.
38 */
39 const char *buffer;
40
41 const struct elfhdr *ehdr;
42 const struct elf_phdr *proghdrs;
43 struct elf_shdr *sechdrs;
44};
45
46static inline bool elf_is_elf_file(const struct elfhdr *ehdr)
47{
48 return memcmp(ehdr->e_ident, ELFMAG, SELFMAG) == 0;
49}
50
51static uint64_t elf64_to_cpu(const struct elfhdr *ehdr, uint64_t value)
52{
53 if (ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
54 value = le64_to_cpu(value);
55 else if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
56 value = be64_to_cpu(value);
57
58 return value;
59}
60
61static uint16_t elf16_to_cpu(const struct elfhdr *ehdr, uint16_t value)
62{
63 if (ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
64 value = le16_to_cpu(value);
65 else if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
66 value = be16_to_cpu(value);
67
68 return value;
69}
70
71static uint32_t elf32_to_cpu(const struct elfhdr *ehdr, uint32_t value)
72{
73 if (ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
74 value = le32_to_cpu(value);
75 else if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
76 value = be32_to_cpu(value);
77
78 return value;
79}
80
81/**
82 * elf_is_ehdr_sane - check that it is safe to use the ELF header
83 * @buf_len: size of the buffer in which the ELF file is loaded.
84 */
85static bool elf_is_ehdr_sane(const struct elfhdr *ehdr, size_t buf_len)
86{
87 if (ehdr->e_phnum > 0 && ehdr->e_phentsize != sizeof(struct elf_phdr)) {
88 pr_debug("Bad program header size.\n");
89 return false;
90 } else if (ehdr->e_shnum > 0 &&
91 ehdr->e_shentsize != sizeof(struct elf_shdr)) {
92 pr_debug("Bad section header size.\n");
93 return false;
94 } else if (ehdr->e_ident[EI_VERSION] != EV_CURRENT ||
95 ehdr->e_version != EV_CURRENT) {
96 pr_debug("Unknown ELF version.\n");
97 return false;
98 }
99
100 if (ehdr->e_phoff > 0 && ehdr->e_phnum > 0) {
101 size_t phdr_size;
102
103 /*
104 * e_phnum is at most 65535 so calculating the size of the
105 * program header cannot overflow.
106 */
107 phdr_size = sizeof(struct elf_phdr) * ehdr->e_phnum;
108
109 /* Sanity check the program header table location. */
110 if (ehdr->e_phoff + phdr_size < ehdr->e_phoff) {
111 pr_debug("Program headers at invalid location.\n");
112 return false;
113 } else if (ehdr->e_phoff + phdr_size > buf_len) {
114 pr_debug("Program headers truncated.\n");
115 return false;
116 }
117 }
118
119 if (ehdr->e_shoff > 0 && ehdr->e_shnum > 0) {
120 size_t shdr_size;
121
122 /*
123 * e_shnum is at most 65536 so calculating
124 * the size of the section header cannot overflow.
125 */
126 shdr_size = sizeof(struct elf_shdr) * ehdr->e_shnum;
127
128 /* Sanity check the section header table location. */
129 if (ehdr->e_shoff + shdr_size < ehdr->e_shoff) {
130 pr_debug("Section headers at invalid location.\n");
131 return false;
132 } else if (ehdr->e_shoff + shdr_size > buf_len) {
133 pr_debug("Section headers truncated.\n");
134 return false;
135 }
136 }
137
138 return true;
139}
140
141static int elf_read_ehdr(const char *buf, size_t len, struct elfhdr *ehdr)
142{
143 struct elfhdr *buf_ehdr;
144
145 if (len < sizeof(*buf_ehdr)) {
146 pr_debug("Buffer is too small to hold ELF header.\n");
147 return -ENOEXEC;
148 }
149
150 memset(ehdr, 0, sizeof(*ehdr));
151 memcpy(ehdr->e_ident, buf, sizeof(ehdr->e_ident));
152 if (!elf_is_elf_file(ehdr)) {
153 pr_debug("No ELF header magic.\n");
154 return -ENOEXEC;
155 }
156
157 if (ehdr->e_ident[EI_CLASS] != ELF_CLASS) {
158 pr_debug("Not a supported ELF class.\n");
159 return -ENOEXEC;
160 } else if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB &&
161 ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
162 pr_debug("Not a supported ELF data format.\n");
163 return -ENOEXEC;
164 }
165
166 buf_ehdr = (struct elfhdr *) buf;
167 if (elf16_to_cpu(ehdr, buf_ehdr->e_ehsize) != sizeof(*buf_ehdr)) {
168 pr_debug("Bad ELF header size.\n");
169 return -ENOEXEC;
170 }
171
172 ehdr->e_type = elf16_to_cpu(ehdr, buf_ehdr->e_type);
173 ehdr->e_machine = elf16_to_cpu(ehdr, buf_ehdr->e_machine);
174 ehdr->e_version = elf32_to_cpu(ehdr, buf_ehdr->e_version);
175 ehdr->e_entry = elf_addr_to_cpu(ehdr, buf_ehdr->e_entry);
176 ehdr->e_phoff = elf_addr_to_cpu(ehdr, buf_ehdr->e_phoff);
177 ehdr->e_shoff = elf_addr_to_cpu(ehdr, buf_ehdr->e_shoff);
178 ehdr->e_flags = elf32_to_cpu(ehdr, buf_ehdr->e_flags);
179 ehdr->e_phentsize = elf16_to_cpu(ehdr, buf_ehdr->e_phentsize);
180 ehdr->e_phnum = elf16_to_cpu(ehdr, buf_ehdr->e_phnum);
181 ehdr->e_shentsize = elf16_to_cpu(ehdr, buf_ehdr->e_shentsize);
182 ehdr->e_shnum = elf16_to_cpu(ehdr, buf_ehdr->e_shnum);
183 ehdr->e_shstrndx = elf16_to_cpu(ehdr, buf_ehdr->e_shstrndx);
184
185 return elf_is_ehdr_sane(ehdr, len) ? 0 : -ENOEXEC;
186}
187
188/**
189 * elf_is_phdr_sane - check that it is safe to use the program header
190 * @buf_len: size of the buffer in which the ELF file is loaded.
191 */
192static bool elf_is_phdr_sane(const struct elf_phdr *phdr, size_t buf_len)
193{
194
195 if (phdr->p_offset + phdr->p_filesz < phdr->p_offset) {
196 pr_debug("ELF segment location wraps around.\n");
197 return false;
198 } else if (phdr->p_offset + phdr->p_filesz > buf_len) {
199 pr_debug("ELF segment not in file.\n");
200 return false;
201 } else if (phdr->p_paddr + phdr->p_memsz < phdr->p_paddr) {
202 pr_debug("ELF segment address wraps around.\n");
203 return false;
204 }
205
206 return true;
207}
208
209static int elf_read_phdr(const char *buf, size_t len, struct elf_info *elf_info,
210 int idx)
211{
212 /* Override the const in proghdrs, we are the ones doing the loading. */
213 struct elf_phdr *phdr = (struct elf_phdr *) &elf_info->proghdrs[idx];
214 const char *pbuf;
215 struct elf_phdr *buf_phdr;
216
217 pbuf = buf + elf_info->ehdr->e_phoff + (idx * sizeof(*buf_phdr));
218 buf_phdr = (struct elf_phdr *) pbuf;
219
220 phdr->p_type = elf32_to_cpu(elf_info->ehdr, buf_phdr->p_type);
221 phdr->p_offset = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_offset);
222 phdr->p_paddr = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_paddr);
223 phdr->p_vaddr = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_vaddr);
224 phdr->p_flags = elf32_to_cpu(elf_info->ehdr, buf_phdr->p_flags);
225
226 /*
227 * The following fields have a type equivalent to Elf_Addr
228 * both in 32 bit and 64 bit ELF.
229 */
230 phdr->p_filesz = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_filesz);
231 phdr->p_memsz = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_memsz);
232 phdr->p_align = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_align);
233
234 return elf_is_phdr_sane(phdr, len) ? 0 : -ENOEXEC;
235}
236
237/**
238 * elf_read_phdrs - read the program headers from the buffer
239 *
240 * This function assumes that the program header table was checked for sanity.
241 * Use elf_is_ehdr_sane() if it wasn't.
242 */
243static int elf_read_phdrs(const char *buf, size_t len,
244 struct elf_info *elf_info)
245{
246 size_t phdr_size, i;
247 const struct elfhdr *ehdr = elf_info->ehdr;
248
249 /*
250 * e_phnum is at most 65535 so calculating the size of the
251 * program header cannot overflow.
252 */
253 phdr_size = sizeof(struct elf_phdr) * ehdr->e_phnum;
254
255 elf_info->proghdrs = kzalloc(phdr_size, GFP_KERNEL);
256 if (!elf_info->proghdrs)
257 return -ENOMEM;
258
259 for (i = 0; i < ehdr->e_phnum; i++) {
260 int ret;
261
262 ret = elf_read_phdr(buf, len, elf_info, i);
263 if (ret) {
264 kfree(elf_info->proghdrs);
265 elf_info->proghdrs = NULL;
266 return ret;
267 }
268 }
269
270 return 0;
271}
272
273/**
274 * elf_is_shdr_sane - check that it is safe to use the section header
275 * @buf_len: size of the buffer in which the ELF file is loaded.
276 */
277static bool elf_is_shdr_sane(const struct elf_shdr *shdr, size_t buf_len)
278{
279 bool size_ok;
280
281 /* SHT_NULL headers have undefined values, so we can't check them. */
282 if (shdr->sh_type == SHT_NULL)
283 return true;
284
285 /* Now verify sh_entsize */
286 switch (shdr->sh_type) {
287 case SHT_SYMTAB:
288 size_ok = shdr->sh_entsize == sizeof(Elf_Sym);
289 break;
290 case SHT_RELA:
291 size_ok = shdr->sh_entsize == sizeof(Elf_Rela);
292 break;
293 case SHT_DYNAMIC:
294 size_ok = shdr->sh_entsize == sizeof(Elf_Dyn);
295 break;
296 case SHT_REL:
297 size_ok = shdr->sh_entsize == sizeof(Elf_Rel);
298 break;
299 case SHT_NOTE:
300 case SHT_PROGBITS:
301 case SHT_HASH:
302 case SHT_NOBITS:
303 default:
304 /*
305 * This is a section whose entsize requirements
306 * I don't care about. If I don't know about
307 * the section I can't care about it's entsize
308 * requirements.
309 */
310 size_ok = true;
311 break;
312 }
313
314 if (!size_ok) {
315 pr_debug("ELF section with wrong entry size.\n");
316 return false;
317 } else if (shdr->sh_addr + shdr->sh_size < shdr->sh_addr) {
318 pr_debug("ELF section address wraps around.\n");
319 return false;
320 }
321
322 if (shdr->sh_type != SHT_NOBITS) {
323 if (shdr->sh_offset + shdr->sh_size < shdr->sh_offset) {
324 pr_debug("ELF section location wraps around.\n");
325 return false;
326 } else if (shdr->sh_offset + shdr->sh_size > buf_len) {
327 pr_debug("ELF section not in file.\n");
328 return false;
329 }
330 }
331
332 return true;
333}
334
335static int elf_read_shdr(const char *buf, size_t len, struct elf_info *elf_info,
336 int idx)
337{
338 struct elf_shdr *shdr = &elf_info->sechdrs[idx];
339 const struct elfhdr *ehdr = elf_info->ehdr;
340 const char *sbuf;
341 struct elf_shdr *buf_shdr;
342
343 sbuf = buf + ehdr->e_shoff + idx * sizeof(*buf_shdr);
344 buf_shdr = (struct elf_shdr *) sbuf;
345
346 shdr->sh_name = elf32_to_cpu(ehdr, buf_shdr->sh_name);
347 shdr->sh_type = elf32_to_cpu(ehdr, buf_shdr->sh_type);
348 shdr->sh_addr = elf_addr_to_cpu(ehdr, buf_shdr->sh_addr);
349 shdr->sh_offset = elf_addr_to_cpu(ehdr, buf_shdr->sh_offset);
350 shdr->sh_link = elf32_to_cpu(ehdr, buf_shdr->sh_link);
351 shdr->sh_info = elf32_to_cpu(ehdr, buf_shdr->sh_info);
352
353 /*
354 * The following fields have a type equivalent to Elf_Addr
355 * both in 32 bit and 64 bit ELF.
356 */
357 shdr->sh_flags = elf_addr_to_cpu(ehdr, buf_shdr->sh_flags);
358 shdr->sh_size = elf_addr_to_cpu(ehdr, buf_shdr->sh_size);
359 shdr->sh_addralign = elf_addr_to_cpu(ehdr, buf_shdr->sh_addralign);
360 shdr->sh_entsize = elf_addr_to_cpu(ehdr, buf_shdr->sh_entsize);
361
362 return elf_is_shdr_sane(shdr, len) ? 0 : -ENOEXEC;
363}
364
365/**
366 * elf_read_shdrs - read the section headers from the buffer
367 *
368 * This function assumes that the section header table was checked for sanity.
369 * Use elf_is_ehdr_sane() if it wasn't.
370 */
371static int elf_read_shdrs(const char *buf, size_t len,
372 struct elf_info *elf_info)
373{
374 size_t shdr_size, i;
375
376 /*
377 * e_shnum is at most 65536 so calculating
378 * the size of the section header cannot overflow.
379 */
380 shdr_size = sizeof(struct elf_shdr) * elf_info->ehdr->e_shnum;
381
382 elf_info->sechdrs = kzalloc(shdr_size, GFP_KERNEL);
383 if (!elf_info->sechdrs)
384 return -ENOMEM;
385
386 for (i = 0; i < elf_info->ehdr->e_shnum; i++) {
387 int ret;
388
389 ret = elf_read_shdr(buf, len, elf_info, i);
390 if (ret) {
391 kfree(elf_info->sechdrs);
392 elf_info->sechdrs = NULL;
393 return ret;
394 }
395 }
396
397 return 0;
398}
399
400/**
401 * elf_read_from_buffer - read ELF file and sets up ELF header and ELF info
402 * @buf: Buffer to read ELF file from.
403 * @len: Size of @buf.
404 * @ehdr: Pointer to existing struct which will be populated.
405 * @elf_info: Pointer to existing struct which will be populated.
406 *
407 * This function allows reading ELF files with different byte order than
408 * the kernel, byte-swapping the fields as needed.
409 *
410 * Return:
411 * On success returns 0, and the caller should call elf_free_info(elf_info) to
412 * free the memory allocated for the section and program headers.
413 */
414int elf_read_from_buffer(const char *buf, size_t len, struct elfhdr *ehdr,
415 struct elf_info *elf_info)
416{
417 int ret;
418
419 ret = elf_read_ehdr(buf, len, ehdr);
420 if (ret)
421 return ret;
422
423 elf_info->buffer = buf;
424 elf_info->ehdr = ehdr;
425 if (ehdr->e_phoff > 0 && ehdr->e_phnum > 0) {
426 ret = elf_read_phdrs(buf, len, elf_info);
427 if (ret)
428 return ret;
429 }
430 if (ehdr->e_shoff > 0 && ehdr->e_shnum > 0) {
431 ret = elf_read_shdrs(buf, len, elf_info);
432 if (ret) {
433 kfree(elf_info->proghdrs);
434 return ret;
435 }
436 }
437
438 return 0;
439}
440
441/**
442 * elf_free_info - free memory allocated by elf_read_from_buffer
443 */
444void elf_free_info(struct elf_info *elf_info)
445{
446 kfree(elf_info->proghdrs);
447 kfree(elf_info->sechdrs);
448 memset(elf_info, 0, sizeof(*elf_info));
449}
450/**
451 * build_elf_exec_info - read ELF executable and check that we can use it
452 */
453static int build_elf_exec_info(const char *buf, size_t len, struct elfhdr *ehdr,
454 struct elf_info *elf_info)
455{
456 int i;
457 int ret;
458
459 ret = elf_read_from_buffer(buf, len, ehdr, elf_info);
460 if (ret)
461 return ret;
462
463 /* Big endian vmlinux has type ET_DYN. */
464 if (ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) {
465 pr_err("Not an ELF executable.\n");
466 goto error;
467 } else if (!elf_info->proghdrs) {
468 pr_err("No ELF program header.\n");
469 goto error;
470 }
471
472 for (i = 0; i < ehdr->e_phnum; i++) {
473 /*
474 * Kexec does not support loading interpreters.
475 * In addition this check keeps us from attempting
476 * to kexec ordinay executables.
477 */
478 if (elf_info->proghdrs[i].p_type == PT_INTERP) {
479 pr_err("Requires an ELF interpreter.\n");
480 goto error;
481 }
482 }
483
484 return 0;
485error:
486 elf_free_info(elf_info);
487 return -ENOEXEC;
488}
489
490static int elf64_probe(const char *buf, unsigned long len)
491{
492 struct elfhdr ehdr;
493 struct elf_info elf_info;
494 int ret;
495
496 ret = build_elf_exec_info(buf, len, &ehdr, &elf_info);
497 if (ret)
498 return ret;
499
500 elf_free_info(&elf_info);
501
502 return elf_check_arch(&ehdr) ? 0 : -ENOEXEC;
503}
504
505/**
506 * elf_exec_load - load ELF executable image
507 * @lowest_load_addr: On return, will be the address where the first PT_LOAD
508 * section will be loaded in memory.
509 *
510 * Return:
511 * 0 on success, negative value on failure.
512 */
513static int elf_exec_load(struct kimage *image, struct elfhdr *ehdr,
514 struct elf_info *elf_info,
515 unsigned long *lowest_load_addr)
516{
517 unsigned long base = 0, lowest_addr = UINT_MAX;
518 int ret;
519 size_t i;
520 struct kexec_buf kbuf = { .image = image, .buf_max = ppc64_rma_size,
521 .top_down = false };
522
523 /* Read in the PT_LOAD segments. */
524 for (i = 0; i < ehdr->e_phnum; i++) {
525 unsigned long load_addr;
526 size_t size;
527 const struct elf_phdr *phdr;
528
529 phdr = &elf_info->proghdrs[i];
530 if (phdr->p_type != PT_LOAD)
531 continue;
532
533 size = phdr->p_filesz;
534 if (size > phdr->p_memsz)
535 size = phdr->p_memsz;
536
537 kbuf.buffer = (void *) elf_info->buffer + phdr->p_offset;
538 kbuf.bufsz = size;
539 kbuf.memsz = phdr->p_memsz;
540 kbuf.buf_align = phdr->p_align;
541 kbuf.buf_min = phdr->p_paddr + base;
8b909e35 542 kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
a0458284
TJB
543 ret = kexec_add_buffer(&kbuf);
544 if (ret)
545 goto out;
546 load_addr = kbuf.mem;
547
548 if (load_addr < lowest_addr)
549 lowest_addr = load_addr;
550 }
551
552 /* Update entry point to reflect new load address. */
553 ehdr->e_entry += base;
554
555 *lowest_load_addr = lowest_addr;
556 ret = 0;
557 out:
558 return ret;
559}
560
561static void *elf64_load(struct kimage *image, char *kernel_buf,
562 unsigned long kernel_len, char *initrd,
563 unsigned long initrd_len, char *cmdline,
564 unsigned long cmdline_len)
565{
566 int ret;
567 unsigned int fdt_size;
3be3f61d 568 unsigned long kernel_load_addr;
a0458284
TJB
569 unsigned long initrd_load_addr = 0, fdt_load_addr;
570 void *fdt;
571 const void *slave_code;
572 struct elfhdr ehdr;
573 struct elf_info elf_info;
574 struct kexec_buf kbuf = { .image = image, .buf_min = 0,
575 .buf_max = ppc64_rma_size };
3be3f61d 576 struct kexec_buf pbuf = { .image = image, .buf_min = 0,
8b909e35
TJB
577 .buf_max = ppc64_rma_size, .top_down = true,
578 .mem = KEXEC_BUF_MEM_UNKNOWN };
a0458284
TJB
579
580 ret = build_elf_exec_info(kernel_buf, kernel_len, &ehdr, &elf_info);
581 if (ret)
582 goto out;
583
584 ret = elf_exec_load(image, &ehdr, &elf_info, &kernel_load_addr);
585 if (ret)
586 goto out;
587
588 pr_debug("Loaded the kernel at 0x%lx\n", kernel_load_addr);
589
3be3f61d 590 ret = kexec_load_purgatory(image, &pbuf);
a0458284
TJB
591 if (ret) {
592 pr_err("Loading purgatory failed.\n");
593 goto out;
594 }
595
3be3f61d 596 pr_debug("Loaded purgatory at 0x%lx\n", pbuf.mem);
a0458284
TJB
597
598 if (initrd != NULL) {
599 kbuf.buffer = initrd;
600 kbuf.bufsz = kbuf.memsz = initrd_len;
601 kbuf.buf_align = PAGE_SIZE;
602 kbuf.top_down = false;
8b909e35 603 kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
a0458284
TJB
604 ret = kexec_add_buffer(&kbuf);
605 if (ret)
606 goto out;
607 initrd_load_addr = kbuf.mem;
608
609 pr_debug("Loaded initrd at 0x%lx\n", initrd_load_addr);
610 }
611
612 fdt_size = fdt_totalsize(initial_boot_params) * 2;
613 fdt = kmalloc(fdt_size, GFP_KERNEL);
614 if (!fdt) {
615 pr_err("Not enough memory for the device tree.\n");
616 ret = -ENOMEM;
617 goto out;
618 }
619 ret = fdt_open_into(initial_boot_params, fdt, fdt_size);
620 if (ret < 0) {
621 pr_err("Error setting up the new device tree.\n");
622 ret = -EINVAL;
623 goto out;
624 }
625
ab6b1d1f 626 ret = setup_new_fdt(image, fdt, initrd_load_addr, initrd_len, cmdline);
a0458284
TJB
627 if (ret)
628 goto out;
629
630 fdt_pack(fdt);
631
632 kbuf.buffer = fdt;
633 kbuf.bufsz = kbuf.memsz = fdt_size;
634 kbuf.buf_align = PAGE_SIZE;
635 kbuf.top_down = true;
8b909e35 636 kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
a0458284
TJB
637 ret = kexec_add_buffer(&kbuf);
638 if (ret)
639 goto out;
640 fdt_load_addr = kbuf.mem;
641
642 pr_debug("Loaded device tree at 0x%lx\n", fdt_load_addr);
643
644 slave_code = elf_info.buffer + elf_info.proghdrs[0].p_offset;
645 ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr,
646 fdt_load_addr);
647 if (ret)
648 pr_err("Error setting up the purgatory.\n");
649
650out:
651 elf_free_info(&elf_info);
652
653 /* Make kimage_file_post_load_cleanup free the fdt buffer for us. */
654 return ret ? ERR_PTR(ret) : fdt;
655}
656
9ec4ecef 657const struct kexec_file_ops kexec_elf64_ops = {
a0458284
TJB
658 .probe = elf64_probe,
659 .load = elf64_load,
660};