]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - arch/powerpc/kernel/process.c
powerpc/perf: Fix kfree memory allocated for nest pmus
[mirror_ubuntu-eoan-kernel.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
b17b0153 19#include <linux/sched/debug.h>
29930025 20#include <linux/sched/task.h>
68db0cf1 21#include <linux/sched/task_stack.h>
14cf11af
PM
22#include <linux/kernel.h>
23#include <linux/mm.h>
24#include <linux/smp.h>
14cf11af
PM
25#include <linux/stddef.h>
26#include <linux/unistd.h>
27#include <linux/ptrace.h>
28#include <linux/slab.h>
29#include <linux/user.h>
30#include <linux/elf.h>
14cf11af
PM
31#include <linux/prctl.h>
32#include <linux/init_task.h>
4b16f8e2 33#include <linux/export.h>
14cf11af
PM
34#include <linux/kallsyms.h>
35#include <linux/mqueue.h>
36#include <linux/hardirq.h>
06d67d54 37#include <linux/utsname.h>
6794c782 38#include <linux/ftrace.h>
79741dd3 39#include <linux/kernel_stat.h>
d839088c
AB
40#include <linux/personality.h>
41#include <linux/random.h>
5aae8a53 42#include <linux/hw_breakpoint.h>
7b051f66 43#include <linux/uaccess.h>
7f92bc56 44#include <linux/elf-randomize.h>
14cf11af
PM
45
46#include <asm/pgtable.h>
14cf11af
PM
47#include <asm/io.h>
48#include <asm/processor.h>
49#include <asm/mmu.h>
50#include <asm/prom.h>
76032de8 51#include <asm/machdep.h>
c6622f63 52#include <asm/time.h>
ae3a197e 53#include <asm/runlatch.h>
a7f31841 54#include <asm/syscalls.h>
ae3a197e 55#include <asm/switch_to.h>
fb09692e 56#include <asm/tm.h>
ae3a197e 57#include <asm/debug.h>
06d67d54
PM
58#ifdef CONFIG_PPC64
59#include <asm/firmware.h>
06d67d54 60#endif
7cedd601 61#include <asm/code-patching.h>
7f92bc56 62#include <asm/exec.h>
5d31a96e 63#include <asm/livepatch.h>
b92a226e 64#include <asm/cpu_has_feature.h>
0545d543 65#include <asm/asm-prototypes.h>
5d31a96e 66
d6a61bfc
LM
67#include <linux/kprobes.h>
68#include <linux/kdebug.h>
14cf11af 69
8b3c34cf
MN
70/* Transactional Memory debug */
71#ifdef TM_DEBUG_SW
72#define TM_DEBUG(x...) printk(KERN_INFO x)
73#else
74#define TM_DEBUG(x...) do { } while(0)
75#endif
76
14cf11af
PM
77extern unsigned long _get_SP(void);
78
d31626f7 79#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
54820530
ME
80/*
81 * Are we running in "Suspend disabled" mode? If so we have to block any
82 * sigreturn that would get us into suspended state, and we also warn in some
83 * other paths that we should never reach with suspend disabled.
84 */
85bool tm_suspend_disabled __ro_after_init = false;
86
b86fd2bd 87static void check_if_tm_restore_required(struct task_struct *tsk)
d31626f7
PM
88{
89 /*
90 * If we are saving the current thread's registers, and the
91 * thread is in a transactional state, set the TIF_RESTORE_TM
92 * bit so that we know to restore the registers before
93 * returning to userspace.
94 */
95 if (tsk == current && tsk->thread.regs &&
96 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
97 !test_thread_flag(TIF_RESTORE_TM)) {
829023df 98 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
d31626f7
PM
99 set_thread_flag(TIF_RESTORE_TM);
100 }
d31626f7 101}
dc16b553
CB
102
103static inline bool msr_tm_active(unsigned long msr)
104{
105 return MSR_TM_ACTIVE(msr);
106}
a7771176
CB
107
108static bool tm_active_with_fp(struct task_struct *tsk)
109{
110 return msr_tm_active(tsk->thread.regs->msr) &&
111 (tsk->thread.ckpt_regs.msr & MSR_FP);
112}
113
114static bool tm_active_with_altivec(struct task_struct *tsk)
115{
116 return msr_tm_active(tsk->thread.regs->msr) &&
117 (tsk->thread.ckpt_regs.msr & MSR_VEC);
118}
d31626f7 119#else
dc16b553 120static inline bool msr_tm_active(unsigned long msr) { return false; }
b86fd2bd 121static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
a7771176
CB
122static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
123static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
d31626f7
PM
124#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
125
3eb5d588
AB
126bool strict_msr_control;
127EXPORT_SYMBOL(strict_msr_control);
128
129static int __init enable_strict_msr_control(char *str)
130{
131 strict_msr_control = true;
132 pr_info("Enabling strict facility control\n");
133
134 return 0;
135}
136early_param("ppc_strict_facility_enable", enable_strict_msr_control);
137
3cee070a 138unsigned long msr_check_and_set(unsigned long bits)
98da581e 139{
a0e72cf1
AB
140 unsigned long oldmsr = mfmsr();
141 unsigned long newmsr;
98da581e 142
a0e72cf1 143 newmsr = oldmsr | bits;
98da581e 144
98da581e 145#ifdef CONFIG_VSX
a0e72cf1 146 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
98da581e
AB
147 newmsr |= MSR_VSX;
148#endif
a0e72cf1 149
98da581e
AB
150 if (oldmsr != newmsr)
151 mtmsr_isync(newmsr);
3cee070a
CB
152
153 return newmsr;
a0e72cf1 154}
98da581e 155
3eb5d588 156void __msr_check_and_clear(unsigned long bits)
a0e72cf1
AB
157{
158 unsigned long oldmsr = mfmsr();
159 unsigned long newmsr;
160
161 newmsr = oldmsr & ~bits;
162
163#ifdef CONFIG_VSX
164 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
165 newmsr &= ~MSR_VSX;
166#endif
167
168 if (oldmsr != newmsr)
169 mtmsr_isync(newmsr);
170}
3eb5d588 171EXPORT_SYMBOL(__msr_check_and_clear);
a0e72cf1
AB
172
173#ifdef CONFIG_PPC_FPU
8792468d
CB
174void __giveup_fpu(struct task_struct *tsk)
175{
8eb98037
AB
176 unsigned long msr;
177
8792468d 178 save_fpu(tsk);
8eb98037
AB
179 msr = tsk->thread.regs->msr;
180 msr &= ~MSR_FP;
8792468d
CB
181#ifdef CONFIG_VSX
182 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 183 msr &= ~MSR_VSX;
8792468d 184#endif
8eb98037 185 tsk->thread.regs->msr = msr;
8792468d
CB
186}
187
a0e72cf1
AB
188void giveup_fpu(struct task_struct *tsk)
189{
190 check_if_tm_restore_required(tsk);
191
192 msr_check_and_set(MSR_FP);
98da581e 193 __giveup_fpu(tsk);
a0e72cf1 194 msr_check_and_clear(MSR_FP);
98da581e
AB
195}
196EXPORT_SYMBOL(giveup_fpu);
197
14cf11af
PM
198/*
199 * Make sure the floating-point register state in the
200 * the thread_struct is up to date for task tsk.
201 */
202void flush_fp_to_thread(struct task_struct *tsk)
203{
204 if (tsk->thread.regs) {
205 /*
206 * We need to disable preemption here because if we didn't,
207 * another process could get scheduled after the regs->msr
208 * test but before we have finished saving the FP registers
209 * to the thread_struct. That process could take over the
210 * FPU, and then when we get scheduled again we would store
211 * bogus values for the remaining FP registers.
212 */
213 preempt_disable();
214 if (tsk->thread.regs->msr & MSR_FP) {
14cf11af
PM
215 /*
216 * This should only ever be called for current or
217 * for a stopped child process. Since we save away
af1bbc3d 218 * the FP register state on context switch,
14cf11af
PM
219 * there is something wrong if a stopped child appears
220 * to still have its FP state in the CPU registers.
221 */
222 BUG_ON(tsk != current);
b86fd2bd 223 giveup_fpu(tsk);
14cf11af
PM
224 }
225 preempt_enable();
226 }
227}
de56a948 228EXPORT_SYMBOL_GPL(flush_fp_to_thread);
14cf11af
PM
229
230void enable_kernel_fp(void)
231{
e909fb83
CB
232 unsigned long cpumsr;
233
14cf11af
PM
234 WARN_ON(preemptible());
235
e909fb83 236 cpumsr = msr_check_and_set(MSR_FP);
611b0e5c 237
d64d02ce
AB
238 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
239 check_if_tm_restore_required(current);
e909fb83
CB
240 /*
241 * If a thread has already been reclaimed then the
242 * checkpointed registers are on the CPU but have definitely
243 * been saved by the reclaim code. Don't need to and *cannot*
244 * giveup as this would save to the 'live' structure not the
245 * checkpointed structure.
246 */
247 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
248 return;
a0e72cf1 249 __giveup_fpu(current);
d64d02ce 250 }
14cf11af
PM
251}
252EXPORT_SYMBOL(enable_kernel_fp);
70fe3d98 253
6a303833
BH
254static int restore_fp(struct task_struct *tsk)
255{
a7771176 256 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
70fe3d98
CB
257 load_fp_state(&current->thread.fp_state);
258 current->thread.load_fp++;
259 return 1;
260 }
261 return 0;
262}
263#else
264static int restore_fp(struct task_struct *tsk) { return 0; }
d1e1cf2e 265#endif /* CONFIG_PPC_FPU */
14cf11af 266
14cf11af 267#ifdef CONFIG_ALTIVEC
70fe3d98
CB
268#define loadvec(thr) ((thr).load_vec)
269
6f515d84
CB
270static void __giveup_altivec(struct task_struct *tsk)
271{
8eb98037
AB
272 unsigned long msr;
273
6f515d84 274 save_altivec(tsk);
8eb98037
AB
275 msr = tsk->thread.regs->msr;
276 msr &= ~MSR_VEC;
6f515d84
CB
277#ifdef CONFIG_VSX
278 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 279 msr &= ~MSR_VSX;
6f515d84 280#endif
8eb98037 281 tsk->thread.regs->msr = msr;
6f515d84
CB
282}
283
98da581e
AB
284void giveup_altivec(struct task_struct *tsk)
285{
98da581e
AB
286 check_if_tm_restore_required(tsk);
287
a0e72cf1 288 msr_check_and_set(MSR_VEC);
98da581e 289 __giveup_altivec(tsk);
a0e72cf1 290 msr_check_and_clear(MSR_VEC);
98da581e
AB
291}
292EXPORT_SYMBOL(giveup_altivec);
293
14cf11af
PM
294void enable_kernel_altivec(void)
295{
e909fb83
CB
296 unsigned long cpumsr;
297
14cf11af
PM
298 WARN_ON(preemptible());
299
e909fb83 300 cpumsr = msr_check_and_set(MSR_VEC);
611b0e5c 301
d64d02ce
AB
302 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
303 check_if_tm_restore_required(current);
e909fb83
CB
304 /*
305 * If a thread has already been reclaimed then the
306 * checkpointed registers are on the CPU but have definitely
307 * been saved by the reclaim code. Don't need to and *cannot*
308 * giveup as this would save to the 'live' structure not the
309 * checkpointed structure.
310 */
311 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
312 return;
a0e72cf1 313 __giveup_altivec(current);
d64d02ce 314 }
14cf11af
PM
315}
316EXPORT_SYMBOL(enable_kernel_altivec);
317
318/*
319 * Make sure the VMX/Altivec register state in the
320 * the thread_struct is up to date for task tsk.
321 */
322void flush_altivec_to_thread(struct task_struct *tsk)
323{
324 if (tsk->thread.regs) {
325 preempt_disable();
326 if (tsk->thread.regs->msr & MSR_VEC) {
14cf11af 327 BUG_ON(tsk != current);
b86fd2bd 328 giveup_altivec(tsk);
14cf11af
PM
329 }
330 preempt_enable();
331 }
332}
de56a948 333EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
70fe3d98
CB
334
335static int restore_altivec(struct task_struct *tsk)
336{
dc16b553 337 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
a7771176 338 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
70fe3d98
CB
339 load_vr_state(&tsk->thread.vr_state);
340 tsk->thread.used_vr = 1;
341 tsk->thread.load_vec++;
342
343 return 1;
344 }
345 return 0;
346}
347#else
348#define loadvec(thr) 0
349static inline int restore_altivec(struct task_struct *tsk) { return 0; }
14cf11af
PM
350#endif /* CONFIG_ALTIVEC */
351
ce48b210 352#ifdef CONFIG_VSX
bf6a4d5b 353static void __giveup_vsx(struct task_struct *tsk)
a7d623d4 354{
dc801081
BH
355 unsigned long msr = tsk->thread.regs->msr;
356
357 /*
358 * We should never be ssetting MSR_VSX without also setting
359 * MSR_FP and MSR_VEC
360 */
361 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
362
363 /* __giveup_fpu will clear MSR_VSX */
364 if (msr & MSR_FP)
a7d623d4 365 __giveup_fpu(tsk);
dc801081 366 if (msr & MSR_VEC)
a7d623d4 367 __giveup_altivec(tsk);
bf6a4d5b
CB
368}
369
370static void giveup_vsx(struct task_struct *tsk)
371{
372 check_if_tm_restore_required(tsk);
373
374 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 375 __giveup_vsx(tsk);
a0e72cf1 376 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 377}
bf6a4d5b 378
ce48b210
MN
379void enable_kernel_vsx(void)
380{
e909fb83
CB
381 unsigned long cpumsr;
382
ce48b210
MN
383 WARN_ON(preemptible());
384
e909fb83 385 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
611b0e5c 386
5a69aec9
BH
387 if (current->thread.regs &&
388 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
d64d02ce 389 check_if_tm_restore_required(current);
e909fb83
CB
390 /*
391 * If a thread has already been reclaimed then the
392 * checkpointed registers are on the CPU but have definitely
393 * been saved by the reclaim code. Don't need to and *cannot*
394 * giveup as this would save to the 'live' structure not the
395 * checkpointed structure.
396 */
397 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
398 return;
a0e72cf1 399 __giveup_vsx(current);
611b0e5c 400 }
ce48b210
MN
401}
402EXPORT_SYMBOL(enable_kernel_vsx);
ce48b210
MN
403
404void flush_vsx_to_thread(struct task_struct *tsk)
405{
406 if (tsk->thread.regs) {
407 preempt_disable();
5a69aec9 408 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
ce48b210 409 BUG_ON(tsk != current);
ce48b210
MN
410 giveup_vsx(tsk);
411 }
412 preempt_enable();
413 }
414}
de56a948 415EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
70fe3d98
CB
416
417static int restore_vsx(struct task_struct *tsk)
418{
419 if (cpu_has_feature(CPU_FTR_VSX)) {
420 tsk->thread.used_vsr = 1;
421 return 1;
422 }
423
424 return 0;
425}
426#else
427static inline int restore_vsx(struct task_struct *tsk) { return 0; }
ce48b210
MN
428#endif /* CONFIG_VSX */
429
14cf11af 430#ifdef CONFIG_SPE
98da581e
AB
431void giveup_spe(struct task_struct *tsk)
432{
98da581e
AB
433 check_if_tm_restore_required(tsk);
434
a0e72cf1 435 msr_check_and_set(MSR_SPE);
98da581e 436 __giveup_spe(tsk);
a0e72cf1 437 msr_check_and_clear(MSR_SPE);
98da581e
AB
438}
439EXPORT_SYMBOL(giveup_spe);
14cf11af
PM
440
441void enable_kernel_spe(void)
442{
443 WARN_ON(preemptible());
444
a0e72cf1 445 msr_check_and_set(MSR_SPE);
611b0e5c 446
d64d02ce
AB
447 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
448 check_if_tm_restore_required(current);
a0e72cf1 449 __giveup_spe(current);
d64d02ce 450 }
14cf11af
PM
451}
452EXPORT_SYMBOL(enable_kernel_spe);
453
454void flush_spe_to_thread(struct task_struct *tsk)
455{
456 if (tsk->thread.regs) {
457 preempt_disable();
458 if (tsk->thread.regs->msr & MSR_SPE) {
14cf11af 459 BUG_ON(tsk != current);
685659ee 460 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 461 giveup_spe(tsk);
14cf11af
PM
462 }
463 preempt_enable();
464 }
465}
14cf11af
PM
466#endif /* CONFIG_SPE */
467
c2085059
AB
468static unsigned long msr_all_available;
469
470static int __init init_msr_all_available(void)
471{
472#ifdef CONFIG_PPC_FPU
473 msr_all_available |= MSR_FP;
474#endif
475#ifdef CONFIG_ALTIVEC
476 if (cpu_has_feature(CPU_FTR_ALTIVEC))
477 msr_all_available |= MSR_VEC;
478#endif
479#ifdef CONFIG_VSX
480 if (cpu_has_feature(CPU_FTR_VSX))
481 msr_all_available |= MSR_VSX;
482#endif
483#ifdef CONFIG_SPE
484 if (cpu_has_feature(CPU_FTR_SPE))
485 msr_all_available |= MSR_SPE;
486#endif
487
488 return 0;
489}
490early_initcall(init_msr_all_available);
491
492void giveup_all(struct task_struct *tsk)
493{
494 unsigned long usermsr;
495
496 if (!tsk->thread.regs)
497 return;
498
499 usermsr = tsk->thread.regs->msr;
500
501 if ((usermsr & msr_all_available) == 0)
502 return;
503
504 msr_check_and_set(msr_all_available);
b0f16b46 505 check_if_tm_restore_required(tsk);
c2085059 506
96c79b6b
BH
507 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
508
c2085059
AB
509#ifdef CONFIG_PPC_FPU
510 if (usermsr & MSR_FP)
511 __giveup_fpu(tsk);
512#endif
513#ifdef CONFIG_ALTIVEC
514 if (usermsr & MSR_VEC)
515 __giveup_altivec(tsk);
516#endif
c2085059
AB
517#ifdef CONFIG_SPE
518 if (usermsr & MSR_SPE)
519 __giveup_spe(tsk);
520#endif
521
522 msr_check_and_clear(msr_all_available);
523}
524EXPORT_SYMBOL(giveup_all);
525
70fe3d98
CB
526void restore_math(struct pt_regs *regs)
527{
528 unsigned long msr;
529
dc16b553
CB
530 if (!msr_tm_active(regs->msr) &&
531 !current->thread.load_fp && !loadvec(current->thread))
70fe3d98
CB
532 return;
533
534 msr = regs->msr;
535 msr_check_and_set(msr_all_available);
536
537 /*
538 * Only reload if the bit is not set in the user MSR, the bit BEING set
539 * indicates that the registers are hot
540 */
541 if ((!(msr & MSR_FP)) && restore_fp(current))
542 msr |= MSR_FP | current->thread.fpexc_mode;
543
544 if ((!(msr & MSR_VEC)) && restore_altivec(current))
545 msr |= MSR_VEC;
546
547 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
548 restore_vsx(current)) {
549 msr |= MSR_VSX;
550 }
551
552 msr_check_and_clear(msr_all_available);
553
554 regs->msr = msr;
555}
556
de2a20aa
CB
557void save_all(struct task_struct *tsk)
558{
559 unsigned long usermsr;
560
561 if (!tsk->thread.regs)
562 return;
563
564 usermsr = tsk->thread.regs->msr;
565
566 if ((usermsr & msr_all_available) == 0)
567 return;
568
569 msr_check_and_set(msr_all_available);
570
96c79b6b
BH
571 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
572
573 if (usermsr & MSR_FP)
574 save_fpu(tsk);
575
576 if (usermsr & MSR_VEC)
577 save_altivec(tsk);
de2a20aa
CB
578
579 if (usermsr & MSR_SPE)
580 __giveup_spe(tsk);
581
582 msr_check_and_clear(msr_all_available);
583}
584
579e633e
AB
585void flush_all_to_thread(struct task_struct *tsk)
586{
587 if (tsk->thread.regs) {
588 preempt_disable();
589 BUG_ON(tsk != current);
de2a20aa 590 save_all(tsk);
579e633e
AB
591
592#ifdef CONFIG_SPE
593 if (tsk->thread.regs->msr & MSR_SPE)
594 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
595#endif
596
597 preempt_enable();
598 }
599}
600EXPORT_SYMBOL(flush_all_to_thread);
601
3bffb652
DK
602#ifdef CONFIG_PPC_ADV_DEBUG_REGS
603void do_send_trap(struct pt_regs *regs, unsigned long address,
604 unsigned long error_code, int signal_code, int breakpt)
605{
606 siginfo_t info;
607
41ab5266 608 current->thread.trap_nr = signal_code;
3bffb652
DK
609 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
610 11, SIGSEGV) == NOTIFY_STOP)
611 return;
612
613 /* Deliver the signal to userspace */
614 info.si_signo = SIGTRAP;
615 info.si_errno = breakpt; /* breakpoint or watchpoint id */
616 info.si_code = signal_code;
617 info.si_addr = (void __user *)address;
618 force_sig_info(SIGTRAP, &info, current);
619}
620#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 621void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
622 unsigned long error_code)
623{
624 siginfo_t info;
625
41ab5266 626 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
627 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
628 11, SIGSEGV) == NOTIFY_STOP)
629 return;
630
9422de3e 631 if (debugger_break_match(regs))
d6a61bfc
LM
632 return;
633
9422de3e
MN
634 /* Clear the breakpoint */
635 hw_breakpoint_disable();
d6a61bfc
LM
636
637 /* Deliver the signal to userspace */
638 info.si_signo = SIGTRAP;
639 info.si_errno = 0;
640 info.si_code = TRAP_HWBKPT;
641 info.si_addr = (void __user *)address;
642 force_sig_info(SIGTRAP, &info, current);
643}
3bffb652 644#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 645
9422de3e 646static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 647
3bffb652
DK
648#ifdef CONFIG_PPC_ADV_DEBUG_REGS
649/*
650 * Set the debug registers back to their default "safe" values.
651 */
652static void set_debug_reg_defaults(struct thread_struct *thread)
653{
51ae8d4a 654 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 655#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 656 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 657#endif
51ae8d4a 658 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 659#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 660 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 661#endif
51ae8d4a 662 thread->debug.dbcr0 = 0;
3bffb652
DK
663#ifdef CONFIG_BOOKE
664 /*
665 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
666 */
51ae8d4a 667 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
668 DBCR1_IAC3US | DBCR1_IAC4US;
669 /*
670 * Force Data Address Compare User/Supervisor bits to be User-only
671 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
672 */
51ae8d4a 673 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 674#else
51ae8d4a 675 thread->debug.dbcr1 = 0;
3bffb652
DK
676#endif
677}
678
f5f97210 679static void prime_debug_regs(struct debug_reg *debug)
3bffb652 680{
6cecf76b
SW
681 /*
682 * We could have inherited MSR_DE from userspace, since
683 * it doesn't get cleared on exception entry. Make sure
684 * MSR_DE is clear before we enable any debug events.
685 */
686 mtmsr(mfmsr() & ~MSR_DE);
687
f5f97210
SW
688 mtspr(SPRN_IAC1, debug->iac1);
689 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 690#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
691 mtspr(SPRN_IAC3, debug->iac3);
692 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 693#endif
f5f97210
SW
694 mtspr(SPRN_DAC1, debug->dac1);
695 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 696#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
697 mtspr(SPRN_DVC1, debug->dvc1);
698 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 699#endif
f5f97210
SW
700 mtspr(SPRN_DBCR0, debug->dbcr0);
701 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 702#ifdef CONFIG_BOOKE
f5f97210 703 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
704#endif
705}
706/*
707 * Unless neither the old or new thread are making use of the
708 * debug registers, set the debug registers from the values
709 * stored in the new thread.
710 */
f5f97210 711void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 712{
51ae8d4a 713 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
714 || (new_debug->dbcr0 & DBCR0_IDM))
715 prime_debug_regs(new_debug);
3bffb652 716}
3743c9b8 717EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 718#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 719#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
720static void set_debug_reg_defaults(struct thread_struct *thread)
721{
9422de3e
MN
722 thread->hw_brk.address = 0;
723 thread->hw_brk.type = 0;
b9818c33 724 set_breakpoint(&thread->hw_brk);
3bffb652 725}
e0780b72 726#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
727#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
728
172ae2e7 729#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
730static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
731{
d6a61bfc 732 mtspr(SPRN_DAC1, dabr);
221c185d
DK
733#ifdef CONFIG_PPC_47x
734 isync();
735#endif
9422de3e
MN
736 return 0;
737}
c6c9eace 738#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
739static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
740{
c6c9eace 741 mtspr(SPRN_DABR, dabr);
82a9f16a
MN
742 if (cpu_has_feature(CPU_FTR_DABRX))
743 mtspr(SPRN_DABRX, dabrx);
cab0af98 744 return 0;
14cf11af 745}
4ad8622d
CL
746#elif defined(CONFIG_PPC_8xx)
747static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
748{
749 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
750 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
751 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
752
753 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
754 lctrl1 |= 0xa0000;
755 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
756 lctrl1 |= 0xf0000;
757 else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
758 lctrl2 = 0;
759
760 mtspr(SPRN_LCTRL2, 0);
761 mtspr(SPRN_CMPE, addr);
762 mtspr(SPRN_CMPF, addr + 4);
763 mtspr(SPRN_LCTRL1, lctrl1);
764 mtspr(SPRN_LCTRL2, lctrl2);
765
766 return 0;
767}
9422de3e
MN
768#else
769static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
770{
771 return -EINVAL;
772}
773#endif
774
775static inline int set_dabr(struct arch_hw_breakpoint *brk)
776{
777 unsigned long dabr, dabrx;
778
779 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
780 dabrx = ((brk->type >> 3) & 0x7);
781
782 if (ppc_md.set_dabr)
783 return ppc_md.set_dabr(dabr, dabrx);
784
785 return __set_dabr(dabr, dabrx);
786}
787
bf99de36
MN
788static inline int set_dawr(struct arch_hw_breakpoint *brk)
789{
05d694ea 790 unsigned long dawr, dawrx, mrd;
bf99de36
MN
791
792 dawr = brk->address;
793
794 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
795 << (63 - 58); //* read/write bits */
796 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
797 << (63 - 59); //* translate */
798 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
799 >> 3; //* PRIM bits */
05d694ea
MN
800 /* dawr length is stored in field MDR bits 48:53. Matches range in
801 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
802 0b111111=64DW.
803 brk->len is in bytes.
804 This aligns up to double word size, shifts and does the bias.
805 */
806 mrd = ((brk->len + 7) >> 3) - 1;
807 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
808
809 if (ppc_md.set_dawr)
810 return ppc_md.set_dawr(dawr, dawrx);
811 mtspr(SPRN_DAWR, dawr);
812 mtspr(SPRN_DAWRX, dawrx);
813 return 0;
814}
815
21f58507 816void __set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e 817{
69111bac 818 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
9422de3e 819
bf99de36 820 if (cpu_has_feature(CPU_FTR_DAWR))
04c32a51
PG
821 set_dawr(brk);
822 else
823 set_dabr(brk);
9422de3e 824}
14cf11af 825
21f58507
PG
826void set_breakpoint(struct arch_hw_breakpoint *brk)
827{
828 preempt_disable();
829 __set_breakpoint(brk);
830 preempt_enable();
831}
832
06d67d54
PM
833#ifdef CONFIG_PPC64
834DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 835#endif
14cf11af 836
9422de3e
MN
837static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
838 struct arch_hw_breakpoint *b)
839{
840 if (a->address != b->address)
841 return false;
842 if (a->type != b->type)
843 return false;
844 if (a->len != b->len)
845 return false;
846 return true;
847}
d31626f7 848
fb09692e 849#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
5d176f75
CB
850
851static inline bool tm_enabled(struct task_struct *tsk)
852{
853 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
854}
855
d31626f7
PM
856static void tm_reclaim_thread(struct thread_struct *thr,
857 struct thread_info *ti, uint8_t cause)
858{
7f821fc9
MN
859 /*
860 * Use the current MSR TM suspended bit to track if we have
861 * checkpointed state outstanding.
862 * On signal delivery, we'd normally reclaim the checkpointed
863 * state to obtain stack pointer (see:get_tm_stackpointer()).
864 * This will then directly return to userspace without going
865 * through __switch_to(). However, if the stack frame is bad,
866 * we need to exit this thread which calls __switch_to() which
867 * will again attempt to reclaim the already saved tm state.
868 * Hence we need to check that we've not already reclaimed
869 * this state.
870 * We do this using the current MSR, rather tracking it in
871 * some specific thread_struct bit, as it has the additional
027dfac6 872 * benefit of checking for a potential TM bad thing exception.
7f821fc9
MN
873 */
874 if (!MSR_TM_SUSPENDED(mfmsr()))
875 return;
876
91381b9c
CB
877 giveup_all(container_of(thr, struct task_struct, thread));
878
eb5c3f1c
CB
879 tm_reclaim(thr, cause);
880
f48e91e8
MN
881 /*
882 * If we are in a transaction and FP is off then we can't have
883 * used FP inside that transaction. Hence the checkpointed
884 * state is the same as the live state. We need to copy the
885 * live state to the checkpointed state so that when the
886 * transaction is restored, the checkpointed state is correct
887 * and the aborted transaction sees the correct state. We use
888 * ckpt_regs.msr here as that's what tm_reclaim will use to
889 * determine if it's going to write the checkpointed state or
890 * not. So either this will write the checkpointed registers,
891 * or reclaim will. Similarly for VMX.
892 */
893 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
894 memcpy(&thr->ckfp_state, &thr->fp_state,
895 sizeof(struct thread_fp_state));
896 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
897 memcpy(&thr->ckvr_state, &thr->vr_state,
898 sizeof(struct thread_vr_state));
d31626f7
PM
899}
900
901void tm_reclaim_current(uint8_t cause)
902{
903 tm_enable();
904 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
905}
906
fb09692e
MN
907static inline void tm_reclaim_task(struct task_struct *tsk)
908{
909 /* We have to work out if we're switching from/to a task that's in the
910 * middle of a transaction.
911 *
912 * In switching we need to maintain a 2nd register state as
913 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
000ec280
CB
914 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
915 * ckvr_state
fb09692e
MN
916 *
917 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
918 */
919 struct thread_struct *thr = &tsk->thread;
920
921 if (!thr->regs)
922 return;
923
924 if (!MSR_TM_ACTIVE(thr->regs->msr))
925 goto out_and_saveregs;
926
92fb8690
MN
927 WARN_ON(tm_suspend_disabled);
928
fb09692e
MN
929 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
930 "ccr=%lx, msr=%lx, trap=%lx)\n",
931 tsk->pid, thr->regs->nip,
932 thr->regs->ccr, thr->regs->msr,
933 thr->regs->trap);
934
d31626f7 935 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
fb09692e
MN
936
937 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
938 tsk->pid);
939
940out_and_saveregs:
941 /* Always save the regs here, even if a transaction's not active.
942 * This context-switches a thread's TM info SPRs. We do it here to
943 * be consistent with the restore path (in recheckpoint) which
944 * cannot happen later in _switch().
945 */
946 tm_save_sprs(thr);
947}
948
eb5c3f1c 949extern void __tm_recheckpoint(struct thread_struct *thread);
e6b8fd02 950
eb5c3f1c 951void tm_recheckpoint(struct thread_struct *thread)
e6b8fd02
MN
952{
953 unsigned long flags;
954
5d176f75
CB
955 if (!(thread->regs->msr & MSR_TM))
956 return;
957
e6b8fd02
MN
958 /* We really can't be interrupted here as the TEXASR registers can't
959 * change and later in the trecheckpoint code, we have a userspace R1.
960 * So let's hard disable over this region.
961 */
962 local_irq_save(flags);
963 hard_irq_disable();
964
965 /* The TM SPRs are restored here, so that TEXASR.FS can be set
966 * before the trecheckpoint and no explosion occurs.
967 */
968 tm_restore_sprs(thread);
969
eb5c3f1c 970 __tm_recheckpoint(thread);
e6b8fd02
MN
971
972 local_irq_restore(flags);
973}
974
bc2a9408 975static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e 976{
fb09692e
MN
977 if (!cpu_has_feature(CPU_FTR_TM))
978 return;
979
980 /* Recheckpoint the registers of the thread we're about to switch to.
981 *
982 * If the task was using FP, we non-lazily reload both the original and
983 * the speculative FP register states. This is because the kernel
984 * doesn't see if/when a TM rollback occurs, so if we take an FP
dc310669 985 * unavailable later, we are unable to determine which set of FP regs
fb09692e
MN
986 * need to be restored.
987 */
5d176f75 988 if (!tm_enabled(new))
fb09692e
MN
989 return;
990
e6b8fd02
MN
991 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
992 tm_restore_sprs(&new->thread);
fb09692e 993 return;
e6b8fd02 994 }
fb09692e 995 /* Recheckpoint to restore original checkpointed register state. */
eb5c3f1c
CB
996 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
997 new->pid, new->thread.regs->msr);
fb09692e 998
eb5c3f1c 999 tm_recheckpoint(&new->thread);
fb09692e 1000
dc310669
CB
1001 /*
1002 * The checkpointed state has been restored but the live state has
1003 * not, ensure all the math functionality is turned off to trigger
1004 * restore_math() to reload.
1005 */
1006 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
fb09692e
MN
1007
1008 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1009 "(kernel msr 0x%lx)\n",
1010 new->pid, mfmsr());
1011}
1012
dc310669
CB
1013static inline void __switch_to_tm(struct task_struct *prev,
1014 struct task_struct *new)
fb09692e
MN
1015{
1016 if (cpu_has_feature(CPU_FTR_TM)) {
5d176f75
CB
1017 if (tm_enabled(prev) || tm_enabled(new))
1018 tm_enable();
1019
1020 if (tm_enabled(prev)) {
1021 prev->thread.load_tm++;
1022 tm_reclaim_task(prev);
1023 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1024 prev->thread.regs->msr &= ~MSR_TM;
1025 }
1026
dc310669 1027 tm_recheckpoint_new_task(new);
fb09692e
MN
1028 }
1029}
d31626f7
PM
1030
1031/*
1032 * This is called if we are on the way out to userspace and the
1033 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1034 * FP and/or vector state and does so if necessary.
1035 * If userspace is inside a transaction (whether active or
1036 * suspended) and FP/VMX/VSX instructions have ever been enabled
1037 * inside that transaction, then we have to keep them enabled
1038 * and keep the FP/VMX/VSX state loaded while ever the transaction
1039 * continues. The reason is that if we didn't, and subsequently
1040 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1041 * we don't know whether it's the same transaction, and thus we
1042 * don't know which of the checkpointed state and the transactional
1043 * state to use.
1044 */
1045void restore_tm_state(struct pt_regs *regs)
1046{
1047 unsigned long msr_diff;
1048
dc310669
CB
1049 /*
1050 * This is the only moment we should clear TIF_RESTORE_TM as
1051 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1052 * again, anything else could lead to an incorrect ckpt_msr being
1053 * saved and therefore incorrect signal contexts.
1054 */
d31626f7
PM
1055 clear_thread_flag(TIF_RESTORE_TM);
1056 if (!MSR_TM_ACTIVE(regs->msr))
1057 return;
1058
829023df 1059 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
d31626f7 1060 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
70fe3d98 1061
dc16b553
CB
1062 /* Ensure that restore_math() will restore */
1063 if (msr_diff & MSR_FP)
1064 current->thread.load_fp = 1;
39715bf9 1065#ifdef CONFIG_ALTIVEC
dc16b553
CB
1066 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1067 current->thread.load_vec = 1;
1068#endif
70fe3d98
CB
1069 restore_math(regs);
1070
d31626f7
PM
1071 regs->msr |= msr_diff;
1072}
1073
fb09692e
MN
1074#else
1075#define tm_recheckpoint_new_task(new)
dc310669 1076#define __switch_to_tm(prev, new)
fb09692e 1077#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 1078
152d523e
AB
1079static inline void save_sprs(struct thread_struct *t)
1080{
1081#ifdef CONFIG_ALTIVEC
01d7c2a2 1082 if (cpu_has_feature(CPU_FTR_ALTIVEC))
152d523e
AB
1083 t->vrsave = mfspr(SPRN_VRSAVE);
1084#endif
1085#ifdef CONFIG_PPC_BOOK3S_64
1086 if (cpu_has_feature(CPU_FTR_DSCR))
1087 t->dscr = mfspr(SPRN_DSCR);
1088
1089 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1090 t->bescr = mfspr(SPRN_BESCR);
1091 t->ebbhr = mfspr(SPRN_EBBHR);
1092 t->ebbrr = mfspr(SPRN_EBBRR);
1093
1094 t->fscr = mfspr(SPRN_FSCR);
1095
1096 /*
1097 * Note that the TAR is not available for use in the kernel.
1098 * (To provide this, the TAR should be backed up/restored on
1099 * exception entry/exit instead, and be in pt_regs. FIXME,
1100 * this should be in pt_regs anyway (for debug).)
1101 */
1102 t->tar = mfspr(SPRN_TAR);
1103 }
1104#endif
1105}
1106
1107static inline void restore_sprs(struct thread_struct *old_thread,
1108 struct thread_struct *new_thread)
1109{
1110#ifdef CONFIG_ALTIVEC
1111 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1112 old_thread->vrsave != new_thread->vrsave)
1113 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1114#endif
1115#ifdef CONFIG_PPC_BOOK3S_64
1116 if (cpu_has_feature(CPU_FTR_DSCR)) {
1117 u64 dscr = get_paca()->dscr_default;
b57bd2de 1118 if (new_thread->dscr_inherit)
152d523e 1119 dscr = new_thread->dscr;
152d523e
AB
1120
1121 if (old_thread->dscr != dscr)
1122 mtspr(SPRN_DSCR, dscr);
152d523e
AB
1123 }
1124
1125 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1126 if (old_thread->bescr != new_thread->bescr)
1127 mtspr(SPRN_BESCR, new_thread->bescr);
1128 if (old_thread->ebbhr != new_thread->ebbhr)
1129 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1130 if (old_thread->ebbrr != new_thread->ebbrr)
1131 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1132
b57bd2de
MN
1133 if (old_thread->fscr != new_thread->fscr)
1134 mtspr(SPRN_FSCR, new_thread->fscr);
1135
152d523e
AB
1136 if (old_thread->tar != new_thread->tar)
1137 mtspr(SPRN_TAR, new_thread->tar);
1138 }
ec233ede
SB
1139
1140 if (cpu_has_feature(CPU_FTR_ARCH_300) &&
1141 old_thread->tidr != new_thread->tidr)
1142 mtspr(SPRN_TIDR, new_thread->tidr);
152d523e
AB
1143#endif
1144}
1145
07d2a628
NP
1146#ifdef CONFIG_PPC_BOOK3S_64
1147#define CP_SIZE 128
1148static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1149#endif
1150
14cf11af
PM
1151struct task_struct *__switch_to(struct task_struct *prev,
1152 struct task_struct *new)
1153{
1154 struct thread_struct *new_thread, *old_thread;
14cf11af 1155 struct task_struct *last;
d6bf29b4
PZ
1156#ifdef CONFIG_PPC_BOOK3S_64
1157 struct ppc64_tlb_batch *batch;
1158#endif
14cf11af 1159
152d523e
AB
1160 new_thread = &new->thread;
1161 old_thread = &current->thread;
1162
7ba5fef7
MN
1163 WARN_ON(!irqs_disabled());
1164
06d67d54
PM
1165#ifdef CONFIG_PPC64
1166 /*
1167 * Collect processor utilization data per process
1168 */
1169 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
69111bac 1170 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
06d67d54
PM
1171 long unsigned start_tb, current_tb;
1172 start_tb = old_thread->start_tb;
1173 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1174 old_thread->accum_tb += (current_tb - start_tb);
1175 new_thread->start_tb = current_tb;
1176 }
d6bf29b4
PZ
1177#endif /* CONFIG_PPC64 */
1178
4e003747 1179#ifdef CONFIG_PPC_BOOK3S_64
69111bac 1180 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1181 if (batch->active) {
1182 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1183 if (batch->index)
1184 __flush_tlb_pending(batch);
1185 batch->active = 0;
1186 }
4e003747 1187#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 1188
f3d885cc
AB
1189#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1190 switch_booke_debug_regs(&new->thread.debug);
1191#else
1192/*
1193 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1194 * schedule DABR
1195 */
1196#ifndef CONFIG_HAVE_HW_BREAKPOINT
1197 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1198 __set_breakpoint(&new->thread.hw_brk);
1199#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1200#endif
1201
1202 /*
1203 * We need to save SPRs before treclaim/trecheckpoint as these will
1204 * change a number of them.
1205 */
1206 save_sprs(&prev->thread);
1207
f3d885cc
AB
1208 /* Save FPU, Altivec, VSX and SPE state */
1209 giveup_all(prev);
1210
dc310669
CB
1211 __switch_to_tm(prev, new);
1212
e4c0fc5f
NP
1213 if (!radix_enabled()) {
1214 /*
1215 * We can't take a PMU exception inside _switch() since there
1216 * is a window where the kernel stack SLB and the kernel stack
1217 * are out of sync. Hard disable here.
1218 */
1219 hard_irq_disable();
1220 }
bc2a9408 1221
20dbe670
AB
1222 /*
1223 * Call restore_sprs() before calling _switch(). If we move it after
1224 * _switch() then we miss out on calling it for new tasks. The reason
1225 * for this is we manually create a stack frame for new tasks that
1226 * directly returns through ret_from_fork() or
1227 * ret_from_kernel_thread(). See copy_thread() for details.
1228 */
f3d885cc
AB
1229 restore_sprs(old_thread, new_thread);
1230
20dbe670
AB
1231 last = _switch(old_thread, new_thread);
1232
4e003747 1233#ifdef CONFIG_PPC_BOOK3S_64
d6bf29b4
PZ
1234 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1235 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
69111bac 1236 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1237 batch->active = 1;
1238 }
70fe3d98 1239
07d2a628 1240 if (current_thread_info()->task->thread.regs) {
70fe3d98 1241 restore_math(current_thread_info()->task->thread.regs);
07d2a628
NP
1242
1243 /*
1244 * The copy-paste buffer can only store into foreign real
1245 * addresses, so unprivileged processes can not see the
1246 * data or use it in any way unless they have foreign real
9d2a4d71
SB
1247 * mappings. If the new process has the foreign real address
1248 * mappings, we must issue a cp_abort to clear any state and
1249 * prevent snooping, corruption or a covert channel.
1250 *
1251 * DD1 allows paste into normal system memory so we do an
1252 * unpaired copy, rather than cp_abort, to clear the buffer,
1253 * since cp_abort is quite expensive.
07d2a628 1254 */
9d2a4d71
SB
1255 if (current_thread_info()->task->thread.used_vas) {
1256 asm volatile(PPC_CP_ABORT);
1257 } else if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
07d2a628
NP
1258 asm volatile(PPC_COPY(%0, %1)
1259 : : "r"(dummy_copy_buffer), "r"(0));
1260 }
1261 }
4e003747 1262#endif /* CONFIG_PPC_BOOK3S_64 */
d6bf29b4 1263
14cf11af
PM
1264 return last;
1265}
1266
06d67d54
PM
1267static int instructions_to_print = 16;
1268
06d67d54
PM
1269static void show_instructions(struct pt_regs *regs)
1270{
1271 int i;
1272 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1273 sizeof(int));
1274
1275 printk("Instruction dump:");
1276
1277 for (i = 0; i < instructions_to_print; i++) {
1278 int instr;
1279
1280 if (!(i % 8))
2ffd04de 1281 pr_cont("\n");
06d67d54 1282
0de2d820
SW
1283#if !defined(CONFIG_BOOKE)
1284 /* If executing with the IMMU off, adjust pc rather
1285 * than print XXXXXXXX.
1286 */
1287 if (!(regs->msr & MSR_IR))
1288 pc = (unsigned long)phys_to_virt(pc);
1289#endif
1290
00ae36de 1291 if (!__kernel_text_address(pc) ||
7b051f66 1292 probe_kernel_address((unsigned int __user *)pc, instr)) {
2ffd04de 1293 pr_cont("XXXXXXXX ");
06d67d54
PM
1294 } else {
1295 if (regs->nip == pc)
2ffd04de 1296 pr_cont("<%08x> ", instr);
06d67d54 1297 else
2ffd04de 1298 pr_cont("%08x ", instr);
06d67d54
PM
1299 }
1300
1301 pc += sizeof(int);
1302 }
1303
2ffd04de 1304 pr_cont("\n");
06d67d54
PM
1305}
1306
801c0b2c 1307struct regbit {
06d67d54
PM
1308 unsigned long bit;
1309 const char *name;
801c0b2c
MN
1310};
1311
1312static struct regbit msr_bits[] = {
3bfd0c9c
AB
1313#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1314 {MSR_SF, "SF"},
1315 {MSR_HV, "HV"},
1316#endif
1317 {MSR_VEC, "VEC"},
1318 {MSR_VSX, "VSX"},
1319#ifdef CONFIG_BOOKE
1320 {MSR_CE, "CE"},
1321#endif
06d67d54
PM
1322 {MSR_EE, "EE"},
1323 {MSR_PR, "PR"},
1324 {MSR_FP, "FP"},
1325 {MSR_ME, "ME"},
3bfd0c9c 1326#ifdef CONFIG_BOOKE
1b98326b 1327 {MSR_DE, "DE"},
3bfd0c9c
AB
1328#else
1329 {MSR_SE, "SE"},
1330 {MSR_BE, "BE"},
1331#endif
06d67d54
PM
1332 {MSR_IR, "IR"},
1333 {MSR_DR, "DR"},
3bfd0c9c
AB
1334 {MSR_PMM, "PMM"},
1335#ifndef CONFIG_BOOKE
1336 {MSR_RI, "RI"},
1337 {MSR_LE, "LE"},
1338#endif
06d67d54
PM
1339 {0, NULL}
1340};
1341
801c0b2c 1342static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
06d67d54 1343{
801c0b2c 1344 const char *s = "";
06d67d54 1345
06d67d54
PM
1346 for (; bits->bit; ++bits)
1347 if (val & bits->bit) {
db5ba5ae 1348 pr_cont("%s%s", s, bits->name);
801c0b2c 1349 s = sep;
06d67d54 1350 }
801c0b2c
MN
1351}
1352
1353#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1354static struct regbit msr_tm_bits[] = {
1355 {MSR_TS_T, "T"},
1356 {MSR_TS_S, "S"},
1357 {MSR_TM, "E"},
1358 {0, NULL}
1359};
1360
1361static void print_tm_bits(unsigned long val)
1362{
1363/*
1364 * This only prints something if at least one of the TM bit is set.
1365 * Inside the TM[], the output means:
1366 * E: Enabled (bit 32)
1367 * S: Suspended (bit 33)
1368 * T: Transactional (bit 34)
1369 */
1370 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
db5ba5ae 1371 pr_cont(",TM[");
801c0b2c 1372 print_bits(val, msr_tm_bits, "");
db5ba5ae 1373 pr_cont("]");
801c0b2c
MN
1374 }
1375}
1376#else
1377static void print_tm_bits(unsigned long val) {}
1378#endif
1379
1380static void print_msr_bits(unsigned long val)
1381{
db5ba5ae 1382 pr_cont("<");
801c0b2c
MN
1383 print_bits(val, msr_bits, ",");
1384 print_tm_bits(val);
db5ba5ae 1385 pr_cont(">");
06d67d54
PM
1386}
1387
1388#ifdef CONFIG_PPC64
f6f7dde3 1389#define REG "%016lx"
06d67d54
PM
1390#define REGS_PER_LINE 4
1391#define LAST_VOLATILE 13
1392#else
f6f7dde3 1393#define REG "%08lx"
06d67d54
PM
1394#define REGS_PER_LINE 8
1395#define LAST_VOLATILE 12
1396#endif
1397
14cf11af
PM
1398void show_regs(struct pt_regs * regs)
1399{
1400 int i, trap;
1401
a43cb95d
TH
1402 show_regs_print_info(KERN_DEFAULT);
1403
a6036100 1404 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
06d67d54
PM
1405 regs->nip, regs->link, regs->ctr);
1406 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 1407 regs, regs->trap, print_tainted(), init_utsname()->release);
a6036100 1408 printk("MSR: "REG" ", regs->msr);
801c0b2c 1409 print_msr_bits(regs->msr);
f6fc73fb 1410 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 1411 trap = TRAP(regs);
5115a026 1412 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
7dae865f 1413 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
c5400649 1414 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
ba28c9aa 1415#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
7dae865f 1416 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
14170789 1417#else
7dae865f 1418 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
9db8bcfd
AB
1419#endif
1420#ifdef CONFIG_PPC64
7dae865f 1421 pr_cont("SOFTE: %ld ", regs->softe);
9db8bcfd
AB
1422#endif
1423#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a 1424 if (MSR_TM_ACTIVE(regs->msr))
7dae865f 1425 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 1426#endif
14cf11af
PM
1427
1428 for (i = 0; i < 32; i++) {
06d67d54 1429 if ((i % REGS_PER_LINE) == 0)
7dae865f
ME
1430 pr_cont("\nGPR%02d: ", i);
1431 pr_cont(REG " ", regs->gpr[i]);
06d67d54 1432 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
1433 break;
1434 }
7dae865f 1435 pr_cont("\n");
14cf11af
PM
1436#ifdef CONFIG_KALLSYMS
1437 /*
1438 * Lookup NIP late so we have the best change of getting the
1439 * above info out without failing
1440 */
058c78f4
BH
1441 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1442 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
afc07701 1443#endif
14cf11af 1444 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
1445 if (!user_mode(regs))
1446 show_instructions(regs);
14cf11af
PM
1447}
1448
14cf11af
PM
1449void flush_thread(void)
1450{
e0780b72 1451#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1452 flush_ptrace_hw_breakpoint(current);
e0780b72 1453#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1454 set_debug_reg_defaults(&current->thread);
e0780b72 1455#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1456}
1457
9d2a4d71
SB
1458int set_thread_uses_vas(void)
1459{
1460#ifdef CONFIG_PPC_BOOK3S_64
1461 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1462 return -EINVAL;
1463
1464 current->thread.used_vas = 1;
1465
1466 /*
1467 * Even a process that has no foreign real address mapping can use
1468 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1469 * to clear any pending COPY and prevent a covert channel.
1470 *
1471 * __switch_to() will issue CP_ABORT on future context switches.
1472 */
1473 asm volatile(PPC_CP_ABORT);
1474
1475#endif /* CONFIG_PPC_BOOK3S_64 */
1476 return 0;
1477}
1478
ec233ede
SB
1479#ifdef CONFIG_PPC64
1480static DEFINE_SPINLOCK(vas_thread_id_lock);
1481static DEFINE_IDA(vas_thread_ida);
1482
1483/*
1484 * We need to assign a unique thread id to each thread in a process.
1485 *
1486 * This thread id, referred to as TIDR, and separate from the Linux's tgid,
1487 * is intended to be used to direct an ASB_Notify from the hardware to the
1488 * thread, when a suitable event occurs in the system.
1489 *
1490 * One such event is a "paste" instruction in the context of Fast Thread
1491 * Wakeup (aka Core-to-core wake up in the Virtual Accelerator Switchboard
1492 * (VAS) in POWER9.
1493 *
1494 * To get a unique TIDR per process we could simply reuse task_pid_nr() but
1495 * the problem is that task_pid_nr() is not yet available copy_thread() is
1496 * called. Fixing that would require changing more intrusive arch-neutral
1497 * code in code path in copy_process()?.
1498 *
1499 * Further, to assign unique TIDRs within each process, we need an atomic
1500 * field (or an IDR) in task_struct, which again intrudes into the arch-
1501 * neutral code. So try to assign globally unique TIDRs for now.
1502 *
1503 * NOTE: TIDR 0 indicates that the thread does not need a TIDR value.
1504 * For now, only threads that expect to be notified by the VAS
1505 * hardware need a TIDR value and we assign values > 0 for those.
1506 */
1507#define MAX_THREAD_CONTEXT ((1 << 16) - 1)
1508static int assign_thread_tidr(void)
1509{
1510 int index;
1511 int err;
1512
1513again:
1514 if (!ida_pre_get(&vas_thread_ida, GFP_KERNEL))
1515 return -ENOMEM;
1516
1517 spin_lock(&vas_thread_id_lock);
1518 err = ida_get_new_above(&vas_thread_ida, 1, &index);
1519 spin_unlock(&vas_thread_id_lock);
1520
1521 if (err == -EAGAIN)
1522 goto again;
1523 else if (err)
1524 return err;
1525
1526 if (index > MAX_THREAD_CONTEXT) {
1527 spin_lock(&vas_thread_id_lock);
1528 ida_remove(&vas_thread_ida, index);
1529 spin_unlock(&vas_thread_id_lock);
1530 return -ENOMEM;
1531 }
1532
1533 return index;
1534}
1535
1536static void free_thread_tidr(int id)
1537{
1538 spin_lock(&vas_thread_id_lock);
1539 ida_remove(&vas_thread_ida, id);
1540 spin_unlock(&vas_thread_id_lock);
1541}
1542
1543/*
1544 * Clear any TIDR value assigned to this thread.
1545 */
1546void clear_thread_tidr(struct task_struct *t)
1547{
1548 if (!t->thread.tidr)
1549 return;
1550
1551 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1552 WARN_ON_ONCE(1);
1553 return;
1554 }
1555
1556 mtspr(SPRN_TIDR, 0);
1557 free_thread_tidr(t->thread.tidr);
1558 t->thread.tidr = 0;
1559}
1560
1561void arch_release_task_struct(struct task_struct *t)
1562{
1563 clear_thread_tidr(t);
1564}
1565
1566/*
1567 * Assign a unique TIDR (thread id) for task @t and set it in the thread
1568 * structure. For now, we only support setting TIDR for 'current' task.
1569 */
1570int set_thread_tidr(struct task_struct *t)
1571{
aca7573f
VJ
1572 int rc;
1573
ec233ede
SB
1574 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1575 return -EINVAL;
1576
1577 if (t != current)
1578 return -EINVAL;
1579
7e4d4233
VJ
1580 if (t->thread.tidr)
1581 return 0;
1582
aca7573f
VJ
1583 rc = assign_thread_tidr();
1584 if (rc < 0)
1585 return rc;
ec233ede 1586
aca7573f 1587 t->thread.tidr = rc;
ec233ede
SB
1588 mtspr(SPRN_TIDR, t->thread.tidr);
1589
1590 return 0;
1591}
1592
1593#endif /* CONFIG_PPC64 */
1594
14cf11af
PM
1595void
1596release_thread(struct task_struct *t)
1597{
1598}
1599
1600/*
55ccf3fe
SS
1601 * this gets called so that we can store coprocessor state into memory and
1602 * copy the current task into the new thread.
14cf11af 1603 */
55ccf3fe 1604int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1605{
579e633e 1606 flush_all_to_thread(src);
621b5060
MN
1607 /*
1608 * Flush TM state out so we can copy it. __switch_to_tm() does this
1609 * flush but it removes the checkpointed state from the current CPU and
1610 * transitions the CPU out of TM mode. Hence we need to call
1611 * tm_recheckpoint_new_task() (on the same task) to restore the
1612 * checkpointed state back and the TM mode.
5d176f75
CB
1613 *
1614 * Can't pass dst because it isn't ready. Doesn't matter, passing
1615 * dst is only important for __switch_to()
621b5060 1616 */
dc310669 1617 __switch_to_tm(src, src);
330a1eb7 1618
55ccf3fe 1619 *dst = *src;
330a1eb7
ME
1620
1621 clear_task_ebb(dst);
1622
55ccf3fe 1623 return 0;
14cf11af
PM
1624}
1625
cec15488
ME
1626static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1627{
4e003747 1628#ifdef CONFIG_PPC_BOOK3S_64
cec15488
ME
1629 unsigned long sp_vsid;
1630 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1631
caca285e
AK
1632 if (radix_enabled())
1633 return;
1634
cec15488
ME
1635 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1636 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1637 << SLB_VSID_SHIFT_1T;
1638 else
1639 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1640 << SLB_VSID_SHIFT;
1641 sp_vsid |= SLB_VSID_KERNEL | llp;
1642 p->thread.ksp_vsid = sp_vsid;
1643#endif
1644}
1645
14cf11af
PM
1646/*
1647 * Copy a thread..
1648 */
efcac658 1649
6eca8933
AD
1650/*
1651 * Copy architecture-specific thread state
1652 */
6f2c55b8 1653int copy_thread(unsigned long clone_flags, unsigned long usp,
6eca8933 1654 unsigned long kthread_arg, struct task_struct *p)
14cf11af
PM
1655{
1656 struct pt_regs *childregs, *kregs;
1657 extern void ret_from_fork(void);
58254e10
AV
1658 extern void ret_from_kernel_thread(void);
1659 void (*f)(void);
0cec6fd1 1660 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
5d31a96e
ME
1661 struct thread_info *ti = task_thread_info(p);
1662
1663 klp_init_thread_info(ti);
14cf11af 1664
14cf11af
PM
1665 /* Copy registers */
1666 sp -= sizeof(struct pt_regs);
1667 childregs = (struct pt_regs *) sp;
ab75819d 1668 if (unlikely(p->flags & PF_KTHREAD)) {
6eca8933 1669 /* kernel thread */
58254e10 1670 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 1671 childregs->gpr[1] = sp + sizeof(struct pt_regs);
7cedd601
AB
1672 /* function */
1673 if (usp)
1674 childregs->gpr[14] = ppc_function_entry((void *)usp);
58254e10 1675#ifdef CONFIG_PPC64
b5e2fc1c 1676 clear_tsk_thread_flag(p, TIF_32BIT);
138d1ce8 1677 childregs->softe = 1;
06d67d54 1678#endif
6eca8933 1679 childregs->gpr[15] = kthread_arg;
14cf11af 1680 p->thread.regs = NULL; /* no user register state */
138d1ce8 1681 ti->flags |= _TIF_RESTOREALL;
58254e10 1682 f = ret_from_kernel_thread;
14cf11af 1683 } else {
6eca8933 1684 /* user thread */
afa86fc4 1685 struct pt_regs *regs = current_pt_regs();
58254e10
AV
1686 CHECK_FULL_REGS(regs);
1687 *childregs = *regs;
ea516b11
AV
1688 if (usp)
1689 childregs->gpr[1] = usp;
14cf11af 1690 p->thread.regs = childregs;
58254e10 1691 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
1692 if (clone_flags & CLONE_SETTLS) {
1693#ifdef CONFIG_PPC64
9904b005 1694 if (!is_32bit_task())
06d67d54
PM
1695 childregs->gpr[13] = childregs->gpr[6];
1696 else
1697#endif
1698 childregs->gpr[2] = childregs->gpr[6];
1699 }
58254e10
AV
1700
1701 f = ret_from_fork;
14cf11af 1702 }
d272f667 1703 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
14cf11af 1704 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
1705
1706 /*
1707 * The way this works is that at some point in the future
1708 * some task will call _switch to switch to the new task.
1709 * That will pop off the stack frame created below and start
1710 * the new task running at ret_from_fork. The new task will
1711 * do some house keeping and then return from the fork or clone
1712 * system call, using the stack frame created above.
1713 */
af945cf4 1714 ((unsigned long *)sp)[0] = 0;
14cf11af
PM
1715 sp -= sizeof(struct pt_regs);
1716 kregs = (struct pt_regs *) sp;
1717 sp -= STACK_FRAME_OVERHEAD;
1718 p->thread.ksp = sp;
cbc9565e 1719#ifdef CONFIG_PPC32
85218827
KG
1720 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1721 _ALIGN_UP(sizeof(struct thread_info), 16);
cbc9565e 1722#endif
28d170ab
ON
1723#ifdef CONFIG_HAVE_HW_BREAKPOINT
1724 p->thread.ptrace_bps[0] = NULL;
1725#endif
1726
18461960
PM
1727 p->thread.fp_save_area = NULL;
1728#ifdef CONFIG_ALTIVEC
1729 p->thread.vr_save_area = NULL;
1730#endif
1731
cec15488
ME
1732 setup_ksp_vsid(p, sp);
1733
efcac658
AK
1734#ifdef CONFIG_PPC64
1735 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26 1736 p->thread.dscr_inherit = current->thread.dscr_inherit;
db1231dc 1737 p->thread.dscr = mfspr(SPRN_DSCR);
efcac658 1738 }
92779245
HM
1739 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1740 p->thread.ppr = INIT_PPR;
ec233ede
SB
1741
1742 p->thread.tidr = 0;
efcac658 1743#endif
7cedd601 1744 kregs->nip = ppc_function_entry(f);
14cf11af
PM
1745 return 0;
1746}
1747
1748/*
1749 * Set up a thread for executing a new program
1750 */
06d67d54 1751void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1752{
90eac727
ME
1753#ifdef CONFIG_PPC64
1754 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1755#endif
1756
06d67d54
PM
1757 /*
1758 * If we exec out of a kernel thread then thread.regs will not be
1759 * set. Do it now.
1760 */
1761 if (!current->thread.regs) {
0cec6fd1
AV
1762 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1763 current->thread.regs = regs - 1;
06d67d54
PM
1764 }
1765
8e96a87c
CB
1766#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1767 /*
1768 * Clear any transactional state, we're exec()ing. The cause is
1769 * not important as there will never be a recheckpoint so it's not
1770 * user visible.
1771 */
1772 if (MSR_TM_SUSPENDED(mfmsr()))
1773 tm_reclaim_current(0);
1774#endif
1775
14cf11af
PM
1776 memset(regs->gpr, 0, sizeof(regs->gpr));
1777 regs->ctr = 0;
1778 regs->link = 0;
1779 regs->xer = 0;
1780 regs->ccr = 0;
14cf11af 1781 regs->gpr[1] = sp;
06d67d54 1782
474f8196
RM
1783 /*
1784 * We have just cleared all the nonvolatile GPRs, so make
1785 * FULL_REGS(regs) return true. This is necessary to allow
1786 * ptrace to examine the thread immediately after exec.
1787 */
1788 regs->trap &= ~1UL;
1789
06d67d54
PM
1790#ifdef CONFIG_PPC32
1791 regs->mq = 0;
1792 regs->nip = start;
14cf11af 1793 regs->msr = MSR_USER;
06d67d54 1794#else
9904b005 1795 if (!is_32bit_task()) {
94af3abf 1796 unsigned long entry;
06d67d54 1797
94af3abf
RR
1798 if (is_elf2_task()) {
1799 /* Look ma, no function descriptors! */
1800 entry = start;
06d67d54 1801
94af3abf
RR
1802 /*
1803 * Ulrich says:
1804 * The latest iteration of the ABI requires that when
1805 * calling a function (at its global entry point),
1806 * the caller must ensure r12 holds the entry point
1807 * address (so that the function can quickly
1808 * establish addressability).
1809 */
1810 regs->gpr[12] = start;
1811 /* Make sure that's restored on entry to userspace. */
1812 set_thread_flag(TIF_RESTOREALL);
1813 } else {
1814 unsigned long toc;
1815
1816 /* start is a relocated pointer to the function
1817 * descriptor for the elf _start routine. The first
1818 * entry in the function descriptor is the entry
1819 * address of _start and the second entry is the TOC
1820 * value we need to use.
1821 */
1822 __get_user(entry, (unsigned long __user *)start);
1823 __get_user(toc, (unsigned long __user *)start+1);
1824
1825 /* Check whether the e_entry function descriptor entries
1826 * need to be relocated before we can use them.
1827 */
1828 if (load_addr != 0) {
1829 entry += load_addr;
1830 toc += load_addr;
1831 }
1832 regs->gpr[2] = toc;
06d67d54
PM
1833 }
1834 regs->nip = entry;
06d67d54 1835 regs->msr = MSR_USER64;
d4bf9a78
SR
1836 } else {
1837 regs->nip = start;
1838 regs->gpr[2] = 0;
1839 regs->msr = MSR_USER32;
06d67d54
PM
1840 }
1841#endif
ce48b210
MN
1842#ifdef CONFIG_VSX
1843 current->thread.used_vsr = 0;
1844#endif
1195892c 1845 current->thread.load_fp = 0;
de79f7b9 1846 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1847 current->thread.fp_save_area = NULL;
14cf11af 1848#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1849 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1850 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1851 current->thread.vr_save_area = NULL;
14cf11af
PM
1852 current->thread.vrsave = 0;
1853 current->thread.used_vr = 0;
1195892c 1854 current->thread.load_vec = 0;
14cf11af
PM
1855#endif /* CONFIG_ALTIVEC */
1856#ifdef CONFIG_SPE
1857 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1858 current->thread.acc = 0;
1859 current->thread.spefscr = 0;
1860 current->thread.used_spe = 0;
1861#endif /* CONFIG_SPE */
bc2a9408 1862#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
bc2a9408
MN
1863 current->thread.tm_tfhar = 0;
1864 current->thread.tm_texasr = 0;
1865 current->thread.tm_tfiar = 0;
7f22ced4 1866 current->thread.load_tm = 0;
bc2a9408 1867#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
14cf11af 1868}
e1802b06 1869EXPORT_SYMBOL(start_thread);
14cf11af
PM
1870
1871#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1872 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1873
1874int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1875{
1876 struct pt_regs *regs = tsk->thread.regs;
1877
1878 /* This is a bit hairy. If we are an SPE enabled processor
1879 * (have embedded fp) we store the IEEE exception enable flags in
1880 * fpexc_mode. fpexc_mode is also used for setting FP exception
1881 * mode (asyn, precise, disabled) for 'Classic' FP. */
1882 if (val & PR_FP_EXC_SW_ENABLE) {
1883#ifdef CONFIG_SPE
5e14d21e 1884 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
1885 /*
1886 * When the sticky exception bits are set
1887 * directly by userspace, it must call prctl
1888 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1889 * in the existing prctl settings) or
1890 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1891 * the bits being set). <fenv.h> functions
1892 * saving and restoring the whole
1893 * floating-point environment need to do so
1894 * anyway to restore the prctl settings from
1895 * the saved environment.
1896 */
1897 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
1898 tsk->thread.fpexc_mode = val &
1899 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1900 return 0;
1901 } else {
1902 return -EINVAL;
1903 }
14cf11af
PM
1904#else
1905 return -EINVAL;
1906#endif
14cf11af 1907 }
06d67d54
PM
1908
1909 /* on a CONFIG_SPE this does not hurt us. The bits that
1910 * __pack_fe01 use do not overlap with bits used for
1911 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1912 * on CONFIG_SPE implementations are reserved so writing to
1913 * them does not change anything */
1914 if (val > PR_FP_EXC_PRECISE)
1915 return -EINVAL;
1916 tsk->thread.fpexc_mode = __pack_fe01(val);
1917 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1918 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1919 | tsk->thread.fpexc_mode;
14cf11af
PM
1920 return 0;
1921}
1922
1923int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1924{
1925 unsigned int val;
1926
1927 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1928#ifdef CONFIG_SPE
640e9225
JM
1929 if (cpu_has_feature(CPU_FTR_SPE)) {
1930 /*
1931 * When the sticky exception bits are set
1932 * directly by userspace, it must call prctl
1933 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1934 * in the existing prctl settings) or
1935 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1936 * the bits being set). <fenv.h> functions
1937 * saving and restoring the whole
1938 * floating-point environment need to do so
1939 * anyway to restore the prctl settings from
1940 * the saved environment.
1941 */
1942 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 1943 val = tsk->thread.fpexc_mode;
640e9225 1944 } else
5e14d21e 1945 return -EINVAL;
14cf11af
PM
1946#else
1947 return -EINVAL;
1948#endif
1949 else
1950 val = __unpack_fe01(tsk->thread.fpexc_mode);
1951 return put_user(val, (unsigned int __user *) adr);
1952}
1953
fab5db97
PM
1954int set_endian(struct task_struct *tsk, unsigned int val)
1955{
1956 struct pt_regs *regs = tsk->thread.regs;
1957
1958 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1959 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1960 return -EINVAL;
1961
1962 if (regs == NULL)
1963 return -EINVAL;
1964
1965 if (val == PR_ENDIAN_BIG)
1966 regs->msr &= ~MSR_LE;
1967 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1968 regs->msr |= MSR_LE;
1969 else
1970 return -EINVAL;
1971
1972 return 0;
1973}
1974
1975int get_endian(struct task_struct *tsk, unsigned long adr)
1976{
1977 struct pt_regs *regs = tsk->thread.regs;
1978 unsigned int val;
1979
1980 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1981 !cpu_has_feature(CPU_FTR_REAL_LE))
1982 return -EINVAL;
1983
1984 if (regs == NULL)
1985 return -EINVAL;
1986
1987 if (regs->msr & MSR_LE) {
1988 if (cpu_has_feature(CPU_FTR_REAL_LE))
1989 val = PR_ENDIAN_LITTLE;
1990 else
1991 val = PR_ENDIAN_PPC_LITTLE;
1992 } else
1993 val = PR_ENDIAN_BIG;
1994
1995 return put_user(val, (unsigned int __user *)adr);
1996}
1997
e9370ae1
PM
1998int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1999{
2000 tsk->thread.align_ctl = val;
2001 return 0;
2002}
2003
2004int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2005{
2006 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2007}
2008
bb72c481
PM
2009static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2010 unsigned long nbytes)
2011{
2012 unsigned long stack_page;
2013 unsigned long cpu = task_cpu(p);
2014
2015 /*
2016 * Avoid crashing if the stack has overflowed and corrupted
2017 * task_cpu(p), which is in the thread_info struct.
2018 */
2019 if (cpu < NR_CPUS && cpu_possible(cpu)) {
2020 stack_page = (unsigned long) hardirq_ctx[cpu];
2021 if (sp >= stack_page + sizeof(struct thread_struct)
2022 && sp <= stack_page + THREAD_SIZE - nbytes)
2023 return 1;
2024
2025 stack_page = (unsigned long) softirq_ctx[cpu];
2026 if (sp >= stack_page + sizeof(struct thread_struct)
2027 && sp <= stack_page + THREAD_SIZE - nbytes)
2028 return 1;
2029 }
2030 return 0;
2031}
2032
2f25194d 2033int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
2034 unsigned long nbytes)
2035{
0cec6fd1 2036 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
2037
2038 if (sp >= stack_page + sizeof(struct thread_struct)
2039 && sp <= stack_page + THREAD_SIZE - nbytes)
2040 return 1;
2041
bb72c481 2042 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
2043}
2044
2f25194d
AB
2045EXPORT_SYMBOL(validate_sp);
2046
14cf11af
PM
2047unsigned long get_wchan(struct task_struct *p)
2048{
2049 unsigned long ip, sp;
2050 int count = 0;
2051
2052 if (!p || p == current || p->state == TASK_RUNNING)
2053 return 0;
2054
2055 sp = p->thread.ksp;
ec2b36b9 2056 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
2057 return 0;
2058
2059 do {
2060 sp = *(unsigned long *)sp;
4ca360f3
KC
2061 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2062 p->state == TASK_RUNNING)
14cf11af
PM
2063 return 0;
2064 if (count > 0) {
ec2b36b9 2065 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
2066 if (!in_sched_functions(ip))
2067 return ip;
2068 }
2069 } while (count++ < 16);
2070 return 0;
2071}
06d67d54 2072
c4d04be1 2073static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
2074
2075void show_stack(struct task_struct *tsk, unsigned long *stack)
2076{
2077 unsigned long sp, ip, lr, newsp;
2078 int count = 0;
2079 int firstframe = 1;
6794c782
SR
2080#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2081 int curr_frame = current->curr_ret_stack;
2082 extern void return_to_handler(void);
9135c3cc 2083 unsigned long rth = (unsigned long)return_to_handler;
6794c782 2084#endif
06d67d54
PM
2085
2086 sp = (unsigned long) stack;
2087 if (tsk == NULL)
2088 tsk = current;
2089 if (sp == 0) {
2090 if (tsk == current)
acf620ec 2091 sp = current_stack_pointer();
06d67d54
PM
2092 else
2093 sp = tsk->thread.ksp;
2094 }
2095
2096 lr = 0;
2097 printk("Call Trace:\n");
2098 do {
ec2b36b9 2099 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
2100 return;
2101
2102 stack = (unsigned long *) sp;
2103 newsp = stack[0];
ec2b36b9 2104 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 2105 if (!firstframe || ip != lr) {
058c78f4 2106 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 2107#ifdef CONFIG_FUNCTION_GRAPH_TRACER
7d56c65a 2108 if ((ip == rth) && curr_frame >= 0) {
9a1f490f 2109 pr_cont(" (%pS)",
6794c782
SR
2110 (void *)current->ret_stack[curr_frame].ret);
2111 curr_frame--;
2112 }
2113#endif
06d67d54 2114 if (firstframe)
9a1f490f
ME
2115 pr_cont(" (unreliable)");
2116 pr_cont("\n");
06d67d54
PM
2117 }
2118 firstframe = 0;
2119
2120 /*
2121 * See if this is an exception frame.
2122 * We look for the "regshere" marker in the current frame.
2123 */
ec2b36b9
BH
2124 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2125 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
2126 struct pt_regs *regs = (struct pt_regs *)
2127 (sp + STACK_FRAME_OVERHEAD);
06d67d54 2128 lr = regs->link;
9be9be2e 2129 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
058c78f4 2130 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
2131 firstframe = 1;
2132 }
2133
2134 sp = newsp;
2135 } while (count++ < kstack_depth_to_print);
2136}
2137
cb2c9b27 2138#ifdef CONFIG_PPC64
fe1952fc 2139/* Called with hard IRQs off */
0e37739b 2140void notrace __ppc64_runlatch_on(void)
cb2c9b27 2141{
fe1952fc 2142 struct thread_info *ti = current_thread_info();
cb2c9b27 2143
d1d0d5ff
NP
2144 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2145 /*
2146 * Least significant bit (RUN) is the only writable bit of
2147 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2148 * earliest ISA where this is the case, but it's convenient.
2149 */
2150 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2151 } else {
2152 unsigned long ctrl;
2153
2154 /*
2155 * Some architectures (e.g., Cell) have writable fields other
2156 * than RUN, so do the read-modify-write.
2157 */
2158 ctrl = mfspr(SPRN_CTRLF);
2159 ctrl |= CTRL_RUNLATCH;
2160 mtspr(SPRN_CTRLT, ctrl);
2161 }
cb2c9b27 2162
fae2e0fb 2163 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
2164}
2165
fe1952fc 2166/* Called with hard IRQs off */
0e37739b 2167void notrace __ppc64_runlatch_off(void)
cb2c9b27 2168{
fe1952fc 2169 struct thread_info *ti = current_thread_info();
cb2c9b27 2170
fae2e0fb 2171 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 2172
d1d0d5ff
NP
2173 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2174 mtspr(SPRN_CTRLT, 0);
2175 } else {
2176 unsigned long ctrl;
2177
2178 ctrl = mfspr(SPRN_CTRLF);
2179 ctrl &= ~CTRL_RUNLATCH;
2180 mtspr(SPRN_CTRLT, ctrl);
2181 }
cb2c9b27 2182}
fe1952fc 2183#endif /* CONFIG_PPC64 */
f6a61680 2184
d839088c
AB
2185unsigned long arch_align_stack(unsigned long sp)
2186{
2187 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2188 sp -= get_random_int() & ~PAGE_MASK;
2189 return sp & ~0xf;
2190}
912f9ee2
AB
2191
2192static inline unsigned long brk_rnd(void)
2193{
2194 unsigned long rnd = 0;
2195
2196 /* 8MB for 32bit, 1GB for 64bit */
2197 if (is_32bit_task())
5ef11c35 2198 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
912f9ee2 2199 else
5ef11c35 2200 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
912f9ee2
AB
2201
2202 return rnd << PAGE_SHIFT;
2203}
2204
2205unsigned long arch_randomize_brk(struct mm_struct *mm)
2206{
8bbde7a7
AB
2207 unsigned long base = mm->brk;
2208 unsigned long ret;
2209
4e003747 2210#ifdef CONFIG_PPC_BOOK3S_64
8bbde7a7
AB
2211 /*
2212 * If we are using 1TB segments and we are allowed to randomise
2213 * the heap, we can put it above 1TB so it is backed by a 1TB
2214 * segment. Otherwise the heap will be in the bottom 1TB
2215 * which always uses 256MB segments and this may result in a
caca285e
AK
2216 * performance penalty. We don't need to worry about radix. For
2217 * radix, mmu_highuser_ssize remains unchanged from 256MB.
8bbde7a7
AB
2218 */
2219 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2220 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2221#endif
2222
2223 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
2224
2225 if (ret < mm->brk)
2226 return mm->brk;
2227
2228 return ret;
2229}
501cb16d 2230