]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/powerpc/kernel/process.c
Merge remote-tracking branch 'mkp-scsi/4.10/scsi-fixes' into fixes
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
14cf11af
PM
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
14cf11af
PM
28#include <linux/prctl.h>
29#include <linux/init_task.h>
4b16f8e2 30#include <linux/export.h>
14cf11af
PM
31#include <linux/kallsyms.h>
32#include <linux/mqueue.h>
33#include <linux/hardirq.h>
06d67d54 34#include <linux/utsname.h>
6794c782 35#include <linux/ftrace.h>
79741dd3 36#include <linux/kernel_stat.h>
d839088c
AB
37#include <linux/personality.h>
38#include <linux/random.h>
5aae8a53 39#include <linux/hw_breakpoint.h>
7b051f66 40#include <linux/uaccess.h>
7f92bc56 41#include <linux/elf-randomize.h>
14cf11af
PM
42
43#include <asm/pgtable.h>
14cf11af
PM
44#include <asm/io.h>
45#include <asm/processor.h>
46#include <asm/mmu.h>
47#include <asm/prom.h>
76032de8 48#include <asm/machdep.h>
c6622f63 49#include <asm/time.h>
ae3a197e 50#include <asm/runlatch.h>
a7f31841 51#include <asm/syscalls.h>
ae3a197e 52#include <asm/switch_to.h>
fb09692e 53#include <asm/tm.h>
ae3a197e 54#include <asm/debug.h>
06d67d54
PM
55#ifdef CONFIG_PPC64
56#include <asm/firmware.h>
06d67d54 57#endif
7cedd601 58#include <asm/code-patching.h>
7f92bc56 59#include <asm/exec.h>
5d31a96e 60#include <asm/livepatch.h>
b92a226e 61#include <asm/cpu_has_feature.h>
0545d543 62#include <asm/asm-prototypes.h>
5d31a96e 63
d6a61bfc
LM
64#include <linux/kprobes.h>
65#include <linux/kdebug.h>
14cf11af 66
6533b7c1
CL
67#ifdef CONFIG_CC_STACKPROTECTOR
68#include <linux/stackprotector.h>
69unsigned long __stack_chk_guard __read_mostly;
70EXPORT_SYMBOL(__stack_chk_guard);
71#endif
72
8b3c34cf
MN
73/* Transactional Memory debug */
74#ifdef TM_DEBUG_SW
75#define TM_DEBUG(x...) printk(KERN_INFO x)
76#else
77#define TM_DEBUG(x...) do { } while(0)
78#endif
79
14cf11af
PM
80extern unsigned long _get_SP(void);
81
d31626f7 82#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
b86fd2bd 83static void check_if_tm_restore_required(struct task_struct *tsk)
d31626f7
PM
84{
85 /*
86 * If we are saving the current thread's registers, and the
87 * thread is in a transactional state, set the TIF_RESTORE_TM
88 * bit so that we know to restore the registers before
89 * returning to userspace.
90 */
91 if (tsk == current && tsk->thread.regs &&
92 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
93 !test_thread_flag(TIF_RESTORE_TM)) {
829023df 94 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
d31626f7
PM
95 set_thread_flag(TIF_RESTORE_TM);
96 }
d31626f7 97}
dc16b553
CB
98
99static inline bool msr_tm_active(unsigned long msr)
100{
101 return MSR_TM_ACTIVE(msr);
102}
d31626f7 103#else
dc16b553 104static inline bool msr_tm_active(unsigned long msr) { return false; }
b86fd2bd 105static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
d31626f7
PM
106#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
107
3eb5d588
AB
108bool strict_msr_control;
109EXPORT_SYMBOL(strict_msr_control);
110
111static int __init enable_strict_msr_control(char *str)
112{
113 strict_msr_control = true;
114 pr_info("Enabling strict facility control\n");
115
116 return 0;
117}
118early_param("ppc_strict_facility_enable", enable_strict_msr_control);
119
3cee070a 120unsigned long msr_check_and_set(unsigned long bits)
98da581e 121{
a0e72cf1
AB
122 unsigned long oldmsr = mfmsr();
123 unsigned long newmsr;
98da581e 124
a0e72cf1 125 newmsr = oldmsr | bits;
98da581e 126
98da581e 127#ifdef CONFIG_VSX
a0e72cf1 128 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
98da581e
AB
129 newmsr |= MSR_VSX;
130#endif
a0e72cf1 131
98da581e
AB
132 if (oldmsr != newmsr)
133 mtmsr_isync(newmsr);
3cee070a
CB
134
135 return newmsr;
a0e72cf1 136}
98da581e 137
3eb5d588 138void __msr_check_and_clear(unsigned long bits)
a0e72cf1
AB
139{
140 unsigned long oldmsr = mfmsr();
141 unsigned long newmsr;
142
143 newmsr = oldmsr & ~bits;
144
145#ifdef CONFIG_VSX
146 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
147 newmsr &= ~MSR_VSX;
148#endif
149
150 if (oldmsr != newmsr)
151 mtmsr_isync(newmsr);
152}
3eb5d588 153EXPORT_SYMBOL(__msr_check_and_clear);
a0e72cf1
AB
154
155#ifdef CONFIG_PPC_FPU
8792468d
CB
156void __giveup_fpu(struct task_struct *tsk)
157{
8eb98037
AB
158 unsigned long msr;
159
8792468d 160 save_fpu(tsk);
8eb98037
AB
161 msr = tsk->thread.regs->msr;
162 msr &= ~MSR_FP;
8792468d
CB
163#ifdef CONFIG_VSX
164 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 165 msr &= ~MSR_VSX;
8792468d 166#endif
8eb98037 167 tsk->thread.regs->msr = msr;
8792468d
CB
168}
169
a0e72cf1
AB
170void giveup_fpu(struct task_struct *tsk)
171{
172 check_if_tm_restore_required(tsk);
173
174 msr_check_and_set(MSR_FP);
98da581e 175 __giveup_fpu(tsk);
a0e72cf1 176 msr_check_and_clear(MSR_FP);
98da581e
AB
177}
178EXPORT_SYMBOL(giveup_fpu);
179
14cf11af
PM
180/*
181 * Make sure the floating-point register state in the
182 * the thread_struct is up to date for task tsk.
183 */
184void flush_fp_to_thread(struct task_struct *tsk)
185{
186 if (tsk->thread.regs) {
187 /*
188 * We need to disable preemption here because if we didn't,
189 * another process could get scheduled after the regs->msr
190 * test but before we have finished saving the FP registers
191 * to the thread_struct. That process could take over the
192 * FPU, and then when we get scheduled again we would store
193 * bogus values for the remaining FP registers.
194 */
195 preempt_disable();
196 if (tsk->thread.regs->msr & MSR_FP) {
14cf11af
PM
197 /*
198 * This should only ever be called for current or
199 * for a stopped child process. Since we save away
af1bbc3d 200 * the FP register state on context switch,
14cf11af
PM
201 * there is something wrong if a stopped child appears
202 * to still have its FP state in the CPU registers.
203 */
204 BUG_ON(tsk != current);
b86fd2bd 205 giveup_fpu(tsk);
14cf11af
PM
206 }
207 preempt_enable();
208 }
209}
de56a948 210EXPORT_SYMBOL_GPL(flush_fp_to_thread);
14cf11af
PM
211
212void enable_kernel_fp(void)
213{
e909fb83
CB
214 unsigned long cpumsr;
215
14cf11af
PM
216 WARN_ON(preemptible());
217
e909fb83 218 cpumsr = msr_check_and_set(MSR_FP);
611b0e5c 219
d64d02ce
AB
220 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
221 check_if_tm_restore_required(current);
e909fb83
CB
222 /*
223 * If a thread has already been reclaimed then the
224 * checkpointed registers are on the CPU but have definitely
225 * been saved by the reclaim code. Don't need to and *cannot*
226 * giveup as this would save to the 'live' structure not the
227 * checkpointed structure.
228 */
229 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
230 return;
a0e72cf1 231 __giveup_fpu(current);
d64d02ce 232 }
14cf11af
PM
233}
234EXPORT_SYMBOL(enable_kernel_fp);
70fe3d98
CB
235
236static int restore_fp(struct task_struct *tsk) {
dc16b553 237 if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
70fe3d98
CB
238 load_fp_state(&current->thread.fp_state);
239 current->thread.load_fp++;
240 return 1;
241 }
242 return 0;
243}
244#else
245static int restore_fp(struct task_struct *tsk) { return 0; }
d1e1cf2e 246#endif /* CONFIG_PPC_FPU */
14cf11af 247
14cf11af 248#ifdef CONFIG_ALTIVEC
70fe3d98
CB
249#define loadvec(thr) ((thr).load_vec)
250
6f515d84
CB
251static void __giveup_altivec(struct task_struct *tsk)
252{
8eb98037
AB
253 unsigned long msr;
254
6f515d84 255 save_altivec(tsk);
8eb98037
AB
256 msr = tsk->thread.regs->msr;
257 msr &= ~MSR_VEC;
6f515d84
CB
258#ifdef CONFIG_VSX
259 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 260 msr &= ~MSR_VSX;
6f515d84 261#endif
8eb98037 262 tsk->thread.regs->msr = msr;
6f515d84
CB
263}
264
98da581e
AB
265void giveup_altivec(struct task_struct *tsk)
266{
98da581e
AB
267 check_if_tm_restore_required(tsk);
268
a0e72cf1 269 msr_check_and_set(MSR_VEC);
98da581e 270 __giveup_altivec(tsk);
a0e72cf1 271 msr_check_and_clear(MSR_VEC);
98da581e
AB
272}
273EXPORT_SYMBOL(giveup_altivec);
274
14cf11af
PM
275void enable_kernel_altivec(void)
276{
e909fb83
CB
277 unsigned long cpumsr;
278
14cf11af
PM
279 WARN_ON(preemptible());
280
e909fb83 281 cpumsr = msr_check_and_set(MSR_VEC);
611b0e5c 282
d64d02ce
AB
283 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
284 check_if_tm_restore_required(current);
e909fb83
CB
285 /*
286 * If a thread has already been reclaimed then the
287 * checkpointed registers are on the CPU but have definitely
288 * been saved by the reclaim code. Don't need to and *cannot*
289 * giveup as this would save to the 'live' structure not the
290 * checkpointed structure.
291 */
292 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
293 return;
a0e72cf1 294 __giveup_altivec(current);
d64d02ce 295 }
14cf11af
PM
296}
297EXPORT_SYMBOL(enable_kernel_altivec);
298
299/*
300 * Make sure the VMX/Altivec register state in the
301 * the thread_struct is up to date for task tsk.
302 */
303void flush_altivec_to_thread(struct task_struct *tsk)
304{
305 if (tsk->thread.regs) {
306 preempt_disable();
307 if (tsk->thread.regs->msr & MSR_VEC) {
14cf11af 308 BUG_ON(tsk != current);
b86fd2bd 309 giveup_altivec(tsk);
14cf11af
PM
310 }
311 preempt_enable();
312 }
313}
de56a948 314EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
70fe3d98
CB
315
316static int restore_altivec(struct task_struct *tsk)
317{
dc16b553
CB
318 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
319 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
70fe3d98
CB
320 load_vr_state(&tsk->thread.vr_state);
321 tsk->thread.used_vr = 1;
322 tsk->thread.load_vec++;
323
324 return 1;
325 }
326 return 0;
327}
328#else
329#define loadvec(thr) 0
330static inline int restore_altivec(struct task_struct *tsk) { return 0; }
14cf11af
PM
331#endif /* CONFIG_ALTIVEC */
332
ce48b210 333#ifdef CONFIG_VSX
bf6a4d5b 334static void __giveup_vsx(struct task_struct *tsk)
a7d623d4 335{
a7d623d4
AB
336 if (tsk->thread.regs->msr & MSR_FP)
337 __giveup_fpu(tsk);
338 if (tsk->thread.regs->msr & MSR_VEC)
339 __giveup_altivec(tsk);
bf6a4d5b
CB
340 tsk->thread.regs->msr &= ~MSR_VSX;
341}
342
343static void giveup_vsx(struct task_struct *tsk)
344{
345 check_if_tm_restore_required(tsk);
346
347 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 348 __giveup_vsx(tsk);
a0e72cf1 349 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 350}
bf6a4d5b
CB
351
352static void save_vsx(struct task_struct *tsk)
353{
354 if (tsk->thread.regs->msr & MSR_FP)
355 save_fpu(tsk);
356 if (tsk->thread.regs->msr & MSR_VEC)
357 save_altivec(tsk);
358}
a7d623d4 359
ce48b210
MN
360void enable_kernel_vsx(void)
361{
e909fb83
CB
362 unsigned long cpumsr;
363
ce48b210
MN
364 WARN_ON(preemptible());
365
e909fb83 366 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
611b0e5c 367
a0e72cf1 368 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
d64d02ce 369 check_if_tm_restore_required(current);
e909fb83
CB
370 /*
371 * If a thread has already been reclaimed then the
372 * checkpointed registers are on the CPU but have definitely
373 * been saved by the reclaim code. Don't need to and *cannot*
374 * giveup as this would save to the 'live' structure not the
375 * checkpointed structure.
376 */
377 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
378 return;
a0e72cf1
AB
379 if (current->thread.regs->msr & MSR_FP)
380 __giveup_fpu(current);
381 if (current->thread.regs->msr & MSR_VEC)
382 __giveup_altivec(current);
383 __giveup_vsx(current);
611b0e5c 384 }
ce48b210
MN
385}
386EXPORT_SYMBOL(enable_kernel_vsx);
ce48b210
MN
387
388void flush_vsx_to_thread(struct task_struct *tsk)
389{
390 if (tsk->thread.regs) {
391 preempt_disable();
392 if (tsk->thread.regs->msr & MSR_VSX) {
ce48b210 393 BUG_ON(tsk != current);
ce48b210
MN
394 giveup_vsx(tsk);
395 }
396 preempt_enable();
397 }
398}
de56a948 399EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
70fe3d98
CB
400
401static int restore_vsx(struct task_struct *tsk)
402{
403 if (cpu_has_feature(CPU_FTR_VSX)) {
404 tsk->thread.used_vsr = 1;
405 return 1;
406 }
407
408 return 0;
409}
410#else
411static inline int restore_vsx(struct task_struct *tsk) { return 0; }
bf6a4d5b 412static inline void save_vsx(struct task_struct *tsk) { }
ce48b210
MN
413#endif /* CONFIG_VSX */
414
14cf11af 415#ifdef CONFIG_SPE
98da581e
AB
416void giveup_spe(struct task_struct *tsk)
417{
98da581e
AB
418 check_if_tm_restore_required(tsk);
419
a0e72cf1 420 msr_check_and_set(MSR_SPE);
98da581e 421 __giveup_spe(tsk);
a0e72cf1 422 msr_check_and_clear(MSR_SPE);
98da581e
AB
423}
424EXPORT_SYMBOL(giveup_spe);
14cf11af
PM
425
426void enable_kernel_spe(void)
427{
428 WARN_ON(preemptible());
429
a0e72cf1 430 msr_check_and_set(MSR_SPE);
611b0e5c 431
d64d02ce
AB
432 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
433 check_if_tm_restore_required(current);
a0e72cf1 434 __giveup_spe(current);
d64d02ce 435 }
14cf11af
PM
436}
437EXPORT_SYMBOL(enable_kernel_spe);
438
439void flush_spe_to_thread(struct task_struct *tsk)
440{
441 if (tsk->thread.regs) {
442 preempt_disable();
443 if (tsk->thread.regs->msr & MSR_SPE) {
14cf11af 444 BUG_ON(tsk != current);
685659ee 445 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 446 giveup_spe(tsk);
14cf11af
PM
447 }
448 preempt_enable();
449 }
450}
14cf11af
PM
451#endif /* CONFIG_SPE */
452
c2085059
AB
453static unsigned long msr_all_available;
454
455static int __init init_msr_all_available(void)
456{
457#ifdef CONFIG_PPC_FPU
458 msr_all_available |= MSR_FP;
459#endif
460#ifdef CONFIG_ALTIVEC
461 if (cpu_has_feature(CPU_FTR_ALTIVEC))
462 msr_all_available |= MSR_VEC;
463#endif
464#ifdef CONFIG_VSX
465 if (cpu_has_feature(CPU_FTR_VSX))
466 msr_all_available |= MSR_VSX;
467#endif
468#ifdef CONFIG_SPE
469 if (cpu_has_feature(CPU_FTR_SPE))
470 msr_all_available |= MSR_SPE;
471#endif
472
473 return 0;
474}
475early_initcall(init_msr_all_available);
476
477void giveup_all(struct task_struct *tsk)
478{
479 unsigned long usermsr;
480
481 if (!tsk->thread.regs)
482 return;
483
484 usermsr = tsk->thread.regs->msr;
485
486 if ((usermsr & msr_all_available) == 0)
487 return;
488
489 msr_check_and_set(msr_all_available);
b0f16b46 490 check_if_tm_restore_required(tsk);
c2085059
AB
491
492#ifdef CONFIG_PPC_FPU
493 if (usermsr & MSR_FP)
494 __giveup_fpu(tsk);
495#endif
496#ifdef CONFIG_ALTIVEC
497 if (usermsr & MSR_VEC)
498 __giveup_altivec(tsk);
499#endif
500#ifdef CONFIG_VSX
501 if (usermsr & MSR_VSX)
502 __giveup_vsx(tsk);
503#endif
504#ifdef CONFIG_SPE
505 if (usermsr & MSR_SPE)
506 __giveup_spe(tsk);
507#endif
508
509 msr_check_and_clear(msr_all_available);
510}
511EXPORT_SYMBOL(giveup_all);
512
70fe3d98
CB
513void restore_math(struct pt_regs *regs)
514{
515 unsigned long msr;
516
dc16b553
CB
517 if (!msr_tm_active(regs->msr) &&
518 !current->thread.load_fp && !loadvec(current->thread))
70fe3d98
CB
519 return;
520
521 msr = regs->msr;
522 msr_check_and_set(msr_all_available);
523
524 /*
525 * Only reload if the bit is not set in the user MSR, the bit BEING set
526 * indicates that the registers are hot
527 */
528 if ((!(msr & MSR_FP)) && restore_fp(current))
529 msr |= MSR_FP | current->thread.fpexc_mode;
530
531 if ((!(msr & MSR_VEC)) && restore_altivec(current))
532 msr |= MSR_VEC;
533
534 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
535 restore_vsx(current)) {
536 msr |= MSR_VSX;
537 }
538
539 msr_check_and_clear(msr_all_available);
540
541 regs->msr = msr;
542}
543
de2a20aa
CB
544void save_all(struct task_struct *tsk)
545{
546 unsigned long usermsr;
547
548 if (!tsk->thread.regs)
549 return;
550
551 usermsr = tsk->thread.regs->msr;
552
553 if ((usermsr & msr_all_available) == 0)
554 return;
555
556 msr_check_and_set(msr_all_available);
557
bf6a4d5b
CB
558 /*
559 * Saving the way the register space is in hardware, save_vsx boils
560 * down to a save_fpu() and save_altivec()
561 */
562 if (usermsr & MSR_VSX) {
563 save_vsx(tsk);
564 } else {
565 if (usermsr & MSR_FP)
566 save_fpu(tsk);
567
568 if (usermsr & MSR_VEC)
569 save_altivec(tsk);
570 }
de2a20aa
CB
571
572 if (usermsr & MSR_SPE)
573 __giveup_spe(tsk);
574
575 msr_check_and_clear(msr_all_available);
576}
577
579e633e
AB
578void flush_all_to_thread(struct task_struct *tsk)
579{
580 if (tsk->thread.regs) {
581 preempt_disable();
582 BUG_ON(tsk != current);
de2a20aa 583 save_all(tsk);
579e633e
AB
584
585#ifdef CONFIG_SPE
586 if (tsk->thread.regs->msr & MSR_SPE)
587 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
588#endif
589
590 preempt_enable();
591 }
592}
593EXPORT_SYMBOL(flush_all_to_thread);
594
3bffb652
DK
595#ifdef CONFIG_PPC_ADV_DEBUG_REGS
596void do_send_trap(struct pt_regs *regs, unsigned long address,
597 unsigned long error_code, int signal_code, int breakpt)
598{
599 siginfo_t info;
600
41ab5266 601 current->thread.trap_nr = signal_code;
3bffb652
DK
602 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
603 11, SIGSEGV) == NOTIFY_STOP)
604 return;
605
606 /* Deliver the signal to userspace */
607 info.si_signo = SIGTRAP;
608 info.si_errno = breakpt; /* breakpoint or watchpoint id */
609 info.si_code = signal_code;
610 info.si_addr = (void __user *)address;
611 force_sig_info(SIGTRAP, &info, current);
612}
613#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 614void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
615 unsigned long error_code)
616{
617 siginfo_t info;
618
41ab5266 619 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
620 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
621 11, SIGSEGV) == NOTIFY_STOP)
622 return;
623
9422de3e 624 if (debugger_break_match(regs))
d6a61bfc
LM
625 return;
626
9422de3e
MN
627 /* Clear the breakpoint */
628 hw_breakpoint_disable();
d6a61bfc
LM
629
630 /* Deliver the signal to userspace */
631 info.si_signo = SIGTRAP;
632 info.si_errno = 0;
633 info.si_code = TRAP_HWBKPT;
634 info.si_addr = (void __user *)address;
635 force_sig_info(SIGTRAP, &info, current);
636}
3bffb652 637#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 638
9422de3e 639static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 640
3bffb652
DK
641#ifdef CONFIG_PPC_ADV_DEBUG_REGS
642/*
643 * Set the debug registers back to their default "safe" values.
644 */
645static void set_debug_reg_defaults(struct thread_struct *thread)
646{
51ae8d4a 647 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 648#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 649 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 650#endif
51ae8d4a 651 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 652#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 653 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 654#endif
51ae8d4a 655 thread->debug.dbcr0 = 0;
3bffb652
DK
656#ifdef CONFIG_BOOKE
657 /*
658 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
659 */
51ae8d4a 660 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
661 DBCR1_IAC3US | DBCR1_IAC4US;
662 /*
663 * Force Data Address Compare User/Supervisor bits to be User-only
664 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
665 */
51ae8d4a 666 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 667#else
51ae8d4a 668 thread->debug.dbcr1 = 0;
3bffb652
DK
669#endif
670}
671
f5f97210 672static void prime_debug_regs(struct debug_reg *debug)
3bffb652 673{
6cecf76b
SW
674 /*
675 * We could have inherited MSR_DE from userspace, since
676 * it doesn't get cleared on exception entry. Make sure
677 * MSR_DE is clear before we enable any debug events.
678 */
679 mtmsr(mfmsr() & ~MSR_DE);
680
f5f97210
SW
681 mtspr(SPRN_IAC1, debug->iac1);
682 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 683#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
684 mtspr(SPRN_IAC3, debug->iac3);
685 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 686#endif
f5f97210
SW
687 mtspr(SPRN_DAC1, debug->dac1);
688 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 689#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
690 mtspr(SPRN_DVC1, debug->dvc1);
691 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 692#endif
f5f97210
SW
693 mtspr(SPRN_DBCR0, debug->dbcr0);
694 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 695#ifdef CONFIG_BOOKE
f5f97210 696 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
697#endif
698}
699/*
700 * Unless neither the old or new thread are making use of the
701 * debug registers, set the debug registers from the values
702 * stored in the new thread.
703 */
f5f97210 704void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 705{
51ae8d4a 706 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
707 || (new_debug->dbcr0 & DBCR0_IDM))
708 prime_debug_regs(new_debug);
3bffb652 709}
3743c9b8 710EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 711#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 712#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
713static void set_debug_reg_defaults(struct thread_struct *thread)
714{
9422de3e
MN
715 thread->hw_brk.address = 0;
716 thread->hw_brk.type = 0;
b9818c33 717 set_breakpoint(&thread->hw_brk);
3bffb652 718}
e0780b72 719#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
720#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
721
172ae2e7 722#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
723static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
724{
d6a61bfc 725 mtspr(SPRN_DAC1, dabr);
221c185d
DK
726#ifdef CONFIG_PPC_47x
727 isync();
728#endif
9422de3e
MN
729 return 0;
730}
c6c9eace 731#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
732static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
733{
c6c9eace 734 mtspr(SPRN_DABR, dabr);
82a9f16a
MN
735 if (cpu_has_feature(CPU_FTR_DABRX))
736 mtspr(SPRN_DABRX, dabrx);
cab0af98 737 return 0;
14cf11af 738}
9422de3e
MN
739#else
740static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
741{
742 return -EINVAL;
743}
744#endif
745
746static inline int set_dabr(struct arch_hw_breakpoint *brk)
747{
748 unsigned long dabr, dabrx;
749
750 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
751 dabrx = ((brk->type >> 3) & 0x7);
752
753 if (ppc_md.set_dabr)
754 return ppc_md.set_dabr(dabr, dabrx);
755
756 return __set_dabr(dabr, dabrx);
757}
758
bf99de36
MN
759static inline int set_dawr(struct arch_hw_breakpoint *brk)
760{
05d694ea 761 unsigned long dawr, dawrx, mrd;
bf99de36
MN
762
763 dawr = brk->address;
764
765 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
766 << (63 - 58); //* read/write bits */
767 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
768 << (63 - 59); //* translate */
769 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
770 >> 3; //* PRIM bits */
05d694ea
MN
771 /* dawr length is stored in field MDR bits 48:53. Matches range in
772 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
773 0b111111=64DW.
774 brk->len is in bytes.
775 This aligns up to double word size, shifts and does the bias.
776 */
777 mrd = ((brk->len + 7) >> 3) - 1;
778 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
779
780 if (ppc_md.set_dawr)
781 return ppc_md.set_dawr(dawr, dawrx);
782 mtspr(SPRN_DAWR, dawr);
783 mtspr(SPRN_DAWRX, dawrx);
784 return 0;
785}
786
21f58507 787void __set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e 788{
69111bac 789 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
9422de3e 790
bf99de36 791 if (cpu_has_feature(CPU_FTR_DAWR))
04c32a51
PG
792 set_dawr(brk);
793 else
794 set_dabr(brk);
9422de3e 795}
14cf11af 796
21f58507
PG
797void set_breakpoint(struct arch_hw_breakpoint *brk)
798{
799 preempt_disable();
800 __set_breakpoint(brk);
801 preempt_enable();
802}
803
06d67d54
PM
804#ifdef CONFIG_PPC64
805DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 806#endif
14cf11af 807
9422de3e
MN
808static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
809 struct arch_hw_breakpoint *b)
810{
811 if (a->address != b->address)
812 return false;
813 if (a->type != b->type)
814 return false;
815 if (a->len != b->len)
816 return false;
817 return true;
818}
d31626f7 819
fb09692e 820#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
5d176f75
CB
821
822static inline bool tm_enabled(struct task_struct *tsk)
823{
824 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
825}
826
d31626f7
PM
827static void tm_reclaim_thread(struct thread_struct *thr,
828 struct thread_info *ti, uint8_t cause)
829{
7f821fc9
MN
830 /*
831 * Use the current MSR TM suspended bit to track if we have
832 * checkpointed state outstanding.
833 * On signal delivery, we'd normally reclaim the checkpointed
834 * state to obtain stack pointer (see:get_tm_stackpointer()).
835 * This will then directly return to userspace without going
836 * through __switch_to(). However, if the stack frame is bad,
837 * we need to exit this thread which calls __switch_to() which
838 * will again attempt to reclaim the already saved tm state.
839 * Hence we need to check that we've not already reclaimed
840 * this state.
841 * We do this using the current MSR, rather tracking it in
842 * some specific thread_struct bit, as it has the additional
027dfac6 843 * benefit of checking for a potential TM bad thing exception.
7f821fc9
MN
844 */
845 if (!MSR_TM_SUSPENDED(mfmsr()))
846 return;
847
dc310669 848 giveup_all(container_of(thr, struct task_struct, thread));
d31626f7 849
dc310669 850 tm_reclaim(thr, thr->ckpt_regs.msr, cause);
d31626f7
PM
851}
852
853void tm_reclaim_current(uint8_t cause)
854{
855 tm_enable();
856 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
857}
858
fb09692e
MN
859static inline void tm_reclaim_task(struct task_struct *tsk)
860{
861 /* We have to work out if we're switching from/to a task that's in the
862 * middle of a transaction.
863 *
864 * In switching we need to maintain a 2nd register state as
865 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
000ec280
CB
866 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
867 * ckvr_state
fb09692e
MN
868 *
869 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
870 */
871 struct thread_struct *thr = &tsk->thread;
872
873 if (!thr->regs)
874 return;
875
876 if (!MSR_TM_ACTIVE(thr->regs->msr))
877 goto out_and_saveregs;
878
fb09692e
MN
879 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
880 "ccr=%lx, msr=%lx, trap=%lx)\n",
881 tsk->pid, thr->regs->nip,
882 thr->regs->ccr, thr->regs->msr,
883 thr->regs->trap);
884
d31626f7 885 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
fb09692e
MN
886
887 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
888 tsk->pid);
889
890out_and_saveregs:
891 /* Always save the regs here, even if a transaction's not active.
892 * This context-switches a thread's TM info SPRs. We do it here to
893 * be consistent with the restore path (in recheckpoint) which
894 * cannot happen later in _switch().
895 */
896 tm_save_sprs(thr);
897}
898
e6b8fd02
MN
899extern void __tm_recheckpoint(struct thread_struct *thread,
900 unsigned long orig_msr);
901
902void tm_recheckpoint(struct thread_struct *thread,
903 unsigned long orig_msr)
904{
905 unsigned long flags;
906
5d176f75
CB
907 if (!(thread->regs->msr & MSR_TM))
908 return;
909
e6b8fd02
MN
910 /* We really can't be interrupted here as the TEXASR registers can't
911 * change and later in the trecheckpoint code, we have a userspace R1.
912 * So let's hard disable over this region.
913 */
914 local_irq_save(flags);
915 hard_irq_disable();
916
917 /* The TM SPRs are restored here, so that TEXASR.FS can be set
918 * before the trecheckpoint and no explosion occurs.
919 */
920 tm_restore_sprs(thread);
921
922 __tm_recheckpoint(thread, orig_msr);
923
924 local_irq_restore(flags);
925}
926
bc2a9408 927static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e
MN
928{
929 unsigned long msr;
930
931 if (!cpu_has_feature(CPU_FTR_TM))
932 return;
933
934 /* Recheckpoint the registers of the thread we're about to switch to.
935 *
936 * If the task was using FP, we non-lazily reload both the original and
937 * the speculative FP register states. This is because the kernel
938 * doesn't see if/when a TM rollback occurs, so if we take an FP
dc310669 939 * unavailable later, we are unable to determine which set of FP regs
fb09692e
MN
940 * need to be restored.
941 */
5d176f75 942 if (!tm_enabled(new))
fb09692e
MN
943 return;
944
e6b8fd02
MN
945 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
946 tm_restore_sprs(&new->thread);
fb09692e 947 return;
e6b8fd02 948 }
829023df 949 msr = new->thread.ckpt_regs.msr;
fb09692e
MN
950 /* Recheckpoint to restore original checkpointed register state. */
951 TM_DEBUG("*** tm_recheckpoint of pid %d "
952 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
953 new->pid, new->thread.regs->msr, msr);
954
fb09692e
MN
955 tm_recheckpoint(&new->thread, msr);
956
dc310669
CB
957 /*
958 * The checkpointed state has been restored but the live state has
959 * not, ensure all the math functionality is turned off to trigger
960 * restore_math() to reload.
961 */
962 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
fb09692e
MN
963
964 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
965 "(kernel msr 0x%lx)\n",
966 new->pid, mfmsr());
967}
968
dc310669
CB
969static inline void __switch_to_tm(struct task_struct *prev,
970 struct task_struct *new)
fb09692e
MN
971{
972 if (cpu_has_feature(CPU_FTR_TM)) {
5d176f75
CB
973 if (tm_enabled(prev) || tm_enabled(new))
974 tm_enable();
975
976 if (tm_enabled(prev)) {
977 prev->thread.load_tm++;
978 tm_reclaim_task(prev);
979 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
980 prev->thread.regs->msr &= ~MSR_TM;
981 }
982
dc310669 983 tm_recheckpoint_new_task(new);
fb09692e
MN
984 }
985}
d31626f7
PM
986
987/*
988 * This is called if we are on the way out to userspace and the
989 * TIF_RESTORE_TM flag is set. It checks if we need to reload
990 * FP and/or vector state and does so if necessary.
991 * If userspace is inside a transaction (whether active or
992 * suspended) and FP/VMX/VSX instructions have ever been enabled
993 * inside that transaction, then we have to keep them enabled
994 * and keep the FP/VMX/VSX state loaded while ever the transaction
995 * continues. The reason is that if we didn't, and subsequently
996 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
997 * we don't know whether it's the same transaction, and thus we
998 * don't know which of the checkpointed state and the transactional
999 * state to use.
1000 */
1001void restore_tm_state(struct pt_regs *regs)
1002{
1003 unsigned long msr_diff;
1004
dc310669
CB
1005 /*
1006 * This is the only moment we should clear TIF_RESTORE_TM as
1007 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1008 * again, anything else could lead to an incorrect ckpt_msr being
1009 * saved and therefore incorrect signal contexts.
1010 */
d31626f7
PM
1011 clear_thread_flag(TIF_RESTORE_TM);
1012 if (!MSR_TM_ACTIVE(regs->msr))
1013 return;
1014
829023df 1015 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
d31626f7 1016 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
70fe3d98 1017
dc16b553
CB
1018 /* Ensure that restore_math() will restore */
1019 if (msr_diff & MSR_FP)
1020 current->thread.load_fp = 1;
39715bf9 1021#ifdef CONFIG_ALTIVEC
dc16b553
CB
1022 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1023 current->thread.load_vec = 1;
1024#endif
70fe3d98
CB
1025 restore_math(regs);
1026
d31626f7
PM
1027 regs->msr |= msr_diff;
1028}
1029
fb09692e
MN
1030#else
1031#define tm_recheckpoint_new_task(new)
dc310669 1032#define __switch_to_tm(prev, new)
fb09692e 1033#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 1034
152d523e
AB
1035static inline void save_sprs(struct thread_struct *t)
1036{
1037#ifdef CONFIG_ALTIVEC
01d7c2a2 1038 if (cpu_has_feature(CPU_FTR_ALTIVEC))
152d523e
AB
1039 t->vrsave = mfspr(SPRN_VRSAVE);
1040#endif
1041#ifdef CONFIG_PPC_BOOK3S_64
1042 if (cpu_has_feature(CPU_FTR_DSCR))
1043 t->dscr = mfspr(SPRN_DSCR);
1044
1045 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1046 t->bescr = mfspr(SPRN_BESCR);
1047 t->ebbhr = mfspr(SPRN_EBBHR);
1048 t->ebbrr = mfspr(SPRN_EBBRR);
1049
1050 t->fscr = mfspr(SPRN_FSCR);
1051
1052 /*
1053 * Note that the TAR is not available for use in the kernel.
1054 * (To provide this, the TAR should be backed up/restored on
1055 * exception entry/exit instead, and be in pt_regs. FIXME,
1056 * this should be in pt_regs anyway (for debug).)
1057 */
1058 t->tar = mfspr(SPRN_TAR);
1059 }
1060#endif
1061}
1062
1063static inline void restore_sprs(struct thread_struct *old_thread,
1064 struct thread_struct *new_thread)
1065{
1066#ifdef CONFIG_ALTIVEC
1067 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1068 old_thread->vrsave != new_thread->vrsave)
1069 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1070#endif
1071#ifdef CONFIG_PPC_BOOK3S_64
1072 if (cpu_has_feature(CPU_FTR_DSCR)) {
1073 u64 dscr = get_paca()->dscr_default;
b57bd2de 1074 if (new_thread->dscr_inherit)
152d523e 1075 dscr = new_thread->dscr;
152d523e
AB
1076
1077 if (old_thread->dscr != dscr)
1078 mtspr(SPRN_DSCR, dscr);
152d523e
AB
1079 }
1080
1081 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1082 if (old_thread->bescr != new_thread->bescr)
1083 mtspr(SPRN_BESCR, new_thread->bescr);
1084 if (old_thread->ebbhr != new_thread->ebbhr)
1085 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1086 if (old_thread->ebbrr != new_thread->ebbrr)
1087 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1088
b57bd2de
MN
1089 if (old_thread->fscr != new_thread->fscr)
1090 mtspr(SPRN_FSCR, new_thread->fscr);
1091
152d523e
AB
1092 if (old_thread->tar != new_thread->tar)
1093 mtspr(SPRN_TAR, new_thread->tar);
1094 }
1095#endif
1096}
1097
14cf11af
PM
1098struct task_struct *__switch_to(struct task_struct *prev,
1099 struct task_struct *new)
1100{
1101 struct thread_struct *new_thread, *old_thread;
14cf11af 1102 struct task_struct *last;
d6bf29b4
PZ
1103#ifdef CONFIG_PPC_BOOK3S_64
1104 struct ppc64_tlb_batch *batch;
1105#endif
14cf11af 1106
152d523e
AB
1107 new_thread = &new->thread;
1108 old_thread = &current->thread;
1109
7ba5fef7
MN
1110 WARN_ON(!irqs_disabled());
1111
06d67d54
PM
1112#ifdef CONFIG_PPC64
1113 /*
1114 * Collect processor utilization data per process
1115 */
1116 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
69111bac 1117 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
06d67d54
PM
1118 long unsigned start_tb, current_tb;
1119 start_tb = old_thread->start_tb;
1120 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1121 old_thread->accum_tb += (current_tb - start_tb);
1122 new_thread->start_tb = current_tb;
1123 }
d6bf29b4
PZ
1124#endif /* CONFIG_PPC64 */
1125
caca285e 1126#ifdef CONFIG_PPC_STD_MMU_64
69111bac 1127 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1128 if (batch->active) {
1129 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1130 if (batch->index)
1131 __flush_tlb_pending(batch);
1132 batch->active = 0;
1133 }
caca285e 1134#endif /* CONFIG_PPC_STD_MMU_64 */
06d67d54 1135
f3d885cc
AB
1136#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1137 switch_booke_debug_regs(&new->thread.debug);
1138#else
1139/*
1140 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1141 * schedule DABR
1142 */
1143#ifndef CONFIG_HAVE_HW_BREAKPOINT
1144 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1145 __set_breakpoint(&new->thread.hw_brk);
1146#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1147#endif
1148
1149 /*
1150 * We need to save SPRs before treclaim/trecheckpoint as these will
1151 * change a number of them.
1152 */
1153 save_sprs(&prev->thread);
1154
f3d885cc
AB
1155 /* Save FPU, Altivec, VSX and SPE state */
1156 giveup_all(prev);
1157
dc310669
CB
1158 __switch_to_tm(prev, new);
1159
44387e9f
AB
1160 /*
1161 * We can't take a PMU exception inside _switch() since there is a
1162 * window where the kernel stack SLB and the kernel stack are out
1163 * of sync. Hard disable here.
1164 */
1165 hard_irq_disable();
bc2a9408 1166
20dbe670
AB
1167 /*
1168 * Call restore_sprs() before calling _switch(). If we move it after
1169 * _switch() then we miss out on calling it for new tasks. The reason
1170 * for this is we manually create a stack frame for new tasks that
1171 * directly returns through ret_from_fork() or
1172 * ret_from_kernel_thread(). See copy_thread() for details.
1173 */
f3d885cc
AB
1174 restore_sprs(old_thread, new_thread);
1175
20dbe670
AB
1176 last = _switch(old_thread, new_thread);
1177
caca285e 1178#ifdef CONFIG_PPC_STD_MMU_64
d6bf29b4
PZ
1179 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1180 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
69111bac 1181 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1182 batch->active = 1;
1183 }
70fe3d98
CB
1184
1185 if (current_thread_info()->task->thread.regs)
1186 restore_math(current_thread_info()->task->thread.regs);
caca285e 1187#endif /* CONFIG_PPC_STD_MMU_64 */
d6bf29b4 1188
14cf11af
PM
1189 return last;
1190}
1191
06d67d54
PM
1192static int instructions_to_print = 16;
1193
06d67d54
PM
1194static void show_instructions(struct pt_regs *regs)
1195{
1196 int i;
1197 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1198 sizeof(int));
1199
1200 printk("Instruction dump:");
1201
1202 for (i = 0; i < instructions_to_print; i++) {
1203 int instr;
1204
1205 if (!(i % 8))
2ffd04de 1206 pr_cont("\n");
06d67d54 1207
0de2d820
SW
1208#if !defined(CONFIG_BOOKE)
1209 /* If executing with the IMMU off, adjust pc rather
1210 * than print XXXXXXXX.
1211 */
1212 if (!(regs->msr & MSR_IR))
1213 pc = (unsigned long)phys_to_virt(pc);
1214#endif
1215
00ae36de 1216 if (!__kernel_text_address(pc) ||
7b051f66 1217 probe_kernel_address((unsigned int __user *)pc, instr)) {
2ffd04de 1218 pr_cont("XXXXXXXX ");
06d67d54
PM
1219 } else {
1220 if (regs->nip == pc)
2ffd04de 1221 pr_cont("<%08x> ", instr);
06d67d54 1222 else
2ffd04de 1223 pr_cont("%08x ", instr);
06d67d54
PM
1224 }
1225
1226 pc += sizeof(int);
1227 }
1228
2ffd04de 1229 pr_cont("\n");
06d67d54
PM
1230}
1231
801c0b2c 1232struct regbit {
06d67d54
PM
1233 unsigned long bit;
1234 const char *name;
801c0b2c
MN
1235};
1236
1237static struct regbit msr_bits[] = {
3bfd0c9c
AB
1238#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1239 {MSR_SF, "SF"},
1240 {MSR_HV, "HV"},
1241#endif
1242 {MSR_VEC, "VEC"},
1243 {MSR_VSX, "VSX"},
1244#ifdef CONFIG_BOOKE
1245 {MSR_CE, "CE"},
1246#endif
06d67d54
PM
1247 {MSR_EE, "EE"},
1248 {MSR_PR, "PR"},
1249 {MSR_FP, "FP"},
1250 {MSR_ME, "ME"},
3bfd0c9c 1251#ifdef CONFIG_BOOKE
1b98326b 1252 {MSR_DE, "DE"},
3bfd0c9c
AB
1253#else
1254 {MSR_SE, "SE"},
1255 {MSR_BE, "BE"},
1256#endif
06d67d54
PM
1257 {MSR_IR, "IR"},
1258 {MSR_DR, "DR"},
3bfd0c9c
AB
1259 {MSR_PMM, "PMM"},
1260#ifndef CONFIG_BOOKE
1261 {MSR_RI, "RI"},
1262 {MSR_LE, "LE"},
1263#endif
06d67d54
PM
1264 {0, NULL}
1265};
1266
801c0b2c 1267static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
06d67d54 1268{
801c0b2c 1269 const char *s = "";
06d67d54 1270
06d67d54
PM
1271 for (; bits->bit; ++bits)
1272 if (val & bits->bit) {
db5ba5ae 1273 pr_cont("%s%s", s, bits->name);
801c0b2c 1274 s = sep;
06d67d54 1275 }
801c0b2c
MN
1276}
1277
1278#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1279static struct regbit msr_tm_bits[] = {
1280 {MSR_TS_T, "T"},
1281 {MSR_TS_S, "S"},
1282 {MSR_TM, "E"},
1283 {0, NULL}
1284};
1285
1286static void print_tm_bits(unsigned long val)
1287{
1288/*
1289 * This only prints something if at least one of the TM bit is set.
1290 * Inside the TM[], the output means:
1291 * E: Enabled (bit 32)
1292 * S: Suspended (bit 33)
1293 * T: Transactional (bit 34)
1294 */
1295 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
db5ba5ae 1296 pr_cont(",TM[");
801c0b2c 1297 print_bits(val, msr_tm_bits, "");
db5ba5ae 1298 pr_cont("]");
801c0b2c
MN
1299 }
1300}
1301#else
1302static void print_tm_bits(unsigned long val) {}
1303#endif
1304
1305static void print_msr_bits(unsigned long val)
1306{
db5ba5ae 1307 pr_cont("<");
801c0b2c
MN
1308 print_bits(val, msr_bits, ",");
1309 print_tm_bits(val);
db5ba5ae 1310 pr_cont(">");
06d67d54
PM
1311}
1312
1313#ifdef CONFIG_PPC64
f6f7dde3 1314#define REG "%016lx"
06d67d54
PM
1315#define REGS_PER_LINE 4
1316#define LAST_VOLATILE 13
1317#else
f6f7dde3 1318#define REG "%08lx"
06d67d54
PM
1319#define REGS_PER_LINE 8
1320#define LAST_VOLATILE 12
1321#endif
1322
14cf11af
PM
1323void show_regs(struct pt_regs * regs)
1324{
1325 int i, trap;
1326
a43cb95d
TH
1327 show_regs_print_info(KERN_DEFAULT);
1328
06d67d54
PM
1329 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1330 regs->nip, regs->link, regs->ctr);
1331 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 1332 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54 1333 printk("MSR: "REG" ", regs->msr);
801c0b2c 1334 print_msr_bits(regs->msr);
f6f7dde3 1335 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 1336 trap = TRAP(regs);
5115a026 1337 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
7dae865f 1338 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
c5400649 1339 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
ba28c9aa 1340#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
7dae865f 1341 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
14170789 1342#else
7dae865f 1343 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
9db8bcfd
AB
1344#endif
1345#ifdef CONFIG_PPC64
7dae865f 1346 pr_cont("SOFTE: %ld ", regs->softe);
9db8bcfd
AB
1347#endif
1348#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a 1349 if (MSR_TM_ACTIVE(regs->msr))
7dae865f 1350 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 1351#endif
14cf11af
PM
1352
1353 for (i = 0; i < 32; i++) {
06d67d54 1354 if ((i % REGS_PER_LINE) == 0)
7dae865f
ME
1355 pr_cont("\nGPR%02d: ", i);
1356 pr_cont(REG " ", regs->gpr[i]);
06d67d54 1357 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
1358 break;
1359 }
7dae865f 1360 pr_cont("\n");
14cf11af
PM
1361#ifdef CONFIG_KALLSYMS
1362 /*
1363 * Lookup NIP late so we have the best change of getting the
1364 * above info out without failing
1365 */
058c78f4
BH
1366 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1367 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
afc07701 1368#endif
14cf11af 1369 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
1370 if (!user_mode(regs))
1371 show_instructions(regs);
14cf11af
PM
1372}
1373
14cf11af
PM
1374void flush_thread(void)
1375{
e0780b72 1376#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1377 flush_ptrace_hw_breakpoint(current);
e0780b72 1378#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1379 set_debug_reg_defaults(&current->thread);
e0780b72 1380#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1381}
1382
1383void
1384release_thread(struct task_struct *t)
1385{
1386}
1387
1388/*
55ccf3fe
SS
1389 * this gets called so that we can store coprocessor state into memory and
1390 * copy the current task into the new thread.
14cf11af 1391 */
55ccf3fe 1392int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1393{
579e633e 1394 flush_all_to_thread(src);
621b5060
MN
1395 /*
1396 * Flush TM state out so we can copy it. __switch_to_tm() does this
1397 * flush but it removes the checkpointed state from the current CPU and
1398 * transitions the CPU out of TM mode. Hence we need to call
1399 * tm_recheckpoint_new_task() (on the same task) to restore the
1400 * checkpointed state back and the TM mode.
5d176f75
CB
1401 *
1402 * Can't pass dst because it isn't ready. Doesn't matter, passing
1403 * dst is only important for __switch_to()
621b5060 1404 */
dc310669 1405 __switch_to_tm(src, src);
330a1eb7 1406
55ccf3fe 1407 *dst = *src;
330a1eb7
ME
1408
1409 clear_task_ebb(dst);
1410
55ccf3fe 1411 return 0;
14cf11af
PM
1412}
1413
cec15488
ME
1414static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1415{
1416#ifdef CONFIG_PPC_STD_MMU_64
1417 unsigned long sp_vsid;
1418 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1419
caca285e
AK
1420 if (radix_enabled())
1421 return;
1422
cec15488
ME
1423 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1424 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1425 << SLB_VSID_SHIFT_1T;
1426 else
1427 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1428 << SLB_VSID_SHIFT;
1429 sp_vsid |= SLB_VSID_KERNEL | llp;
1430 p->thread.ksp_vsid = sp_vsid;
1431#endif
1432}
1433
14cf11af
PM
1434/*
1435 * Copy a thread..
1436 */
efcac658 1437
6eca8933
AD
1438/*
1439 * Copy architecture-specific thread state
1440 */
6f2c55b8 1441int copy_thread(unsigned long clone_flags, unsigned long usp,
6eca8933 1442 unsigned long kthread_arg, struct task_struct *p)
14cf11af
PM
1443{
1444 struct pt_regs *childregs, *kregs;
1445 extern void ret_from_fork(void);
58254e10
AV
1446 extern void ret_from_kernel_thread(void);
1447 void (*f)(void);
0cec6fd1 1448 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
5d31a96e
ME
1449 struct thread_info *ti = task_thread_info(p);
1450
1451 klp_init_thread_info(ti);
14cf11af 1452
14cf11af
PM
1453 /* Copy registers */
1454 sp -= sizeof(struct pt_regs);
1455 childregs = (struct pt_regs *) sp;
ab75819d 1456 if (unlikely(p->flags & PF_KTHREAD)) {
6eca8933 1457 /* kernel thread */
58254e10 1458 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 1459 childregs->gpr[1] = sp + sizeof(struct pt_regs);
7cedd601
AB
1460 /* function */
1461 if (usp)
1462 childregs->gpr[14] = ppc_function_entry((void *)usp);
58254e10 1463#ifdef CONFIG_PPC64
b5e2fc1c 1464 clear_tsk_thread_flag(p, TIF_32BIT);
138d1ce8 1465 childregs->softe = 1;
06d67d54 1466#endif
6eca8933 1467 childregs->gpr[15] = kthread_arg;
14cf11af 1468 p->thread.regs = NULL; /* no user register state */
138d1ce8 1469 ti->flags |= _TIF_RESTOREALL;
58254e10 1470 f = ret_from_kernel_thread;
14cf11af 1471 } else {
6eca8933 1472 /* user thread */
afa86fc4 1473 struct pt_regs *regs = current_pt_regs();
58254e10
AV
1474 CHECK_FULL_REGS(regs);
1475 *childregs = *regs;
ea516b11
AV
1476 if (usp)
1477 childregs->gpr[1] = usp;
14cf11af 1478 p->thread.regs = childregs;
58254e10 1479 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
1480 if (clone_flags & CLONE_SETTLS) {
1481#ifdef CONFIG_PPC64
9904b005 1482 if (!is_32bit_task())
06d67d54
PM
1483 childregs->gpr[13] = childregs->gpr[6];
1484 else
1485#endif
1486 childregs->gpr[2] = childregs->gpr[6];
1487 }
58254e10
AV
1488
1489 f = ret_from_fork;
14cf11af 1490 }
d272f667 1491 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
14cf11af 1492 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
1493
1494 /*
1495 * The way this works is that at some point in the future
1496 * some task will call _switch to switch to the new task.
1497 * That will pop off the stack frame created below and start
1498 * the new task running at ret_from_fork. The new task will
1499 * do some house keeping and then return from the fork or clone
1500 * system call, using the stack frame created above.
1501 */
af945cf4 1502 ((unsigned long *)sp)[0] = 0;
14cf11af
PM
1503 sp -= sizeof(struct pt_regs);
1504 kregs = (struct pt_regs *) sp;
1505 sp -= STACK_FRAME_OVERHEAD;
1506 p->thread.ksp = sp;
cbc9565e 1507#ifdef CONFIG_PPC32
85218827
KG
1508 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1509 _ALIGN_UP(sizeof(struct thread_info), 16);
cbc9565e 1510#endif
28d170ab
ON
1511#ifdef CONFIG_HAVE_HW_BREAKPOINT
1512 p->thread.ptrace_bps[0] = NULL;
1513#endif
1514
18461960
PM
1515 p->thread.fp_save_area = NULL;
1516#ifdef CONFIG_ALTIVEC
1517 p->thread.vr_save_area = NULL;
1518#endif
1519
cec15488
ME
1520 setup_ksp_vsid(p, sp);
1521
efcac658
AK
1522#ifdef CONFIG_PPC64
1523 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26 1524 p->thread.dscr_inherit = current->thread.dscr_inherit;
db1231dc 1525 p->thread.dscr = mfspr(SPRN_DSCR);
efcac658 1526 }
92779245
HM
1527 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1528 p->thread.ppr = INIT_PPR;
efcac658 1529#endif
7cedd601 1530 kregs->nip = ppc_function_entry(f);
14cf11af
PM
1531 return 0;
1532}
1533
1534/*
1535 * Set up a thread for executing a new program
1536 */
06d67d54 1537void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1538{
90eac727
ME
1539#ifdef CONFIG_PPC64
1540 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1541#endif
1542
06d67d54
PM
1543 /*
1544 * If we exec out of a kernel thread then thread.regs will not be
1545 * set. Do it now.
1546 */
1547 if (!current->thread.regs) {
0cec6fd1
AV
1548 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1549 current->thread.regs = regs - 1;
06d67d54
PM
1550 }
1551
8e96a87c
CB
1552#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1553 /*
1554 * Clear any transactional state, we're exec()ing. The cause is
1555 * not important as there will never be a recheckpoint so it's not
1556 * user visible.
1557 */
1558 if (MSR_TM_SUSPENDED(mfmsr()))
1559 tm_reclaim_current(0);
1560#endif
1561
14cf11af
PM
1562 memset(regs->gpr, 0, sizeof(regs->gpr));
1563 regs->ctr = 0;
1564 regs->link = 0;
1565 regs->xer = 0;
1566 regs->ccr = 0;
14cf11af 1567 regs->gpr[1] = sp;
06d67d54 1568
474f8196
RM
1569 /*
1570 * We have just cleared all the nonvolatile GPRs, so make
1571 * FULL_REGS(regs) return true. This is necessary to allow
1572 * ptrace to examine the thread immediately after exec.
1573 */
1574 regs->trap &= ~1UL;
1575
06d67d54
PM
1576#ifdef CONFIG_PPC32
1577 regs->mq = 0;
1578 regs->nip = start;
14cf11af 1579 regs->msr = MSR_USER;
06d67d54 1580#else
9904b005 1581 if (!is_32bit_task()) {
94af3abf 1582 unsigned long entry;
06d67d54 1583
94af3abf
RR
1584 if (is_elf2_task()) {
1585 /* Look ma, no function descriptors! */
1586 entry = start;
06d67d54 1587
94af3abf
RR
1588 /*
1589 * Ulrich says:
1590 * The latest iteration of the ABI requires that when
1591 * calling a function (at its global entry point),
1592 * the caller must ensure r12 holds the entry point
1593 * address (so that the function can quickly
1594 * establish addressability).
1595 */
1596 regs->gpr[12] = start;
1597 /* Make sure that's restored on entry to userspace. */
1598 set_thread_flag(TIF_RESTOREALL);
1599 } else {
1600 unsigned long toc;
1601
1602 /* start is a relocated pointer to the function
1603 * descriptor for the elf _start routine. The first
1604 * entry in the function descriptor is the entry
1605 * address of _start and the second entry is the TOC
1606 * value we need to use.
1607 */
1608 __get_user(entry, (unsigned long __user *)start);
1609 __get_user(toc, (unsigned long __user *)start+1);
1610
1611 /* Check whether the e_entry function descriptor entries
1612 * need to be relocated before we can use them.
1613 */
1614 if (load_addr != 0) {
1615 entry += load_addr;
1616 toc += load_addr;
1617 }
1618 regs->gpr[2] = toc;
06d67d54
PM
1619 }
1620 regs->nip = entry;
06d67d54 1621 regs->msr = MSR_USER64;
d4bf9a78
SR
1622 } else {
1623 regs->nip = start;
1624 regs->gpr[2] = 0;
1625 regs->msr = MSR_USER32;
06d67d54
PM
1626 }
1627#endif
ce48b210
MN
1628#ifdef CONFIG_VSX
1629 current->thread.used_vsr = 0;
1630#endif
de79f7b9 1631 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1632 current->thread.fp_save_area = NULL;
14cf11af 1633#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1634 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1635 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1636 current->thread.vr_save_area = NULL;
14cf11af
PM
1637 current->thread.vrsave = 0;
1638 current->thread.used_vr = 0;
1639#endif /* CONFIG_ALTIVEC */
1640#ifdef CONFIG_SPE
1641 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1642 current->thread.acc = 0;
1643 current->thread.spefscr = 0;
1644 current->thread.used_spe = 0;
1645#endif /* CONFIG_SPE */
bc2a9408 1646#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
bc2a9408
MN
1647 current->thread.tm_tfhar = 0;
1648 current->thread.tm_texasr = 0;
1649 current->thread.tm_tfiar = 0;
1650#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
14cf11af 1651}
e1802b06 1652EXPORT_SYMBOL(start_thread);
14cf11af
PM
1653
1654#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1655 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1656
1657int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1658{
1659 struct pt_regs *regs = tsk->thread.regs;
1660
1661 /* This is a bit hairy. If we are an SPE enabled processor
1662 * (have embedded fp) we store the IEEE exception enable flags in
1663 * fpexc_mode. fpexc_mode is also used for setting FP exception
1664 * mode (asyn, precise, disabled) for 'Classic' FP. */
1665 if (val & PR_FP_EXC_SW_ENABLE) {
1666#ifdef CONFIG_SPE
5e14d21e 1667 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
1668 /*
1669 * When the sticky exception bits are set
1670 * directly by userspace, it must call prctl
1671 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1672 * in the existing prctl settings) or
1673 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1674 * the bits being set). <fenv.h> functions
1675 * saving and restoring the whole
1676 * floating-point environment need to do so
1677 * anyway to restore the prctl settings from
1678 * the saved environment.
1679 */
1680 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
1681 tsk->thread.fpexc_mode = val &
1682 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1683 return 0;
1684 } else {
1685 return -EINVAL;
1686 }
14cf11af
PM
1687#else
1688 return -EINVAL;
1689#endif
14cf11af 1690 }
06d67d54
PM
1691
1692 /* on a CONFIG_SPE this does not hurt us. The bits that
1693 * __pack_fe01 use do not overlap with bits used for
1694 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1695 * on CONFIG_SPE implementations are reserved so writing to
1696 * them does not change anything */
1697 if (val > PR_FP_EXC_PRECISE)
1698 return -EINVAL;
1699 tsk->thread.fpexc_mode = __pack_fe01(val);
1700 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1701 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1702 | tsk->thread.fpexc_mode;
14cf11af
PM
1703 return 0;
1704}
1705
1706int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1707{
1708 unsigned int val;
1709
1710 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1711#ifdef CONFIG_SPE
640e9225
JM
1712 if (cpu_has_feature(CPU_FTR_SPE)) {
1713 /*
1714 * When the sticky exception bits are set
1715 * directly by userspace, it must call prctl
1716 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1717 * in the existing prctl settings) or
1718 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1719 * the bits being set). <fenv.h> functions
1720 * saving and restoring the whole
1721 * floating-point environment need to do so
1722 * anyway to restore the prctl settings from
1723 * the saved environment.
1724 */
1725 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 1726 val = tsk->thread.fpexc_mode;
640e9225 1727 } else
5e14d21e 1728 return -EINVAL;
14cf11af
PM
1729#else
1730 return -EINVAL;
1731#endif
1732 else
1733 val = __unpack_fe01(tsk->thread.fpexc_mode);
1734 return put_user(val, (unsigned int __user *) adr);
1735}
1736
fab5db97
PM
1737int set_endian(struct task_struct *tsk, unsigned int val)
1738{
1739 struct pt_regs *regs = tsk->thread.regs;
1740
1741 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1742 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1743 return -EINVAL;
1744
1745 if (regs == NULL)
1746 return -EINVAL;
1747
1748 if (val == PR_ENDIAN_BIG)
1749 regs->msr &= ~MSR_LE;
1750 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1751 regs->msr |= MSR_LE;
1752 else
1753 return -EINVAL;
1754
1755 return 0;
1756}
1757
1758int get_endian(struct task_struct *tsk, unsigned long adr)
1759{
1760 struct pt_regs *regs = tsk->thread.regs;
1761 unsigned int val;
1762
1763 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1764 !cpu_has_feature(CPU_FTR_REAL_LE))
1765 return -EINVAL;
1766
1767 if (regs == NULL)
1768 return -EINVAL;
1769
1770 if (regs->msr & MSR_LE) {
1771 if (cpu_has_feature(CPU_FTR_REAL_LE))
1772 val = PR_ENDIAN_LITTLE;
1773 else
1774 val = PR_ENDIAN_PPC_LITTLE;
1775 } else
1776 val = PR_ENDIAN_BIG;
1777
1778 return put_user(val, (unsigned int __user *)adr);
1779}
1780
e9370ae1
PM
1781int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1782{
1783 tsk->thread.align_ctl = val;
1784 return 0;
1785}
1786
1787int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1788{
1789 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1790}
1791
bb72c481
PM
1792static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1793 unsigned long nbytes)
1794{
1795 unsigned long stack_page;
1796 unsigned long cpu = task_cpu(p);
1797
1798 /*
1799 * Avoid crashing if the stack has overflowed and corrupted
1800 * task_cpu(p), which is in the thread_info struct.
1801 */
1802 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1803 stack_page = (unsigned long) hardirq_ctx[cpu];
1804 if (sp >= stack_page + sizeof(struct thread_struct)
1805 && sp <= stack_page + THREAD_SIZE - nbytes)
1806 return 1;
1807
1808 stack_page = (unsigned long) softirq_ctx[cpu];
1809 if (sp >= stack_page + sizeof(struct thread_struct)
1810 && sp <= stack_page + THREAD_SIZE - nbytes)
1811 return 1;
1812 }
1813 return 0;
1814}
1815
2f25194d 1816int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1817 unsigned long nbytes)
1818{
0cec6fd1 1819 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1820
1821 if (sp >= stack_page + sizeof(struct thread_struct)
1822 && sp <= stack_page + THREAD_SIZE - nbytes)
1823 return 1;
1824
bb72c481 1825 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1826}
1827
2f25194d
AB
1828EXPORT_SYMBOL(validate_sp);
1829
14cf11af
PM
1830unsigned long get_wchan(struct task_struct *p)
1831{
1832 unsigned long ip, sp;
1833 int count = 0;
1834
1835 if (!p || p == current || p->state == TASK_RUNNING)
1836 return 0;
1837
1838 sp = p->thread.ksp;
ec2b36b9 1839 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1840 return 0;
1841
1842 do {
1843 sp = *(unsigned long *)sp;
ec2b36b9 1844 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1845 return 0;
1846 if (count > 0) {
ec2b36b9 1847 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1848 if (!in_sched_functions(ip))
1849 return ip;
1850 }
1851 } while (count++ < 16);
1852 return 0;
1853}
06d67d54 1854
c4d04be1 1855static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
1856
1857void show_stack(struct task_struct *tsk, unsigned long *stack)
1858{
1859 unsigned long sp, ip, lr, newsp;
1860 int count = 0;
1861 int firstframe = 1;
6794c782
SR
1862#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1863 int curr_frame = current->curr_ret_stack;
1864 extern void return_to_handler(void);
9135c3cc 1865 unsigned long rth = (unsigned long)return_to_handler;
6794c782 1866#endif
06d67d54
PM
1867
1868 sp = (unsigned long) stack;
1869 if (tsk == NULL)
1870 tsk = current;
1871 if (sp == 0) {
1872 if (tsk == current)
acf620ec 1873 sp = current_stack_pointer();
06d67d54
PM
1874 else
1875 sp = tsk->thread.ksp;
1876 }
1877
1878 lr = 0;
1879 printk("Call Trace:\n");
1880 do {
ec2b36b9 1881 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1882 return;
1883
1884 stack = (unsigned long *) sp;
1885 newsp = stack[0];
ec2b36b9 1886 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 1887 if (!firstframe || ip != lr) {
058c78f4 1888 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 1889#ifdef CONFIG_FUNCTION_GRAPH_TRACER
7d56c65a 1890 if ((ip == rth) && curr_frame >= 0) {
9a1f490f 1891 pr_cont(" (%pS)",
6794c782
SR
1892 (void *)current->ret_stack[curr_frame].ret);
1893 curr_frame--;
1894 }
1895#endif
06d67d54 1896 if (firstframe)
9a1f490f
ME
1897 pr_cont(" (unreliable)");
1898 pr_cont("\n");
06d67d54
PM
1899 }
1900 firstframe = 0;
1901
1902 /*
1903 * See if this is an exception frame.
1904 * We look for the "regshere" marker in the current frame.
1905 */
ec2b36b9
BH
1906 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1907 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1908 struct pt_regs *regs = (struct pt_regs *)
1909 (sp + STACK_FRAME_OVERHEAD);
06d67d54 1910 lr = regs->link;
9be9be2e 1911 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
058c78f4 1912 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
1913 firstframe = 1;
1914 }
1915
1916 sp = newsp;
1917 } while (count++ < kstack_depth_to_print);
1918}
1919
cb2c9b27 1920#ifdef CONFIG_PPC64
fe1952fc 1921/* Called with hard IRQs off */
0e37739b 1922void notrace __ppc64_runlatch_on(void)
cb2c9b27 1923{
fe1952fc 1924 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1925 unsigned long ctrl;
1926
fe1952fc
BH
1927 ctrl = mfspr(SPRN_CTRLF);
1928 ctrl |= CTRL_RUNLATCH;
1929 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1930
fae2e0fb 1931 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
1932}
1933
fe1952fc 1934/* Called with hard IRQs off */
0e37739b 1935void notrace __ppc64_runlatch_off(void)
cb2c9b27 1936{
fe1952fc 1937 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1938 unsigned long ctrl;
1939
fae2e0fb 1940 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 1941
4138d653
AB
1942 ctrl = mfspr(SPRN_CTRLF);
1943 ctrl &= ~CTRL_RUNLATCH;
1944 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1945}
fe1952fc 1946#endif /* CONFIG_PPC64 */
f6a61680 1947
d839088c
AB
1948unsigned long arch_align_stack(unsigned long sp)
1949{
1950 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1951 sp -= get_random_int() & ~PAGE_MASK;
1952 return sp & ~0xf;
1953}
912f9ee2
AB
1954
1955static inline unsigned long brk_rnd(void)
1956{
1957 unsigned long rnd = 0;
1958
1959 /* 8MB for 32bit, 1GB for 64bit */
1960 if (is_32bit_task())
5ef11c35 1961 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
912f9ee2 1962 else
5ef11c35 1963 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
912f9ee2
AB
1964
1965 return rnd << PAGE_SHIFT;
1966}
1967
1968unsigned long arch_randomize_brk(struct mm_struct *mm)
1969{
8bbde7a7
AB
1970 unsigned long base = mm->brk;
1971 unsigned long ret;
1972
ce7a35c7 1973#ifdef CONFIG_PPC_STD_MMU_64
8bbde7a7
AB
1974 /*
1975 * If we are using 1TB segments and we are allowed to randomise
1976 * the heap, we can put it above 1TB so it is backed by a 1TB
1977 * segment. Otherwise the heap will be in the bottom 1TB
1978 * which always uses 256MB segments and this may result in a
caca285e
AK
1979 * performance penalty. We don't need to worry about radix. For
1980 * radix, mmu_highuser_ssize remains unchanged from 256MB.
8bbde7a7
AB
1981 */
1982 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1983 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1984#endif
1985
1986 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
1987
1988 if (ret < mm->brk)
1989 return mm->brk;
1990
1991 return ret;
1992}
501cb16d 1993