]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/powerpc/kernel/process.c
powerpc: Drop return value from set_breakpoint as it is unused
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
14cf11af
PM
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
14cf11af
PM
28#include <linux/prctl.h>
29#include <linux/init_task.h>
4b16f8e2 30#include <linux/export.h>
14cf11af
PM
31#include <linux/kallsyms.h>
32#include <linux/mqueue.h>
33#include <linux/hardirq.h>
06d67d54 34#include <linux/utsname.h>
6794c782 35#include <linux/ftrace.h>
79741dd3 36#include <linux/kernel_stat.h>
d839088c
AB
37#include <linux/personality.h>
38#include <linux/random.h>
5aae8a53 39#include <linux/hw_breakpoint.h>
14cf11af
PM
40
41#include <asm/pgtable.h>
42#include <asm/uaccess.h>
14cf11af
PM
43#include <asm/io.h>
44#include <asm/processor.h>
45#include <asm/mmu.h>
46#include <asm/prom.h>
76032de8 47#include <asm/machdep.h>
c6622f63 48#include <asm/time.h>
ae3a197e 49#include <asm/runlatch.h>
a7f31841 50#include <asm/syscalls.h>
ae3a197e 51#include <asm/switch_to.h>
fb09692e 52#include <asm/tm.h>
ae3a197e 53#include <asm/debug.h>
06d67d54
PM
54#ifdef CONFIG_PPC64
55#include <asm/firmware.h>
06d67d54 56#endif
7cedd601 57#include <asm/code-patching.h>
d6a61bfc
LM
58#include <linux/kprobes.h>
59#include <linux/kdebug.h>
14cf11af 60
8b3c34cf
MN
61/* Transactional Memory debug */
62#ifdef TM_DEBUG_SW
63#define TM_DEBUG(x...) printk(KERN_INFO x)
64#else
65#define TM_DEBUG(x...) do { } while(0)
66#endif
67
14cf11af
PM
68extern unsigned long _get_SP(void);
69
70#ifndef CONFIG_SMP
71struct task_struct *last_task_used_math = NULL;
72struct task_struct *last_task_used_altivec = NULL;
ce48b210 73struct task_struct *last_task_used_vsx = NULL;
14cf11af
PM
74struct task_struct *last_task_used_spe = NULL;
75#endif
76
d31626f7
PM
77#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
78void giveup_fpu_maybe_transactional(struct task_struct *tsk)
79{
80 /*
81 * If we are saving the current thread's registers, and the
82 * thread is in a transactional state, set the TIF_RESTORE_TM
83 * bit so that we know to restore the registers before
84 * returning to userspace.
85 */
86 if (tsk == current && tsk->thread.regs &&
87 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
88 !test_thread_flag(TIF_RESTORE_TM)) {
89 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
90 set_thread_flag(TIF_RESTORE_TM);
91 }
92
93 giveup_fpu(tsk);
94}
95
96void giveup_altivec_maybe_transactional(struct task_struct *tsk)
97{
98 /*
99 * If we are saving the current thread's registers, and the
100 * thread is in a transactional state, set the TIF_RESTORE_TM
101 * bit so that we know to restore the registers before
102 * returning to userspace.
103 */
104 if (tsk == current && tsk->thread.regs &&
105 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
106 !test_thread_flag(TIF_RESTORE_TM)) {
107 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
108 set_thread_flag(TIF_RESTORE_TM);
109 }
110
111 giveup_altivec(tsk);
112}
113
114#else
115#define giveup_fpu_maybe_transactional(tsk) giveup_fpu(tsk)
116#define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
117#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
118
037f0eed 119#ifdef CONFIG_PPC_FPU
14cf11af
PM
120/*
121 * Make sure the floating-point register state in the
122 * the thread_struct is up to date for task tsk.
123 */
124void flush_fp_to_thread(struct task_struct *tsk)
125{
126 if (tsk->thread.regs) {
127 /*
128 * We need to disable preemption here because if we didn't,
129 * another process could get scheduled after the regs->msr
130 * test but before we have finished saving the FP registers
131 * to the thread_struct. That process could take over the
132 * FPU, and then when we get scheduled again we would store
133 * bogus values for the remaining FP registers.
134 */
135 preempt_disable();
136 if (tsk->thread.regs->msr & MSR_FP) {
137#ifdef CONFIG_SMP
138 /*
139 * This should only ever be called for current or
140 * for a stopped child process. Since we save away
141 * the FP register state on context switch on SMP,
142 * there is something wrong if a stopped child appears
143 * to still have its FP state in the CPU registers.
144 */
145 BUG_ON(tsk != current);
146#endif
d31626f7 147 giveup_fpu_maybe_transactional(tsk);
14cf11af
PM
148 }
149 preempt_enable();
150 }
151}
de56a948 152EXPORT_SYMBOL_GPL(flush_fp_to_thread);
d31626f7 153#endif /* CONFIG_PPC_FPU */
14cf11af
PM
154
155void enable_kernel_fp(void)
156{
157 WARN_ON(preemptible());
158
159#ifdef CONFIG_SMP
160 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
d31626f7 161 giveup_fpu_maybe_transactional(current);
14cf11af
PM
162 else
163 giveup_fpu(NULL); /* just enables FP for kernel */
164#else
d31626f7 165 giveup_fpu_maybe_transactional(last_task_used_math);
14cf11af
PM
166#endif /* CONFIG_SMP */
167}
168EXPORT_SYMBOL(enable_kernel_fp);
169
14cf11af
PM
170#ifdef CONFIG_ALTIVEC
171void enable_kernel_altivec(void)
172{
173 WARN_ON(preemptible());
174
175#ifdef CONFIG_SMP
176 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
d31626f7 177 giveup_altivec_maybe_transactional(current);
14cf11af 178 else
35000870 179 giveup_altivec_notask();
14cf11af 180#else
d31626f7 181 giveup_altivec_maybe_transactional(last_task_used_altivec);
14cf11af
PM
182#endif /* CONFIG_SMP */
183}
184EXPORT_SYMBOL(enable_kernel_altivec);
185
186/*
187 * Make sure the VMX/Altivec register state in the
188 * the thread_struct is up to date for task tsk.
189 */
190void flush_altivec_to_thread(struct task_struct *tsk)
191{
192 if (tsk->thread.regs) {
193 preempt_disable();
194 if (tsk->thread.regs->msr & MSR_VEC) {
195#ifdef CONFIG_SMP
196 BUG_ON(tsk != current);
197#endif
d31626f7 198 giveup_altivec_maybe_transactional(tsk);
14cf11af
PM
199 }
200 preempt_enable();
201 }
202}
de56a948 203EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
14cf11af
PM
204#endif /* CONFIG_ALTIVEC */
205
ce48b210
MN
206#ifdef CONFIG_VSX
207#if 0
208/* not currently used, but some crazy RAID module might want to later */
209void enable_kernel_vsx(void)
210{
211 WARN_ON(preemptible());
212
213#ifdef CONFIG_SMP
214 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
215 giveup_vsx(current);
216 else
217 giveup_vsx(NULL); /* just enable vsx for kernel - force */
218#else
219 giveup_vsx(last_task_used_vsx);
220#endif /* CONFIG_SMP */
221}
222EXPORT_SYMBOL(enable_kernel_vsx);
223#endif
224
7c292170
MN
225void giveup_vsx(struct task_struct *tsk)
226{
d31626f7
PM
227 giveup_fpu_maybe_transactional(tsk);
228 giveup_altivec_maybe_transactional(tsk);
7c292170
MN
229 __giveup_vsx(tsk);
230}
231
ce48b210
MN
232void flush_vsx_to_thread(struct task_struct *tsk)
233{
234 if (tsk->thread.regs) {
235 preempt_disable();
236 if (tsk->thread.regs->msr & MSR_VSX) {
237#ifdef CONFIG_SMP
238 BUG_ON(tsk != current);
239#endif
240 giveup_vsx(tsk);
241 }
242 preempt_enable();
243 }
244}
de56a948 245EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
ce48b210
MN
246#endif /* CONFIG_VSX */
247
14cf11af
PM
248#ifdef CONFIG_SPE
249
250void enable_kernel_spe(void)
251{
252 WARN_ON(preemptible());
253
254#ifdef CONFIG_SMP
255 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
256 giveup_spe(current);
257 else
258 giveup_spe(NULL); /* just enable SPE for kernel - force */
259#else
260 giveup_spe(last_task_used_spe);
261#endif /* __SMP __ */
262}
263EXPORT_SYMBOL(enable_kernel_spe);
264
265void flush_spe_to_thread(struct task_struct *tsk)
266{
267 if (tsk->thread.regs) {
268 preempt_disable();
269 if (tsk->thread.regs->msr & MSR_SPE) {
270#ifdef CONFIG_SMP
271 BUG_ON(tsk != current);
272#endif
685659ee 273 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 274 giveup_spe(tsk);
14cf11af
PM
275 }
276 preempt_enable();
277 }
278}
14cf11af
PM
279#endif /* CONFIG_SPE */
280
5388fb10 281#ifndef CONFIG_SMP
48abec07
PM
282/*
283 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
284 * and the current task has some state, discard it.
285 */
5388fb10 286void discard_lazy_cpu_state(void)
48abec07 287{
48abec07
PM
288 preempt_disable();
289 if (last_task_used_math == current)
290 last_task_used_math = NULL;
291#ifdef CONFIG_ALTIVEC
292 if (last_task_used_altivec == current)
293 last_task_used_altivec = NULL;
294#endif /* CONFIG_ALTIVEC */
ce48b210
MN
295#ifdef CONFIG_VSX
296 if (last_task_used_vsx == current)
297 last_task_used_vsx = NULL;
298#endif /* CONFIG_VSX */
48abec07
PM
299#ifdef CONFIG_SPE
300 if (last_task_used_spe == current)
301 last_task_used_spe = NULL;
302#endif
303 preempt_enable();
48abec07 304}
5388fb10 305#endif /* CONFIG_SMP */
48abec07 306
3bffb652
DK
307#ifdef CONFIG_PPC_ADV_DEBUG_REGS
308void do_send_trap(struct pt_regs *regs, unsigned long address,
309 unsigned long error_code, int signal_code, int breakpt)
310{
311 siginfo_t info;
312
41ab5266 313 current->thread.trap_nr = signal_code;
3bffb652
DK
314 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
315 11, SIGSEGV) == NOTIFY_STOP)
316 return;
317
318 /* Deliver the signal to userspace */
319 info.si_signo = SIGTRAP;
320 info.si_errno = breakpt; /* breakpoint or watchpoint id */
321 info.si_code = signal_code;
322 info.si_addr = (void __user *)address;
323 force_sig_info(SIGTRAP, &info, current);
324}
325#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 326void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
327 unsigned long error_code)
328{
329 siginfo_t info;
330
41ab5266 331 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
332 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
333 11, SIGSEGV) == NOTIFY_STOP)
334 return;
335
9422de3e 336 if (debugger_break_match(regs))
d6a61bfc
LM
337 return;
338
9422de3e
MN
339 /* Clear the breakpoint */
340 hw_breakpoint_disable();
d6a61bfc
LM
341
342 /* Deliver the signal to userspace */
343 info.si_signo = SIGTRAP;
344 info.si_errno = 0;
345 info.si_code = TRAP_HWBKPT;
346 info.si_addr = (void __user *)address;
347 force_sig_info(SIGTRAP, &info, current);
348}
3bffb652 349#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 350
9422de3e 351static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 352
3bffb652
DK
353#ifdef CONFIG_PPC_ADV_DEBUG_REGS
354/*
355 * Set the debug registers back to their default "safe" values.
356 */
357static void set_debug_reg_defaults(struct thread_struct *thread)
358{
51ae8d4a 359 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 360#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 361 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 362#endif
51ae8d4a 363 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 364#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 365 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 366#endif
51ae8d4a 367 thread->debug.dbcr0 = 0;
3bffb652
DK
368#ifdef CONFIG_BOOKE
369 /*
370 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
371 */
51ae8d4a 372 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
373 DBCR1_IAC3US | DBCR1_IAC4US;
374 /*
375 * Force Data Address Compare User/Supervisor bits to be User-only
376 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
377 */
51ae8d4a 378 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 379#else
51ae8d4a 380 thread->debug.dbcr1 = 0;
3bffb652
DK
381#endif
382}
383
f5f97210 384static void prime_debug_regs(struct debug_reg *debug)
3bffb652 385{
6cecf76b
SW
386 /*
387 * We could have inherited MSR_DE from userspace, since
388 * it doesn't get cleared on exception entry. Make sure
389 * MSR_DE is clear before we enable any debug events.
390 */
391 mtmsr(mfmsr() & ~MSR_DE);
392
f5f97210
SW
393 mtspr(SPRN_IAC1, debug->iac1);
394 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 395#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
396 mtspr(SPRN_IAC3, debug->iac3);
397 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 398#endif
f5f97210
SW
399 mtspr(SPRN_DAC1, debug->dac1);
400 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 401#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
402 mtspr(SPRN_DVC1, debug->dvc1);
403 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 404#endif
f5f97210
SW
405 mtspr(SPRN_DBCR0, debug->dbcr0);
406 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 407#ifdef CONFIG_BOOKE
f5f97210 408 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
409#endif
410}
411/*
412 * Unless neither the old or new thread are making use of the
413 * debug registers, set the debug registers from the values
414 * stored in the new thread.
415 */
f5f97210 416void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 417{
51ae8d4a 418 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
419 || (new_debug->dbcr0 & DBCR0_IDM))
420 prime_debug_regs(new_debug);
3bffb652 421}
3743c9b8 422EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 423#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 424#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
425static void set_debug_reg_defaults(struct thread_struct *thread)
426{
9422de3e
MN
427 thread->hw_brk.address = 0;
428 thread->hw_brk.type = 0;
b9818c33 429 set_breakpoint(&thread->hw_brk);
3bffb652 430}
e0780b72 431#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
432#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
433
172ae2e7 434#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
435static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
436{
d6a61bfc 437 mtspr(SPRN_DAC1, dabr);
221c185d
DK
438#ifdef CONFIG_PPC_47x
439 isync();
440#endif
9422de3e
MN
441 return 0;
442}
c6c9eace 443#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
444static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
445{
c6c9eace 446 mtspr(SPRN_DABR, dabr);
82a9f16a
MN
447 if (cpu_has_feature(CPU_FTR_DABRX))
448 mtspr(SPRN_DABRX, dabrx);
cab0af98 449 return 0;
14cf11af 450}
9422de3e
MN
451#else
452static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
453{
454 return -EINVAL;
455}
456#endif
457
458static inline int set_dabr(struct arch_hw_breakpoint *brk)
459{
460 unsigned long dabr, dabrx;
461
462 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
463 dabrx = ((brk->type >> 3) & 0x7);
464
465 if (ppc_md.set_dabr)
466 return ppc_md.set_dabr(dabr, dabrx);
467
468 return __set_dabr(dabr, dabrx);
469}
470
bf99de36
MN
471static inline int set_dawr(struct arch_hw_breakpoint *brk)
472{
05d694ea 473 unsigned long dawr, dawrx, mrd;
bf99de36
MN
474
475 dawr = brk->address;
476
477 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
478 << (63 - 58); //* read/write bits */
479 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
480 << (63 - 59); //* translate */
481 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
482 >> 3; //* PRIM bits */
05d694ea
MN
483 /* dawr length is stored in field MDR bits 48:53. Matches range in
484 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
485 0b111111=64DW.
486 brk->len is in bytes.
487 This aligns up to double word size, shifts and does the bias.
488 */
489 mrd = ((brk->len + 7) >> 3) - 1;
490 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
491
492 if (ppc_md.set_dawr)
493 return ppc_md.set_dawr(dawr, dawrx);
494 mtspr(SPRN_DAWR, dawr);
495 mtspr(SPRN_DAWRX, dawrx);
496 return 0;
497}
498
04c32a51 499void set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e
MN
500{
501 __get_cpu_var(current_brk) = *brk;
502
bf99de36 503 if (cpu_has_feature(CPU_FTR_DAWR))
04c32a51
PG
504 set_dawr(brk);
505 else
506 set_dabr(brk);
9422de3e 507}
14cf11af 508
06d67d54
PM
509#ifdef CONFIG_PPC64
510DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 511#endif
14cf11af 512
9422de3e
MN
513static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
514 struct arch_hw_breakpoint *b)
515{
516 if (a->address != b->address)
517 return false;
518 if (a->type != b->type)
519 return false;
520 if (a->len != b->len)
521 return false;
522 return true;
523}
d31626f7 524
fb09692e 525#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
d31626f7
PM
526static void tm_reclaim_thread(struct thread_struct *thr,
527 struct thread_info *ti, uint8_t cause)
528{
529 unsigned long msr_diff = 0;
530
531 /*
532 * If FP/VSX registers have been already saved to the
533 * thread_struct, move them to the transact_fp array.
534 * We clear the TIF_RESTORE_TM bit since after the reclaim
535 * the thread will no longer be transactional.
536 */
537 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
538 msr_diff = thr->tm_orig_msr & ~thr->regs->msr;
539 if (msr_diff & MSR_FP)
540 memcpy(&thr->transact_fp, &thr->fp_state,
541 sizeof(struct thread_fp_state));
542 if (msr_diff & MSR_VEC)
543 memcpy(&thr->transact_vr, &thr->vr_state,
544 sizeof(struct thread_vr_state));
545 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
546 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
547 }
548
549 tm_reclaim(thr, thr->regs->msr, cause);
550
551 /* Having done the reclaim, we now have the checkpointed
552 * FP/VSX values in the registers. These might be valid
553 * even if we have previously called enable_kernel_fp() or
554 * flush_fp_to_thread(), so update thr->regs->msr to
555 * indicate their current validity.
556 */
557 thr->regs->msr |= msr_diff;
558}
559
560void tm_reclaim_current(uint8_t cause)
561{
562 tm_enable();
563 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
564}
565
fb09692e
MN
566static inline void tm_reclaim_task(struct task_struct *tsk)
567{
568 /* We have to work out if we're switching from/to a task that's in the
569 * middle of a transaction.
570 *
571 * In switching we need to maintain a 2nd register state as
572 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
573 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
574 * (current) FPRs into oldtask->thread.transact_fpr[].
575 *
576 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
577 */
578 struct thread_struct *thr = &tsk->thread;
579
580 if (!thr->regs)
581 return;
582
583 if (!MSR_TM_ACTIVE(thr->regs->msr))
584 goto out_and_saveregs;
585
586 /* Stash the original thread MSR, as giveup_fpu et al will
587 * modify it. We hold onto it to see whether the task used
d31626f7
PM
588 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
589 * tm_orig_msr is already set.
fb09692e 590 */
d31626f7
PM
591 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
592 thr->tm_orig_msr = thr->regs->msr;
fb09692e
MN
593
594 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
595 "ccr=%lx, msr=%lx, trap=%lx)\n",
596 tsk->pid, thr->regs->nip,
597 thr->regs->ccr, thr->regs->msr,
598 thr->regs->trap);
599
d31626f7 600 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
fb09692e
MN
601
602 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
603 tsk->pid);
604
605out_and_saveregs:
606 /* Always save the regs here, even if a transaction's not active.
607 * This context-switches a thread's TM info SPRs. We do it here to
608 * be consistent with the restore path (in recheckpoint) which
609 * cannot happen later in _switch().
610 */
611 tm_save_sprs(thr);
612}
613
e6b8fd02
MN
614extern void __tm_recheckpoint(struct thread_struct *thread,
615 unsigned long orig_msr);
616
617void tm_recheckpoint(struct thread_struct *thread,
618 unsigned long orig_msr)
619{
620 unsigned long flags;
621
622 /* We really can't be interrupted here as the TEXASR registers can't
623 * change and later in the trecheckpoint code, we have a userspace R1.
624 * So let's hard disable over this region.
625 */
626 local_irq_save(flags);
627 hard_irq_disable();
628
629 /* The TM SPRs are restored here, so that TEXASR.FS can be set
630 * before the trecheckpoint and no explosion occurs.
631 */
632 tm_restore_sprs(thread);
633
634 __tm_recheckpoint(thread, orig_msr);
635
636 local_irq_restore(flags);
637}
638
bc2a9408 639static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e
MN
640{
641 unsigned long msr;
642
643 if (!cpu_has_feature(CPU_FTR_TM))
644 return;
645
646 /* Recheckpoint the registers of the thread we're about to switch to.
647 *
648 * If the task was using FP, we non-lazily reload both the original and
649 * the speculative FP register states. This is because the kernel
650 * doesn't see if/when a TM rollback occurs, so if we take an FP
651 * unavoidable later, we are unable to determine which set of FP regs
652 * need to be restored.
653 */
654 if (!new->thread.regs)
655 return;
656
e6b8fd02
MN
657 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
658 tm_restore_sprs(&new->thread);
fb09692e 659 return;
e6b8fd02 660 }
fb09692e
MN
661 msr = new->thread.tm_orig_msr;
662 /* Recheckpoint to restore original checkpointed register state. */
663 TM_DEBUG("*** tm_recheckpoint of pid %d "
664 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
665 new->pid, new->thread.regs->msr, msr);
666
667 /* This loads the checkpointed FP/VEC state, if used */
668 tm_recheckpoint(&new->thread, msr);
669
670 /* This loads the speculative FP/VEC state, if used */
671 if (msr & MSR_FP) {
672 do_load_up_transact_fpu(&new->thread);
673 new->thread.regs->msr |=
674 (MSR_FP | new->thread.fpexc_mode);
675 }
f110c0c1 676#ifdef CONFIG_ALTIVEC
fb09692e
MN
677 if (msr & MSR_VEC) {
678 do_load_up_transact_altivec(&new->thread);
679 new->thread.regs->msr |= MSR_VEC;
680 }
f110c0c1 681#endif
fb09692e
MN
682 /* We may as well turn on VSX too since all the state is restored now */
683 if (msr & MSR_VSX)
684 new->thread.regs->msr |= MSR_VSX;
685
686 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
687 "(kernel msr 0x%lx)\n",
688 new->pid, mfmsr());
689}
690
691static inline void __switch_to_tm(struct task_struct *prev)
692{
693 if (cpu_has_feature(CPU_FTR_TM)) {
694 tm_enable();
695 tm_reclaim_task(prev);
696 }
697}
d31626f7
PM
698
699/*
700 * This is called if we are on the way out to userspace and the
701 * TIF_RESTORE_TM flag is set. It checks if we need to reload
702 * FP and/or vector state and does so if necessary.
703 * If userspace is inside a transaction (whether active or
704 * suspended) and FP/VMX/VSX instructions have ever been enabled
705 * inside that transaction, then we have to keep them enabled
706 * and keep the FP/VMX/VSX state loaded while ever the transaction
707 * continues. The reason is that if we didn't, and subsequently
708 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
709 * we don't know whether it's the same transaction, and thus we
710 * don't know which of the checkpointed state and the transactional
711 * state to use.
712 */
713void restore_tm_state(struct pt_regs *regs)
714{
715 unsigned long msr_diff;
716
717 clear_thread_flag(TIF_RESTORE_TM);
718 if (!MSR_TM_ACTIVE(regs->msr))
719 return;
720
721 msr_diff = current->thread.tm_orig_msr & ~regs->msr;
722 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
723 if (msr_diff & MSR_FP) {
724 fp_enable();
725 load_fp_state(&current->thread.fp_state);
726 regs->msr |= current->thread.fpexc_mode;
727 }
728 if (msr_diff & MSR_VEC) {
729 vec_enable();
730 load_vr_state(&current->thread.vr_state);
731 }
732 regs->msr |= msr_diff;
733}
734
fb09692e
MN
735#else
736#define tm_recheckpoint_new_task(new)
737#define __switch_to_tm(prev)
738#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 739
14cf11af
PM
740struct task_struct *__switch_to(struct task_struct *prev,
741 struct task_struct *new)
742{
743 struct thread_struct *new_thread, *old_thread;
14cf11af 744 struct task_struct *last;
d6bf29b4
PZ
745#ifdef CONFIG_PPC_BOOK3S_64
746 struct ppc64_tlb_batch *batch;
747#endif
14cf11af 748
7ba5fef7
MN
749 WARN_ON(!irqs_disabled());
750
c2d52644
MN
751 /* Back up the TAR across context switches.
752 * Note that the TAR is not available for use in the kernel. (To
753 * provide this, the TAR should be backed up/restored on exception
754 * entry/exit instead, and be in pt_regs. FIXME, this should be in
755 * pt_regs anyway (for debug).)
756 * Save the TAR here before we do treclaim/trecheckpoint as these
757 * will change the TAR.
758 */
759 save_tar(&prev->thread);
760
bc2a9408
MN
761 __switch_to_tm(prev);
762
14cf11af
PM
763#ifdef CONFIG_SMP
764 /* avoid complexity of lazy save/restore of fpu
765 * by just saving it every time we switch out if
766 * this task used the fpu during the last quantum.
767 *
768 * If it tries to use the fpu again, it'll trap and
769 * reload its fp regs. So we don't have to do a restore
770 * every switch, just a save.
771 * -- Cort
772 */
773 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
774 giveup_fpu(prev);
775#ifdef CONFIG_ALTIVEC
776 /*
777 * If the previous thread used altivec in the last quantum
778 * (thus changing altivec regs) then save them.
779 * We used to check the VRSAVE register but not all apps
780 * set it, so we don't rely on it now (and in fact we need
781 * to save & restore VSCR even if VRSAVE == 0). -- paulus
782 *
783 * On SMP we always save/restore altivec regs just to avoid the
784 * complexity of changing processors.
785 * -- Cort
786 */
787 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
788 giveup_altivec(prev);
14cf11af 789#endif /* CONFIG_ALTIVEC */
ce48b210
MN
790#ifdef CONFIG_VSX
791 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
7c292170
MN
792 /* VMX and FPU registers are already save here */
793 __giveup_vsx(prev);
ce48b210 794#endif /* CONFIG_VSX */
14cf11af
PM
795#ifdef CONFIG_SPE
796 /*
797 * If the previous thread used spe in the last quantum
798 * (thus changing spe regs) then save them.
799 *
800 * On SMP we always save/restore spe regs just to avoid the
801 * complexity of changing processors.
802 */
803 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
804 giveup_spe(prev);
c0c0d996
PM
805#endif /* CONFIG_SPE */
806
807#else /* CONFIG_SMP */
808#ifdef CONFIG_ALTIVEC
809 /* Avoid the trap. On smp this this never happens since
810 * we don't set last_task_used_altivec -- Cort
811 */
812 if (new->thread.regs && last_task_used_altivec == new)
813 new->thread.regs->msr |= MSR_VEC;
814#endif /* CONFIG_ALTIVEC */
ce48b210
MN
815#ifdef CONFIG_VSX
816 if (new->thread.regs && last_task_used_vsx == new)
817 new->thread.regs->msr |= MSR_VSX;
818#endif /* CONFIG_VSX */
c0c0d996 819#ifdef CONFIG_SPE
14cf11af
PM
820 /* Avoid the trap. On smp this this never happens since
821 * we don't set last_task_used_spe
822 */
823 if (new->thread.regs && last_task_used_spe == new)
824 new->thread.regs->msr |= MSR_SPE;
825#endif /* CONFIG_SPE */
c0c0d996 826
14cf11af
PM
827#endif /* CONFIG_SMP */
828
172ae2e7 829#ifdef CONFIG_PPC_ADV_DEBUG_REGS
f5f97210 830 switch_booke_debug_regs(&new->thread.debug);
c6c9eace 831#else
5aae8a53
P
832/*
833 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
834 * schedule DABR
835 */
836#ifndef CONFIG_HAVE_HW_BREAKPOINT
1c430c06 837 if (unlikely(!hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
b9818c33 838 set_breakpoint(&new->thread.hw_brk);
5aae8a53 839#endif /* CONFIG_HAVE_HW_BREAKPOINT */
d6a61bfc
LM
840#endif
841
c6c9eace 842
14cf11af
PM
843 new_thread = &new->thread;
844 old_thread = &current->thread;
06d67d54
PM
845
846#ifdef CONFIG_PPC64
847 /*
848 * Collect processor utilization data per process
849 */
850 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
851 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
852 long unsigned start_tb, current_tb;
853 start_tb = old_thread->start_tb;
854 cu->current_tb = current_tb = mfspr(SPRN_PURR);
855 old_thread->accum_tb += (current_tb - start_tb);
856 new_thread->start_tb = current_tb;
857 }
d6bf29b4
PZ
858#endif /* CONFIG_PPC64 */
859
860#ifdef CONFIG_PPC_BOOK3S_64
861 batch = &__get_cpu_var(ppc64_tlb_batch);
862 if (batch->active) {
863 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
864 if (batch->index)
865 __flush_tlb_pending(batch);
866 batch->active = 0;
867 }
868#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 869
44387e9f
AB
870 /*
871 * We can't take a PMU exception inside _switch() since there is a
872 * window where the kernel stack SLB and the kernel stack are out
873 * of sync. Hard disable here.
874 */
875 hard_irq_disable();
bc2a9408
MN
876
877 tm_recheckpoint_new_task(new);
878
14cf11af
PM
879 last = _switch(old_thread, new_thread);
880
d6bf29b4
PZ
881#ifdef CONFIG_PPC_BOOK3S_64
882 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
883 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
884 batch = &__get_cpu_var(ppc64_tlb_batch);
885 batch->active = 1;
886 }
887#endif /* CONFIG_PPC_BOOK3S_64 */
888
14cf11af
PM
889 return last;
890}
891
06d67d54
PM
892static int instructions_to_print = 16;
893
06d67d54
PM
894static void show_instructions(struct pt_regs *regs)
895{
896 int i;
897 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
898 sizeof(int));
899
900 printk("Instruction dump:");
901
902 for (i = 0; i < instructions_to_print; i++) {
903 int instr;
904
905 if (!(i % 8))
906 printk("\n");
907
0de2d820
SW
908#if !defined(CONFIG_BOOKE)
909 /* If executing with the IMMU off, adjust pc rather
910 * than print XXXXXXXX.
911 */
912 if (!(regs->msr & MSR_IR))
913 pc = (unsigned long)phys_to_virt(pc);
914#endif
915
af308377
SR
916 /* We use __get_user here *only* to avoid an OOPS on a
917 * bad address because the pc *should* only be a
918 * kernel address.
919 */
00ae36de
AB
920 if (!__kernel_text_address(pc) ||
921 __get_user(instr, (unsigned int __user *)pc)) {
40c8cefa 922 printk(KERN_CONT "XXXXXXXX ");
06d67d54
PM
923 } else {
924 if (regs->nip == pc)
40c8cefa 925 printk(KERN_CONT "<%08x> ", instr);
06d67d54 926 else
40c8cefa 927 printk(KERN_CONT "%08x ", instr);
06d67d54
PM
928 }
929
930 pc += sizeof(int);
931 }
932
933 printk("\n");
934}
935
936static struct regbit {
937 unsigned long bit;
938 const char *name;
939} msr_bits[] = {
3bfd0c9c
AB
940#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
941 {MSR_SF, "SF"},
942 {MSR_HV, "HV"},
943#endif
944 {MSR_VEC, "VEC"},
945 {MSR_VSX, "VSX"},
946#ifdef CONFIG_BOOKE
947 {MSR_CE, "CE"},
948#endif
06d67d54
PM
949 {MSR_EE, "EE"},
950 {MSR_PR, "PR"},
951 {MSR_FP, "FP"},
952 {MSR_ME, "ME"},
3bfd0c9c 953#ifdef CONFIG_BOOKE
1b98326b 954 {MSR_DE, "DE"},
3bfd0c9c
AB
955#else
956 {MSR_SE, "SE"},
957 {MSR_BE, "BE"},
958#endif
06d67d54
PM
959 {MSR_IR, "IR"},
960 {MSR_DR, "DR"},
3bfd0c9c
AB
961 {MSR_PMM, "PMM"},
962#ifndef CONFIG_BOOKE
963 {MSR_RI, "RI"},
964 {MSR_LE, "LE"},
965#endif
06d67d54
PM
966 {0, NULL}
967};
968
969static void printbits(unsigned long val, struct regbit *bits)
970{
971 const char *sep = "";
972
973 printk("<");
974 for (; bits->bit; ++bits)
975 if (val & bits->bit) {
976 printk("%s%s", sep, bits->name);
977 sep = ",";
978 }
979 printk(">");
980}
981
982#ifdef CONFIG_PPC64
f6f7dde3 983#define REG "%016lx"
06d67d54
PM
984#define REGS_PER_LINE 4
985#define LAST_VOLATILE 13
986#else
f6f7dde3 987#define REG "%08lx"
06d67d54
PM
988#define REGS_PER_LINE 8
989#define LAST_VOLATILE 12
990#endif
991
14cf11af
PM
992void show_regs(struct pt_regs * regs)
993{
994 int i, trap;
995
a43cb95d
TH
996 show_regs_print_info(KERN_DEFAULT);
997
06d67d54
PM
998 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
999 regs->nip, regs->link, regs->ctr);
1000 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 1001 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54
PM
1002 printk("MSR: "REG" ", regs->msr);
1003 printbits(regs->msr, msr_bits);
f6f7dde3 1004 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 1005 trap = TRAP(regs);
5115a026 1006 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
9db8bcfd 1007 printk("CFAR: "REG" ", regs->orig_gpr3);
c5400649 1008 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
ba28c9aa 1009#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
9db8bcfd 1010 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
14170789 1011#else
9db8bcfd
AB
1012 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1013#endif
1014#ifdef CONFIG_PPC64
1015 printk("SOFTE: %ld ", regs->softe);
1016#endif
1017#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a
AB
1018 if (MSR_TM_ACTIVE(regs->msr))
1019 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 1020#endif
14cf11af
PM
1021
1022 for (i = 0; i < 32; i++) {
06d67d54 1023 if ((i % REGS_PER_LINE) == 0)
a2367194 1024 printk("\nGPR%02d: ", i);
06d67d54
PM
1025 printk(REG " ", regs->gpr[i]);
1026 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
1027 break;
1028 }
1029 printk("\n");
1030#ifdef CONFIG_KALLSYMS
1031 /*
1032 * Lookup NIP late so we have the best change of getting the
1033 * above info out without failing
1034 */
058c78f4
BH
1035 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1036 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
afc07701 1037#endif
14cf11af 1038 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
1039 if (!user_mode(regs))
1040 show_instructions(regs);
14cf11af
PM
1041}
1042
1043void exit_thread(void)
1044{
48abec07 1045 discard_lazy_cpu_state();
14cf11af
PM
1046}
1047
1048void flush_thread(void)
1049{
48abec07 1050 discard_lazy_cpu_state();
14cf11af 1051
e0780b72 1052#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1053 flush_ptrace_hw_breakpoint(current);
e0780b72 1054#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1055 set_debug_reg_defaults(&current->thread);
e0780b72 1056#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1057}
1058
1059void
1060release_thread(struct task_struct *t)
1061{
1062}
1063
1064/*
55ccf3fe
SS
1065 * this gets called so that we can store coprocessor state into memory and
1066 * copy the current task into the new thread.
14cf11af 1067 */
55ccf3fe 1068int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1069{
55ccf3fe
SS
1070 flush_fp_to_thread(src);
1071 flush_altivec_to_thread(src);
1072 flush_vsx_to_thread(src);
1073 flush_spe_to_thread(src);
621b5060
MN
1074 /*
1075 * Flush TM state out so we can copy it. __switch_to_tm() does this
1076 * flush but it removes the checkpointed state from the current CPU and
1077 * transitions the CPU out of TM mode. Hence we need to call
1078 * tm_recheckpoint_new_task() (on the same task) to restore the
1079 * checkpointed state back and the TM mode.
1080 */
1081 __switch_to_tm(src);
1082 tm_recheckpoint_new_task(src);
330a1eb7 1083
55ccf3fe 1084 *dst = *src;
330a1eb7
ME
1085
1086 clear_task_ebb(dst);
1087
55ccf3fe 1088 return 0;
14cf11af
PM
1089}
1090
1091/*
1092 * Copy a thread..
1093 */
efcac658
AK
1094extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
1095
6f2c55b8 1096int copy_thread(unsigned long clone_flags, unsigned long usp,
afa86fc4 1097 unsigned long arg, struct task_struct *p)
14cf11af
PM
1098{
1099 struct pt_regs *childregs, *kregs;
1100 extern void ret_from_fork(void);
58254e10
AV
1101 extern void ret_from_kernel_thread(void);
1102 void (*f)(void);
0cec6fd1 1103 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
14cf11af 1104
14cf11af
PM
1105 /* Copy registers */
1106 sp -= sizeof(struct pt_regs);
1107 childregs = (struct pt_regs *) sp;
ab75819d 1108 if (unlikely(p->flags & PF_KTHREAD)) {
138d1ce8 1109 struct thread_info *ti = (void *)task_stack_page(p);
58254e10 1110 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 1111 childregs->gpr[1] = sp + sizeof(struct pt_regs);
7cedd601
AB
1112 /* function */
1113 if (usp)
1114 childregs->gpr[14] = ppc_function_entry((void *)usp);
58254e10 1115#ifdef CONFIG_PPC64
b5e2fc1c 1116 clear_tsk_thread_flag(p, TIF_32BIT);
138d1ce8 1117 childregs->softe = 1;
06d67d54 1118#endif
58254e10 1119 childregs->gpr[15] = arg;
14cf11af 1120 p->thread.regs = NULL; /* no user register state */
138d1ce8 1121 ti->flags |= _TIF_RESTOREALL;
58254e10 1122 f = ret_from_kernel_thread;
14cf11af 1123 } else {
afa86fc4 1124 struct pt_regs *regs = current_pt_regs();
58254e10
AV
1125 CHECK_FULL_REGS(regs);
1126 *childregs = *regs;
ea516b11
AV
1127 if (usp)
1128 childregs->gpr[1] = usp;
14cf11af 1129 p->thread.regs = childregs;
58254e10 1130 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
1131 if (clone_flags & CLONE_SETTLS) {
1132#ifdef CONFIG_PPC64
9904b005 1133 if (!is_32bit_task())
06d67d54
PM
1134 childregs->gpr[13] = childregs->gpr[6];
1135 else
1136#endif
1137 childregs->gpr[2] = childregs->gpr[6];
1138 }
58254e10
AV
1139
1140 f = ret_from_fork;
14cf11af 1141 }
14cf11af 1142 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
1143
1144 /*
1145 * The way this works is that at some point in the future
1146 * some task will call _switch to switch to the new task.
1147 * That will pop off the stack frame created below and start
1148 * the new task running at ret_from_fork. The new task will
1149 * do some house keeping and then return from the fork or clone
1150 * system call, using the stack frame created above.
1151 */
af945cf4 1152 ((unsigned long *)sp)[0] = 0;
14cf11af
PM
1153 sp -= sizeof(struct pt_regs);
1154 kregs = (struct pt_regs *) sp;
1155 sp -= STACK_FRAME_OVERHEAD;
1156 p->thread.ksp = sp;
cbc9565e 1157#ifdef CONFIG_PPC32
85218827
KG
1158 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1159 _ALIGN_UP(sizeof(struct thread_info), 16);
cbc9565e 1160#endif
28d170ab
ON
1161#ifdef CONFIG_HAVE_HW_BREAKPOINT
1162 p->thread.ptrace_bps[0] = NULL;
1163#endif
1164
18461960
PM
1165 p->thread.fp_save_area = NULL;
1166#ifdef CONFIG_ALTIVEC
1167 p->thread.vr_save_area = NULL;
1168#endif
1169
94491685 1170#ifdef CONFIG_PPC_STD_MMU_64
44ae3ab3 1171 if (mmu_has_feature(MMU_FTR_SLB)) {
1189be65 1172 unsigned long sp_vsid;
3c726f8d 1173 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
06d67d54 1174
44ae3ab3 1175 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1189be65
PM
1176 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1177 << SLB_VSID_SHIFT_1T;
1178 else
1179 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1180 << SLB_VSID_SHIFT;
3c726f8d 1181 sp_vsid |= SLB_VSID_KERNEL | llp;
06d67d54
PM
1182 p->thread.ksp_vsid = sp_vsid;
1183 }
747bea91 1184#endif /* CONFIG_PPC_STD_MMU_64 */
efcac658
AK
1185#ifdef CONFIG_PPC64
1186 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26
AB
1187 p->thread.dscr_inherit = current->thread.dscr_inherit;
1188 p->thread.dscr = current->thread.dscr;
efcac658 1189 }
92779245
HM
1190 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1191 p->thread.ppr = INIT_PPR;
efcac658 1192#endif
7cedd601 1193 kregs->nip = ppc_function_entry(f);
14cf11af
PM
1194 return 0;
1195}
1196
1197/*
1198 * Set up a thread for executing a new program
1199 */
06d67d54 1200void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1201{
90eac727
ME
1202#ifdef CONFIG_PPC64
1203 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1204#endif
1205
06d67d54
PM
1206 /*
1207 * If we exec out of a kernel thread then thread.regs will not be
1208 * set. Do it now.
1209 */
1210 if (!current->thread.regs) {
0cec6fd1
AV
1211 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1212 current->thread.regs = regs - 1;
06d67d54
PM
1213 }
1214
14cf11af
PM
1215 memset(regs->gpr, 0, sizeof(regs->gpr));
1216 regs->ctr = 0;
1217 regs->link = 0;
1218 regs->xer = 0;
1219 regs->ccr = 0;
14cf11af 1220 regs->gpr[1] = sp;
06d67d54 1221
474f8196
RM
1222 /*
1223 * We have just cleared all the nonvolatile GPRs, so make
1224 * FULL_REGS(regs) return true. This is necessary to allow
1225 * ptrace to examine the thread immediately after exec.
1226 */
1227 regs->trap &= ~1UL;
1228
06d67d54
PM
1229#ifdef CONFIG_PPC32
1230 regs->mq = 0;
1231 regs->nip = start;
14cf11af 1232 regs->msr = MSR_USER;
06d67d54 1233#else
9904b005 1234 if (!is_32bit_task()) {
94af3abf 1235 unsigned long entry;
06d67d54 1236
94af3abf
RR
1237 if (is_elf2_task()) {
1238 /* Look ma, no function descriptors! */
1239 entry = start;
06d67d54 1240
94af3abf
RR
1241 /*
1242 * Ulrich says:
1243 * The latest iteration of the ABI requires that when
1244 * calling a function (at its global entry point),
1245 * the caller must ensure r12 holds the entry point
1246 * address (so that the function can quickly
1247 * establish addressability).
1248 */
1249 regs->gpr[12] = start;
1250 /* Make sure that's restored on entry to userspace. */
1251 set_thread_flag(TIF_RESTOREALL);
1252 } else {
1253 unsigned long toc;
1254
1255 /* start is a relocated pointer to the function
1256 * descriptor for the elf _start routine. The first
1257 * entry in the function descriptor is the entry
1258 * address of _start and the second entry is the TOC
1259 * value we need to use.
1260 */
1261 __get_user(entry, (unsigned long __user *)start);
1262 __get_user(toc, (unsigned long __user *)start+1);
1263
1264 /* Check whether the e_entry function descriptor entries
1265 * need to be relocated before we can use them.
1266 */
1267 if (load_addr != 0) {
1268 entry += load_addr;
1269 toc += load_addr;
1270 }
1271 regs->gpr[2] = toc;
06d67d54
PM
1272 }
1273 regs->nip = entry;
06d67d54 1274 regs->msr = MSR_USER64;
d4bf9a78
SR
1275 } else {
1276 regs->nip = start;
1277 regs->gpr[2] = 0;
1278 regs->msr = MSR_USER32;
06d67d54
PM
1279 }
1280#endif
48abec07 1281 discard_lazy_cpu_state();
ce48b210
MN
1282#ifdef CONFIG_VSX
1283 current->thread.used_vsr = 0;
1284#endif
de79f7b9 1285 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1286 current->thread.fp_save_area = NULL;
14cf11af 1287#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1288 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1289 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1290 current->thread.vr_save_area = NULL;
14cf11af
PM
1291 current->thread.vrsave = 0;
1292 current->thread.used_vr = 0;
1293#endif /* CONFIG_ALTIVEC */
1294#ifdef CONFIG_SPE
1295 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1296 current->thread.acc = 0;
1297 current->thread.spefscr = 0;
1298 current->thread.used_spe = 0;
1299#endif /* CONFIG_SPE */
bc2a9408
MN
1300#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1301 if (cpu_has_feature(CPU_FTR_TM))
1302 regs->msr |= MSR_TM;
1303 current->thread.tm_tfhar = 0;
1304 current->thread.tm_texasr = 0;
1305 current->thread.tm_tfiar = 0;
1306#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
14cf11af
PM
1307}
1308
1309#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1310 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1311
1312int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1313{
1314 struct pt_regs *regs = tsk->thread.regs;
1315
1316 /* This is a bit hairy. If we are an SPE enabled processor
1317 * (have embedded fp) we store the IEEE exception enable flags in
1318 * fpexc_mode. fpexc_mode is also used for setting FP exception
1319 * mode (asyn, precise, disabled) for 'Classic' FP. */
1320 if (val & PR_FP_EXC_SW_ENABLE) {
1321#ifdef CONFIG_SPE
5e14d21e 1322 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
1323 /*
1324 * When the sticky exception bits are set
1325 * directly by userspace, it must call prctl
1326 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1327 * in the existing prctl settings) or
1328 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1329 * the bits being set). <fenv.h> functions
1330 * saving and restoring the whole
1331 * floating-point environment need to do so
1332 * anyway to restore the prctl settings from
1333 * the saved environment.
1334 */
1335 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
1336 tsk->thread.fpexc_mode = val &
1337 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1338 return 0;
1339 } else {
1340 return -EINVAL;
1341 }
14cf11af
PM
1342#else
1343 return -EINVAL;
1344#endif
14cf11af 1345 }
06d67d54
PM
1346
1347 /* on a CONFIG_SPE this does not hurt us. The bits that
1348 * __pack_fe01 use do not overlap with bits used for
1349 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1350 * on CONFIG_SPE implementations are reserved so writing to
1351 * them does not change anything */
1352 if (val > PR_FP_EXC_PRECISE)
1353 return -EINVAL;
1354 tsk->thread.fpexc_mode = __pack_fe01(val);
1355 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1356 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1357 | tsk->thread.fpexc_mode;
14cf11af
PM
1358 return 0;
1359}
1360
1361int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1362{
1363 unsigned int val;
1364
1365 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1366#ifdef CONFIG_SPE
640e9225
JM
1367 if (cpu_has_feature(CPU_FTR_SPE)) {
1368 /*
1369 * When the sticky exception bits are set
1370 * directly by userspace, it must call prctl
1371 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1372 * in the existing prctl settings) or
1373 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1374 * the bits being set). <fenv.h> functions
1375 * saving and restoring the whole
1376 * floating-point environment need to do so
1377 * anyway to restore the prctl settings from
1378 * the saved environment.
1379 */
1380 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 1381 val = tsk->thread.fpexc_mode;
640e9225 1382 } else
5e14d21e 1383 return -EINVAL;
14cf11af
PM
1384#else
1385 return -EINVAL;
1386#endif
1387 else
1388 val = __unpack_fe01(tsk->thread.fpexc_mode);
1389 return put_user(val, (unsigned int __user *) adr);
1390}
1391
fab5db97
PM
1392int set_endian(struct task_struct *tsk, unsigned int val)
1393{
1394 struct pt_regs *regs = tsk->thread.regs;
1395
1396 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1397 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1398 return -EINVAL;
1399
1400 if (regs == NULL)
1401 return -EINVAL;
1402
1403 if (val == PR_ENDIAN_BIG)
1404 regs->msr &= ~MSR_LE;
1405 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1406 regs->msr |= MSR_LE;
1407 else
1408 return -EINVAL;
1409
1410 return 0;
1411}
1412
1413int get_endian(struct task_struct *tsk, unsigned long adr)
1414{
1415 struct pt_regs *regs = tsk->thread.regs;
1416 unsigned int val;
1417
1418 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1419 !cpu_has_feature(CPU_FTR_REAL_LE))
1420 return -EINVAL;
1421
1422 if (regs == NULL)
1423 return -EINVAL;
1424
1425 if (regs->msr & MSR_LE) {
1426 if (cpu_has_feature(CPU_FTR_REAL_LE))
1427 val = PR_ENDIAN_LITTLE;
1428 else
1429 val = PR_ENDIAN_PPC_LITTLE;
1430 } else
1431 val = PR_ENDIAN_BIG;
1432
1433 return put_user(val, (unsigned int __user *)adr);
1434}
1435
e9370ae1
PM
1436int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1437{
1438 tsk->thread.align_ctl = val;
1439 return 0;
1440}
1441
1442int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1443{
1444 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1445}
1446
bb72c481
PM
1447static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1448 unsigned long nbytes)
1449{
1450 unsigned long stack_page;
1451 unsigned long cpu = task_cpu(p);
1452
1453 /*
1454 * Avoid crashing if the stack has overflowed and corrupted
1455 * task_cpu(p), which is in the thread_info struct.
1456 */
1457 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1458 stack_page = (unsigned long) hardirq_ctx[cpu];
1459 if (sp >= stack_page + sizeof(struct thread_struct)
1460 && sp <= stack_page + THREAD_SIZE - nbytes)
1461 return 1;
1462
1463 stack_page = (unsigned long) softirq_ctx[cpu];
1464 if (sp >= stack_page + sizeof(struct thread_struct)
1465 && sp <= stack_page + THREAD_SIZE - nbytes)
1466 return 1;
1467 }
1468 return 0;
1469}
1470
2f25194d 1471int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1472 unsigned long nbytes)
1473{
0cec6fd1 1474 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1475
1476 if (sp >= stack_page + sizeof(struct thread_struct)
1477 && sp <= stack_page + THREAD_SIZE - nbytes)
1478 return 1;
1479
bb72c481 1480 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1481}
1482
2f25194d
AB
1483EXPORT_SYMBOL(validate_sp);
1484
14cf11af
PM
1485unsigned long get_wchan(struct task_struct *p)
1486{
1487 unsigned long ip, sp;
1488 int count = 0;
1489
1490 if (!p || p == current || p->state == TASK_RUNNING)
1491 return 0;
1492
1493 sp = p->thread.ksp;
ec2b36b9 1494 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1495 return 0;
1496
1497 do {
1498 sp = *(unsigned long *)sp;
ec2b36b9 1499 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1500 return 0;
1501 if (count > 0) {
ec2b36b9 1502 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1503 if (!in_sched_functions(ip))
1504 return ip;
1505 }
1506 } while (count++ < 16);
1507 return 0;
1508}
06d67d54 1509
c4d04be1 1510static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
1511
1512void show_stack(struct task_struct *tsk, unsigned long *stack)
1513{
1514 unsigned long sp, ip, lr, newsp;
1515 int count = 0;
1516 int firstframe = 1;
6794c782
SR
1517#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1518 int curr_frame = current->curr_ret_stack;
1519 extern void return_to_handler(void);
9135c3cc
SR
1520 unsigned long rth = (unsigned long)return_to_handler;
1521 unsigned long mrth = -1;
6794c782 1522#ifdef CONFIG_PPC64
9135c3cc
SR
1523 extern void mod_return_to_handler(void);
1524 rth = *(unsigned long *)rth;
1525 mrth = (unsigned long)mod_return_to_handler;
1526 mrth = *(unsigned long *)mrth;
6794c782
SR
1527#endif
1528#endif
06d67d54
PM
1529
1530 sp = (unsigned long) stack;
1531 if (tsk == NULL)
1532 tsk = current;
1533 if (sp == 0) {
1534 if (tsk == current)
1535 asm("mr %0,1" : "=r" (sp));
1536 else
1537 sp = tsk->thread.ksp;
1538 }
1539
1540 lr = 0;
1541 printk("Call Trace:\n");
1542 do {
ec2b36b9 1543 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1544 return;
1545
1546 stack = (unsigned long *) sp;
1547 newsp = stack[0];
ec2b36b9 1548 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 1549 if (!firstframe || ip != lr) {
058c78f4 1550 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 1551#ifdef CONFIG_FUNCTION_GRAPH_TRACER
9135c3cc 1552 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
6794c782
SR
1553 printk(" (%pS)",
1554 (void *)current->ret_stack[curr_frame].ret);
1555 curr_frame--;
1556 }
1557#endif
06d67d54
PM
1558 if (firstframe)
1559 printk(" (unreliable)");
1560 printk("\n");
1561 }
1562 firstframe = 0;
1563
1564 /*
1565 * See if this is an exception frame.
1566 * We look for the "regshere" marker in the current frame.
1567 */
ec2b36b9
BH
1568 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1569 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1570 struct pt_regs *regs = (struct pt_regs *)
1571 (sp + STACK_FRAME_OVERHEAD);
06d67d54 1572 lr = regs->link;
058c78f4
BH
1573 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1574 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
1575 firstframe = 1;
1576 }
1577
1578 sp = newsp;
1579 } while (count++ < kstack_depth_to_print);
1580}
1581
cb2c9b27 1582#ifdef CONFIG_PPC64
fe1952fc 1583/* Called with hard IRQs off */
0e37739b 1584void notrace __ppc64_runlatch_on(void)
cb2c9b27 1585{
fe1952fc 1586 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1587 unsigned long ctrl;
1588
fe1952fc
BH
1589 ctrl = mfspr(SPRN_CTRLF);
1590 ctrl |= CTRL_RUNLATCH;
1591 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1592
fae2e0fb 1593 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
1594}
1595
fe1952fc 1596/* Called with hard IRQs off */
0e37739b 1597void notrace __ppc64_runlatch_off(void)
cb2c9b27 1598{
fe1952fc 1599 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1600 unsigned long ctrl;
1601
fae2e0fb 1602 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 1603
4138d653
AB
1604 ctrl = mfspr(SPRN_CTRLF);
1605 ctrl &= ~CTRL_RUNLATCH;
1606 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1607}
fe1952fc 1608#endif /* CONFIG_PPC64 */
f6a61680 1609
d839088c
AB
1610unsigned long arch_align_stack(unsigned long sp)
1611{
1612 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1613 sp -= get_random_int() & ~PAGE_MASK;
1614 return sp & ~0xf;
1615}
912f9ee2
AB
1616
1617static inline unsigned long brk_rnd(void)
1618{
1619 unsigned long rnd = 0;
1620
1621 /* 8MB for 32bit, 1GB for 64bit */
1622 if (is_32bit_task())
1623 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1624 else
1625 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1626
1627 return rnd << PAGE_SHIFT;
1628}
1629
1630unsigned long arch_randomize_brk(struct mm_struct *mm)
1631{
8bbde7a7
AB
1632 unsigned long base = mm->brk;
1633 unsigned long ret;
1634
ce7a35c7 1635#ifdef CONFIG_PPC_STD_MMU_64
8bbde7a7
AB
1636 /*
1637 * If we are using 1TB segments and we are allowed to randomise
1638 * the heap, we can put it above 1TB so it is backed by a 1TB
1639 * segment. Otherwise the heap will be in the bottom 1TB
1640 * which always uses 256MB segments and this may result in a
1641 * performance penalty.
1642 */
1643 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1644 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1645#endif
1646
1647 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
1648
1649 if (ret < mm->brk)
1650 return mm->brk;
1651
1652 return ret;
1653}
501cb16d
AB
1654
1655unsigned long randomize_et_dyn(unsigned long base)
1656{
1657 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1658
1659 if (ret < base)
1660 return base;
1661
1662 return ret;
1663}