]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/powerpc/kernel/process.c
powerpc: Remove MMU_FTR_SLB
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
14cf11af
PM
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
14cf11af
PM
28#include <linux/prctl.h>
29#include <linux/init_task.h>
4b16f8e2 30#include <linux/export.h>
14cf11af
PM
31#include <linux/kallsyms.h>
32#include <linux/mqueue.h>
33#include <linux/hardirq.h>
06d67d54 34#include <linux/utsname.h>
6794c782 35#include <linux/ftrace.h>
79741dd3 36#include <linux/kernel_stat.h>
d839088c
AB
37#include <linux/personality.h>
38#include <linux/random.h>
5aae8a53 39#include <linux/hw_breakpoint.h>
14cf11af
PM
40
41#include <asm/pgtable.h>
42#include <asm/uaccess.h>
14cf11af
PM
43#include <asm/io.h>
44#include <asm/processor.h>
45#include <asm/mmu.h>
46#include <asm/prom.h>
76032de8 47#include <asm/machdep.h>
c6622f63 48#include <asm/time.h>
ae3a197e 49#include <asm/runlatch.h>
a7f31841 50#include <asm/syscalls.h>
ae3a197e 51#include <asm/switch_to.h>
fb09692e 52#include <asm/tm.h>
ae3a197e 53#include <asm/debug.h>
06d67d54
PM
54#ifdef CONFIG_PPC64
55#include <asm/firmware.h>
06d67d54 56#endif
7cedd601 57#include <asm/code-patching.h>
d6a61bfc
LM
58#include <linux/kprobes.h>
59#include <linux/kdebug.h>
14cf11af 60
8b3c34cf
MN
61/* Transactional Memory debug */
62#ifdef TM_DEBUG_SW
63#define TM_DEBUG(x...) printk(KERN_INFO x)
64#else
65#define TM_DEBUG(x...) do { } while(0)
66#endif
67
14cf11af
PM
68extern unsigned long _get_SP(void);
69
70#ifndef CONFIG_SMP
71struct task_struct *last_task_used_math = NULL;
72struct task_struct *last_task_used_altivec = NULL;
ce48b210 73struct task_struct *last_task_used_vsx = NULL;
14cf11af
PM
74struct task_struct *last_task_used_spe = NULL;
75#endif
76
d31626f7
PM
77#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
78void giveup_fpu_maybe_transactional(struct task_struct *tsk)
79{
80 /*
81 * If we are saving the current thread's registers, and the
82 * thread is in a transactional state, set the TIF_RESTORE_TM
83 * bit so that we know to restore the registers before
84 * returning to userspace.
85 */
86 if (tsk == current && tsk->thread.regs &&
87 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
88 !test_thread_flag(TIF_RESTORE_TM)) {
89 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
90 set_thread_flag(TIF_RESTORE_TM);
91 }
92
93 giveup_fpu(tsk);
94}
95
96void giveup_altivec_maybe_transactional(struct task_struct *tsk)
97{
98 /*
99 * If we are saving the current thread's registers, and the
100 * thread is in a transactional state, set the TIF_RESTORE_TM
101 * bit so that we know to restore the registers before
102 * returning to userspace.
103 */
104 if (tsk == current && tsk->thread.regs &&
105 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
106 !test_thread_flag(TIF_RESTORE_TM)) {
107 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
108 set_thread_flag(TIF_RESTORE_TM);
109 }
110
111 giveup_altivec(tsk);
112}
113
114#else
115#define giveup_fpu_maybe_transactional(tsk) giveup_fpu(tsk)
116#define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
117#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
118
037f0eed 119#ifdef CONFIG_PPC_FPU
14cf11af
PM
120/*
121 * Make sure the floating-point register state in the
122 * the thread_struct is up to date for task tsk.
123 */
124void flush_fp_to_thread(struct task_struct *tsk)
125{
126 if (tsk->thread.regs) {
127 /*
128 * We need to disable preemption here because if we didn't,
129 * another process could get scheduled after the regs->msr
130 * test but before we have finished saving the FP registers
131 * to the thread_struct. That process could take over the
132 * FPU, and then when we get scheduled again we would store
133 * bogus values for the remaining FP registers.
134 */
135 preempt_disable();
136 if (tsk->thread.regs->msr & MSR_FP) {
137#ifdef CONFIG_SMP
138 /*
139 * This should only ever be called for current or
140 * for a stopped child process. Since we save away
141 * the FP register state on context switch on SMP,
142 * there is something wrong if a stopped child appears
143 * to still have its FP state in the CPU registers.
144 */
145 BUG_ON(tsk != current);
146#endif
d31626f7 147 giveup_fpu_maybe_transactional(tsk);
14cf11af
PM
148 }
149 preempt_enable();
150 }
151}
de56a948 152EXPORT_SYMBOL_GPL(flush_fp_to_thread);
d31626f7 153#endif /* CONFIG_PPC_FPU */
14cf11af
PM
154
155void enable_kernel_fp(void)
156{
157 WARN_ON(preemptible());
158
159#ifdef CONFIG_SMP
160 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
d31626f7 161 giveup_fpu_maybe_transactional(current);
14cf11af
PM
162 else
163 giveup_fpu(NULL); /* just enables FP for kernel */
164#else
d31626f7 165 giveup_fpu_maybe_transactional(last_task_used_math);
14cf11af
PM
166#endif /* CONFIG_SMP */
167}
168EXPORT_SYMBOL(enable_kernel_fp);
169
14cf11af
PM
170#ifdef CONFIG_ALTIVEC
171void enable_kernel_altivec(void)
172{
173 WARN_ON(preemptible());
174
175#ifdef CONFIG_SMP
176 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
d31626f7 177 giveup_altivec_maybe_transactional(current);
14cf11af 178 else
35000870 179 giveup_altivec_notask();
14cf11af 180#else
d31626f7 181 giveup_altivec_maybe_transactional(last_task_used_altivec);
14cf11af
PM
182#endif /* CONFIG_SMP */
183}
184EXPORT_SYMBOL(enable_kernel_altivec);
185
186/*
187 * Make sure the VMX/Altivec register state in the
188 * the thread_struct is up to date for task tsk.
189 */
190void flush_altivec_to_thread(struct task_struct *tsk)
191{
192 if (tsk->thread.regs) {
193 preempt_disable();
194 if (tsk->thread.regs->msr & MSR_VEC) {
195#ifdef CONFIG_SMP
196 BUG_ON(tsk != current);
197#endif
d31626f7 198 giveup_altivec_maybe_transactional(tsk);
14cf11af
PM
199 }
200 preempt_enable();
201 }
202}
de56a948 203EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
14cf11af
PM
204#endif /* CONFIG_ALTIVEC */
205
ce48b210
MN
206#ifdef CONFIG_VSX
207#if 0
208/* not currently used, but some crazy RAID module might want to later */
209void enable_kernel_vsx(void)
210{
211 WARN_ON(preemptible());
212
213#ifdef CONFIG_SMP
214 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
215 giveup_vsx(current);
216 else
217 giveup_vsx(NULL); /* just enable vsx for kernel - force */
218#else
219 giveup_vsx(last_task_used_vsx);
220#endif /* CONFIG_SMP */
221}
222EXPORT_SYMBOL(enable_kernel_vsx);
223#endif
224
7c292170
MN
225void giveup_vsx(struct task_struct *tsk)
226{
d31626f7
PM
227 giveup_fpu_maybe_transactional(tsk);
228 giveup_altivec_maybe_transactional(tsk);
7c292170
MN
229 __giveup_vsx(tsk);
230}
231
ce48b210
MN
232void flush_vsx_to_thread(struct task_struct *tsk)
233{
234 if (tsk->thread.regs) {
235 preempt_disable();
236 if (tsk->thread.regs->msr & MSR_VSX) {
237#ifdef CONFIG_SMP
238 BUG_ON(tsk != current);
239#endif
240 giveup_vsx(tsk);
241 }
242 preempt_enable();
243 }
244}
de56a948 245EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
ce48b210
MN
246#endif /* CONFIG_VSX */
247
14cf11af
PM
248#ifdef CONFIG_SPE
249
250void enable_kernel_spe(void)
251{
252 WARN_ON(preemptible());
253
254#ifdef CONFIG_SMP
255 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
256 giveup_spe(current);
257 else
258 giveup_spe(NULL); /* just enable SPE for kernel - force */
259#else
260 giveup_spe(last_task_used_spe);
261#endif /* __SMP __ */
262}
263EXPORT_SYMBOL(enable_kernel_spe);
264
265void flush_spe_to_thread(struct task_struct *tsk)
266{
267 if (tsk->thread.regs) {
268 preempt_disable();
269 if (tsk->thread.regs->msr & MSR_SPE) {
270#ifdef CONFIG_SMP
271 BUG_ON(tsk != current);
272#endif
685659ee 273 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 274 giveup_spe(tsk);
14cf11af
PM
275 }
276 preempt_enable();
277 }
278}
14cf11af
PM
279#endif /* CONFIG_SPE */
280
5388fb10 281#ifndef CONFIG_SMP
48abec07
PM
282/*
283 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
284 * and the current task has some state, discard it.
285 */
5388fb10 286void discard_lazy_cpu_state(void)
48abec07 287{
48abec07
PM
288 preempt_disable();
289 if (last_task_used_math == current)
290 last_task_used_math = NULL;
291#ifdef CONFIG_ALTIVEC
292 if (last_task_used_altivec == current)
293 last_task_used_altivec = NULL;
294#endif /* CONFIG_ALTIVEC */
ce48b210
MN
295#ifdef CONFIG_VSX
296 if (last_task_used_vsx == current)
297 last_task_used_vsx = NULL;
298#endif /* CONFIG_VSX */
48abec07
PM
299#ifdef CONFIG_SPE
300 if (last_task_used_spe == current)
301 last_task_used_spe = NULL;
302#endif
303 preempt_enable();
48abec07 304}
5388fb10 305#endif /* CONFIG_SMP */
48abec07 306
3bffb652
DK
307#ifdef CONFIG_PPC_ADV_DEBUG_REGS
308void do_send_trap(struct pt_regs *regs, unsigned long address,
309 unsigned long error_code, int signal_code, int breakpt)
310{
311 siginfo_t info;
312
41ab5266 313 current->thread.trap_nr = signal_code;
3bffb652
DK
314 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
315 11, SIGSEGV) == NOTIFY_STOP)
316 return;
317
318 /* Deliver the signal to userspace */
319 info.si_signo = SIGTRAP;
320 info.si_errno = breakpt; /* breakpoint or watchpoint id */
321 info.si_code = signal_code;
322 info.si_addr = (void __user *)address;
323 force_sig_info(SIGTRAP, &info, current);
324}
325#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 326void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
327 unsigned long error_code)
328{
329 siginfo_t info;
330
41ab5266 331 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
332 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
333 11, SIGSEGV) == NOTIFY_STOP)
334 return;
335
9422de3e 336 if (debugger_break_match(regs))
d6a61bfc
LM
337 return;
338
9422de3e
MN
339 /* Clear the breakpoint */
340 hw_breakpoint_disable();
d6a61bfc
LM
341
342 /* Deliver the signal to userspace */
343 info.si_signo = SIGTRAP;
344 info.si_errno = 0;
345 info.si_code = TRAP_HWBKPT;
346 info.si_addr = (void __user *)address;
347 force_sig_info(SIGTRAP, &info, current);
348}
3bffb652 349#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 350
9422de3e 351static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 352
3bffb652
DK
353#ifdef CONFIG_PPC_ADV_DEBUG_REGS
354/*
355 * Set the debug registers back to their default "safe" values.
356 */
357static void set_debug_reg_defaults(struct thread_struct *thread)
358{
51ae8d4a 359 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 360#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 361 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 362#endif
51ae8d4a 363 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 364#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 365 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 366#endif
51ae8d4a 367 thread->debug.dbcr0 = 0;
3bffb652
DK
368#ifdef CONFIG_BOOKE
369 /*
370 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
371 */
51ae8d4a 372 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
373 DBCR1_IAC3US | DBCR1_IAC4US;
374 /*
375 * Force Data Address Compare User/Supervisor bits to be User-only
376 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
377 */
51ae8d4a 378 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 379#else
51ae8d4a 380 thread->debug.dbcr1 = 0;
3bffb652
DK
381#endif
382}
383
f5f97210 384static void prime_debug_regs(struct debug_reg *debug)
3bffb652 385{
6cecf76b
SW
386 /*
387 * We could have inherited MSR_DE from userspace, since
388 * it doesn't get cleared on exception entry. Make sure
389 * MSR_DE is clear before we enable any debug events.
390 */
391 mtmsr(mfmsr() & ~MSR_DE);
392
f5f97210
SW
393 mtspr(SPRN_IAC1, debug->iac1);
394 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 395#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
396 mtspr(SPRN_IAC3, debug->iac3);
397 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 398#endif
f5f97210
SW
399 mtspr(SPRN_DAC1, debug->dac1);
400 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 401#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
402 mtspr(SPRN_DVC1, debug->dvc1);
403 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 404#endif
f5f97210
SW
405 mtspr(SPRN_DBCR0, debug->dbcr0);
406 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 407#ifdef CONFIG_BOOKE
f5f97210 408 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
409#endif
410}
411/*
412 * Unless neither the old or new thread are making use of the
413 * debug registers, set the debug registers from the values
414 * stored in the new thread.
415 */
f5f97210 416void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 417{
51ae8d4a 418 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
419 || (new_debug->dbcr0 & DBCR0_IDM))
420 prime_debug_regs(new_debug);
3bffb652 421}
3743c9b8 422EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 423#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 424#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
425static void set_debug_reg_defaults(struct thread_struct *thread)
426{
9422de3e
MN
427 thread->hw_brk.address = 0;
428 thread->hw_brk.type = 0;
b9818c33 429 set_breakpoint(&thread->hw_brk);
3bffb652 430}
e0780b72 431#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
432#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
433
172ae2e7 434#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
435static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
436{
d6a61bfc 437 mtspr(SPRN_DAC1, dabr);
221c185d
DK
438#ifdef CONFIG_PPC_47x
439 isync();
440#endif
9422de3e
MN
441 return 0;
442}
c6c9eace 443#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
444static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
445{
c6c9eace 446 mtspr(SPRN_DABR, dabr);
82a9f16a
MN
447 if (cpu_has_feature(CPU_FTR_DABRX))
448 mtspr(SPRN_DABRX, dabrx);
cab0af98 449 return 0;
14cf11af 450}
9422de3e
MN
451#else
452static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
453{
454 return -EINVAL;
455}
456#endif
457
458static inline int set_dabr(struct arch_hw_breakpoint *brk)
459{
460 unsigned long dabr, dabrx;
461
462 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
463 dabrx = ((brk->type >> 3) & 0x7);
464
465 if (ppc_md.set_dabr)
466 return ppc_md.set_dabr(dabr, dabrx);
467
468 return __set_dabr(dabr, dabrx);
469}
470
bf99de36
MN
471static inline int set_dawr(struct arch_hw_breakpoint *brk)
472{
05d694ea 473 unsigned long dawr, dawrx, mrd;
bf99de36
MN
474
475 dawr = brk->address;
476
477 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
478 << (63 - 58); //* read/write bits */
479 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
480 << (63 - 59); //* translate */
481 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
482 >> 3; //* PRIM bits */
05d694ea
MN
483 /* dawr length is stored in field MDR bits 48:53. Matches range in
484 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
485 0b111111=64DW.
486 brk->len is in bytes.
487 This aligns up to double word size, shifts and does the bias.
488 */
489 mrd = ((brk->len + 7) >> 3) - 1;
490 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
491
492 if (ppc_md.set_dawr)
493 return ppc_md.set_dawr(dawr, dawrx);
494 mtspr(SPRN_DAWR, dawr);
495 mtspr(SPRN_DAWRX, dawrx);
496 return 0;
497}
498
21f58507 499void __set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e
MN
500{
501 __get_cpu_var(current_brk) = *brk;
502
bf99de36 503 if (cpu_has_feature(CPU_FTR_DAWR))
04c32a51
PG
504 set_dawr(brk);
505 else
506 set_dabr(brk);
9422de3e 507}
14cf11af 508
21f58507
PG
509void set_breakpoint(struct arch_hw_breakpoint *brk)
510{
511 preempt_disable();
512 __set_breakpoint(brk);
513 preempt_enable();
514}
515
06d67d54
PM
516#ifdef CONFIG_PPC64
517DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 518#endif
14cf11af 519
9422de3e
MN
520static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
521 struct arch_hw_breakpoint *b)
522{
523 if (a->address != b->address)
524 return false;
525 if (a->type != b->type)
526 return false;
527 if (a->len != b->len)
528 return false;
529 return true;
530}
d31626f7 531
fb09692e 532#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
d31626f7
PM
533static void tm_reclaim_thread(struct thread_struct *thr,
534 struct thread_info *ti, uint8_t cause)
535{
536 unsigned long msr_diff = 0;
537
538 /*
539 * If FP/VSX registers have been already saved to the
540 * thread_struct, move them to the transact_fp array.
541 * We clear the TIF_RESTORE_TM bit since after the reclaim
542 * the thread will no longer be transactional.
543 */
544 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
545 msr_diff = thr->tm_orig_msr & ~thr->regs->msr;
546 if (msr_diff & MSR_FP)
547 memcpy(&thr->transact_fp, &thr->fp_state,
548 sizeof(struct thread_fp_state));
549 if (msr_diff & MSR_VEC)
550 memcpy(&thr->transact_vr, &thr->vr_state,
551 sizeof(struct thread_vr_state));
552 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
553 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
554 }
555
556 tm_reclaim(thr, thr->regs->msr, cause);
557
558 /* Having done the reclaim, we now have the checkpointed
559 * FP/VSX values in the registers. These might be valid
560 * even if we have previously called enable_kernel_fp() or
561 * flush_fp_to_thread(), so update thr->regs->msr to
562 * indicate their current validity.
563 */
564 thr->regs->msr |= msr_diff;
565}
566
567void tm_reclaim_current(uint8_t cause)
568{
569 tm_enable();
570 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
571}
572
fb09692e
MN
573static inline void tm_reclaim_task(struct task_struct *tsk)
574{
575 /* We have to work out if we're switching from/to a task that's in the
576 * middle of a transaction.
577 *
578 * In switching we need to maintain a 2nd register state as
579 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
580 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
581 * (current) FPRs into oldtask->thread.transact_fpr[].
582 *
583 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
584 */
585 struct thread_struct *thr = &tsk->thread;
586
587 if (!thr->regs)
588 return;
589
590 if (!MSR_TM_ACTIVE(thr->regs->msr))
591 goto out_and_saveregs;
592
593 /* Stash the original thread MSR, as giveup_fpu et al will
594 * modify it. We hold onto it to see whether the task used
d31626f7
PM
595 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
596 * tm_orig_msr is already set.
fb09692e 597 */
d31626f7
PM
598 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
599 thr->tm_orig_msr = thr->regs->msr;
fb09692e
MN
600
601 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
602 "ccr=%lx, msr=%lx, trap=%lx)\n",
603 tsk->pid, thr->regs->nip,
604 thr->regs->ccr, thr->regs->msr,
605 thr->regs->trap);
606
d31626f7 607 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
fb09692e
MN
608
609 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
610 tsk->pid);
611
612out_and_saveregs:
613 /* Always save the regs here, even if a transaction's not active.
614 * This context-switches a thread's TM info SPRs. We do it here to
615 * be consistent with the restore path (in recheckpoint) which
616 * cannot happen later in _switch().
617 */
618 tm_save_sprs(thr);
619}
620
e6b8fd02
MN
621extern void __tm_recheckpoint(struct thread_struct *thread,
622 unsigned long orig_msr);
623
624void tm_recheckpoint(struct thread_struct *thread,
625 unsigned long orig_msr)
626{
627 unsigned long flags;
628
629 /* We really can't be interrupted here as the TEXASR registers can't
630 * change and later in the trecheckpoint code, we have a userspace R1.
631 * So let's hard disable over this region.
632 */
633 local_irq_save(flags);
634 hard_irq_disable();
635
636 /* The TM SPRs are restored here, so that TEXASR.FS can be set
637 * before the trecheckpoint and no explosion occurs.
638 */
639 tm_restore_sprs(thread);
640
641 __tm_recheckpoint(thread, orig_msr);
642
643 local_irq_restore(flags);
644}
645
bc2a9408 646static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e
MN
647{
648 unsigned long msr;
649
650 if (!cpu_has_feature(CPU_FTR_TM))
651 return;
652
653 /* Recheckpoint the registers of the thread we're about to switch to.
654 *
655 * If the task was using FP, we non-lazily reload both the original and
656 * the speculative FP register states. This is because the kernel
657 * doesn't see if/when a TM rollback occurs, so if we take an FP
658 * unavoidable later, we are unable to determine which set of FP regs
659 * need to be restored.
660 */
661 if (!new->thread.regs)
662 return;
663
e6b8fd02
MN
664 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
665 tm_restore_sprs(&new->thread);
fb09692e 666 return;
e6b8fd02 667 }
fb09692e
MN
668 msr = new->thread.tm_orig_msr;
669 /* Recheckpoint to restore original checkpointed register state. */
670 TM_DEBUG("*** tm_recheckpoint of pid %d "
671 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
672 new->pid, new->thread.regs->msr, msr);
673
674 /* This loads the checkpointed FP/VEC state, if used */
675 tm_recheckpoint(&new->thread, msr);
676
677 /* This loads the speculative FP/VEC state, if used */
678 if (msr & MSR_FP) {
679 do_load_up_transact_fpu(&new->thread);
680 new->thread.regs->msr |=
681 (MSR_FP | new->thread.fpexc_mode);
682 }
f110c0c1 683#ifdef CONFIG_ALTIVEC
fb09692e
MN
684 if (msr & MSR_VEC) {
685 do_load_up_transact_altivec(&new->thread);
686 new->thread.regs->msr |= MSR_VEC;
687 }
f110c0c1 688#endif
fb09692e
MN
689 /* We may as well turn on VSX too since all the state is restored now */
690 if (msr & MSR_VSX)
691 new->thread.regs->msr |= MSR_VSX;
692
693 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
694 "(kernel msr 0x%lx)\n",
695 new->pid, mfmsr());
696}
697
698static inline void __switch_to_tm(struct task_struct *prev)
699{
700 if (cpu_has_feature(CPU_FTR_TM)) {
701 tm_enable();
702 tm_reclaim_task(prev);
703 }
704}
d31626f7
PM
705
706/*
707 * This is called if we are on the way out to userspace and the
708 * TIF_RESTORE_TM flag is set. It checks if we need to reload
709 * FP and/or vector state and does so if necessary.
710 * If userspace is inside a transaction (whether active or
711 * suspended) and FP/VMX/VSX instructions have ever been enabled
712 * inside that transaction, then we have to keep them enabled
713 * and keep the FP/VMX/VSX state loaded while ever the transaction
714 * continues. The reason is that if we didn't, and subsequently
715 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
716 * we don't know whether it's the same transaction, and thus we
717 * don't know which of the checkpointed state and the transactional
718 * state to use.
719 */
720void restore_tm_state(struct pt_regs *regs)
721{
722 unsigned long msr_diff;
723
724 clear_thread_flag(TIF_RESTORE_TM);
725 if (!MSR_TM_ACTIVE(regs->msr))
726 return;
727
728 msr_diff = current->thread.tm_orig_msr & ~regs->msr;
729 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
730 if (msr_diff & MSR_FP) {
731 fp_enable();
732 load_fp_state(&current->thread.fp_state);
733 regs->msr |= current->thread.fpexc_mode;
734 }
735 if (msr_diff & MSR_VEC) {
736 vec_enable();
737 load_vr_state(&current->thread.vr_state);
738 }
739 regs->msr |= msr_diff;
740}
741
fb09692e
MN
742#else
743#define tm_recheckpoint_new_task(new)
744#define __switch_to_tm(prev)
745#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 746
14cf11af
PM
747struct task_struct *__switch_to(struct task_struct *prev,
748 struct task_struct *new)
749{
750 struct thread_struct *new_thread, *old_thread;
14cf11af 751 struct task_struct *last;
d6bf29b4
PZ
752#ifdef CONFIG_PPC_BOOK3S_64
753 struct ppc64_tlb_batch *batch;
754#endif
14cf11af 755
7ba5fef7
MN
756 WARN_ON(!irqs_disabled());
757
96d01610 758 /* Back up the TAR and DSCR across context switches.
c2d52644
MN
759 * Note that the TAR is not available for use in the kernel. (To
760 * provide this, the TAR should be backed up/restored on exception
761 * entry/exit instead, and be in pt_regs. FIXME, this should be in
762 * pt_regs anyway (for debug).)
96d01610
S
763 * Save the TAR and DSCR here before we do treclaim/trecheckpoint as
764 * these will change them.
c2d52644 765 */
96d01610 766 save_early_sprs(&prev->thread);
c2d52644 767
bc2a9408
MN
768 __switch_to_tm(prev);
769
14cf11af
PM
770#ifdef CONFIG_SMP
771 /* avoid complexity of lazy save/restore of fpu
772 * by just saving it every time we switch out if
773 * this task used the fpu during the last quantum.
774 *
775 * If it tries to use the fpu again, it'll trap and
776 * reload its fp regs. So we don't have to do a restore
777 * every switch, just a save.
778 * -- Cort
779 */
780 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
781 giveup_fpu(prev);
782#ifdef CONFIG_ALTIVEC
783 /*
784 * If the previous thread used altivec in the last quantum
785 * (thus changing altivec regs) then save them.
786 * We used to check the VRSAVE register but not all apps
787 * set it, so we don't rely on it now (and in fact we need
788 * to save & restore VSCR even if VRSAVE == 0). -- paulus
789 *
790 * On SMP we always save/restore altivec regs just to avoid the
791 * complexity of changing processors.
792 * -- Cort
793 */
794 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
795 giveup_altivec(prev);
14cf11af 796#endif /* CONFIG_ALTIVEC */
ce48b210
MN
797#ifdef CONFIG_VSX
798 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
7c292170
MN
799 /* VMX and FPU registers are already save here */
800 __giveup_vsx(prev);
ce48b210 801#endif /* CONFIG_VSX */
14cf11af
PM
802#ifdef CONFIG_SPE
803 /*
804 * If the previous thread used spe in the last quantum
805 * (thus changing spe regs) then save them.
806 *
807 * On SMP we always save/restore spe regs just to avoid the
808 * complexity of changing processors.
809 */
810 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
811 giveup_spe(prev);
c0c0d996
PM
812#endif /* CONFIG_SPE */
813
814#else /* CONFIG_SMP */
815#ifdef CONFIG_ALTIVEC
816 /* Avoid the trap. On smp this this never happens since
817 * we don't set last_task_used_altivec -- Cort
818 */
819 if (new->thread.regs && last_task_used_altivec == new)
820 new->thread.regs->msr |= MSR_VEC;
821#endif /* CONFIG_ALTIVEC */
ce48b210
MN
822#ifdef CONFIG_VSX
823 if (new->thread.regs && last_task_used_vsx == new)
824 new->thread.regs->msr |= MSR_VSX;
825#endif /* CONFIG_VSX */
c0c0d996 826#ifdef CONFIG_SPE
14cf11af
PM
827 /* Avoid the trap. On smp this this never happens since
828 * we don't set last_task_used_spe
829 */
830 if (new->thread.regs && last_task_used_spe == new)
831 new->thread.regs->msr |= MSR_SPE;
832#endif /* CONFIG_SPE */
c0c0d996 833
14cf11af
PM
834#endif /* CONFIG_SMP */
835
172ae2e7 836#ifdef CONFIG_PPC_ADV_DEBUG_REGS
f5f97210 837 switch_booke_debug_regs(&new->thread.debug);
c6c9eace 838#else
5aae8a53
P
839/*
840 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
841 * schedule DABR
842 */
843#ifndef CONFIG_HAVE_HW_BREAKPOINT
1c430c06 844 if (unlikely(!hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
21f58507 845 __set_breakpoint(&new->thread.hw_brk);
5aae8a53 846#endif /* CONFIG_HAVE_HW_BREAKPOINT */
d6a61bfc
LM
847#endif
848
c6c9eace 849
14cf11af
PM
850 new_thread = &new->thread;
851 old_thread = &current->thread;
06d67d54
PM
852
853#ifdef CONFIG_PPC64
854 /*
855 * Collect processor utilization data per process
856 */
857 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
858 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
859 long unsigned start_tb, current_tb;
860 start_tb = old_thread->start_tb;
861 cu->current_tb = current_tb = mfspr(SPRN_PURR);
862 old_thread->accum_tb += (current_tb - start_tb);
863 new_thread->start_tb = current_tb;
864 }
d6bf29b4
PZ
865#endif /* CONFIG_PPC64 */
866
867#ifdef CONFIG_PPC_BOOK3S_64
868 batch = &__get_cpu_var(ppc64_tlb_batch);
869 if (batch->active) {
870 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
871 if (batch->index)
872 __flush_tlb_pending(batch);
873 batch->active = 0;
874 }
875#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 876
44387e9f
AB
877 /*
878 * We can't take a PMU exception inside _switch() since there is a
879 * window where the kernel stack SLB and the kernel stack are out
880 * of sync. Hard disable here.
881 */
882 hard_irq_disable();
bc2a9408
MN
883
884 tm_recheckpoint_new_task(new);
885
14cf11af
PM
886 last = _switch(old_thread, new_thread);
887
d6bf29b4
PZ
888#ifdef CONFIG_PPC_BOOK3S_64
889 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
890 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
891 batch = &__get_cpu_var(ppc64_tlb_batch);
892 batch->active = 1;
893 }
894#endif /* CONFIG_PPC_BOOK3S_64 */
895
14cf11af
PM
896 return last;
897}
898
06d67d54
PM
899static int instructions_to_print = 16;
900
06d67d54
PM
901static void show_instructions(struct pt_regs *regs)
902{
903 int i;
904 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
905 sizeof(int));
906
907 printk("Instruction dump:");
908
909 for (i = 0; i < instructions_to_print; i++) {
910 int instr;
911
912 if (!(i % 8))
913 printk("\n");
914
0de2d820
SW
915#if !defined(CONFIG_BOOKE)
916 /* If executing with the IMMU off, adjust pc rather
917 * than print XXXXXXXX.
918 */
919 if (!(regs->msr & MSR_IR))
920 pc = (unsigned long)phys_to_virt(pc);
921#endif
922
af308377
SR
923 /* We use __get_user here *only* to avoid an OOPS on a
924 * bad address because the pc *should* only be a
925 * kernel address.
926 */
00ae36de
AB
927 if (!__kernel_text_address(pc) ||
928 __get_user(instr, (unsigned int __user *)pc)) {
40c8cefa 929 printk(KERN_CONT "XXXXXXXX ");
06d67d54
PM
930 } else {
931 if (regs->nip == pc)
40c8cefa 932 printk(KERN_CONT "<%08x> ", instr);
06d67d54 933 else
40c8cefa 934 printk(KERN_CONT "%08x ", instr);
06d67d54
PM
935 }
936
937 pc += sizeof(int);
938 }
939
940 printk("\n");
941}
942
943static struct regbit {
944 unsigned long bit;
945 const char *name;
946} msr_bits[] = {
3bfd0c9c
AB
947#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
948 {MSR_SF, "SF"},
949 {MSR_HV, "HV"},
950#endif
951 {MSR_VEC, "VEC"},
952 {MSR_VSX, "VSX"},
953#ifdef CONFIG_BOOKE
954 {MSR_CE, "CE"},
955#endif
06d67d54
PM
956 {MSR_EE, "EE"},
957 {MSR_PR, "PR"},
958 {MSR_FP, "FP"},
959 {MSR_ME, "ME"},
3bfd0c9c 960#ifdef CONFIG_BOOKE
1b98326b 961 {MSR_DE, "DE"},
3bfd0c9c
AB
962#else
963 {MSR_SE, "SE"},
964 {MSR_BE, "BE"},
965#endif
06d67d54
PM
966 {MSR_IR, "IR"},
967 {MSR_DR, "DR"},
3bfd0c9c
AB
968 {MSR_PMM, "PMM"},
969#ifndef CONFIG_BOOKE
970 {MSR_RI, "RI"},
971 {MSR_LE, "LE"},
972#endif
06d67d54
PM
973 {0, NULL}
974};
975
976static void printbits(unsigned long val, struct regbit *bits)
977{
978 const char *sep = "";
979
980 printk("<");
981 for (; bits->bit; ++bits)
982 if (val & bits->bit) {
983 printk("%s%s", sep, bits->name);
984 sep = ",";
985 }
986 printk(">");
987}
988
989#ifdef CONFIG_PPC64
f6f7dde3 990#define REG "%016lx"
06d67d54
PM
991#define REGS_PER_LINE 4
992#define LAST_VOLATILE 13
993#else
f6f7dde3 994#define REG "%08lx"
06d67d54
PM
995#define REGS_PER_LINE 8
996#define LAST_VOLATILE 12
997#endif
998
14cf11af
PM
999void show_regs(struct pt_regs * regs)
1000{
1001 int i, trap;
1002
a43cb95d
TH
1003 show_regs_print_info(KERN_DEFAULT);
1004
06d67d54
PM
1005 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1006 regs->nip, regs->link, regs->ctr);
1007 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 1008 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54
PM
1009 printk("MSR: "REG" ", regs->msr);
1010 printbits(regs->msr, msr_bits);
f6f7dde3 1011 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 1012 trap = TRAP(regs);
5115a026 1013 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
9db8bcfd 1014 printk("CFAR: "REG" ", regs->orig_gpr3);
c5400649 1015 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
ba28c9aa 1016#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
9db8bcfd 1017 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
14170789 1018#else
9db8bcfd
AB
1019 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1020#endif
1021#ifdef CONFIG_PPC64
1022 printk("SOFTE: %ld ", regs->softe);
1023#endif
1024#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a
AB
1025 if (MSR_TM_ACTIVE(regs->msr))
1026 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 1027#endif
14cf11af
PM
1028
1029 for (i = 0; i < 32; i++) {
06d67d54 1030 if ((i % REGS_PER_LINE) == 0)
a2367194 1031 printk("\nGPR%02d: ", i);
06d67d54
PM
1032 printk(REG " ", regs->gpr[i]);
1033 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
1034 break;
1035 }
1036 printk("\n");
1037#ifdef CONFIG_KALLSYMS
1038 /*
1039 * Lookup NIP late so we have the best change of getting the
1040 * above info out without failing
1041 */
058c78f4
BH
1042 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1043 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
afc07701 1044#endif
14cf11af 1045 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
1046 if (!user_mode(regs))
1047 show_instructions(regs);
14cf11af
PM
1048}
1049
1050void exit_thread(void)
1051{
48abec07 1052 discard_lazy_cpu_state();
14cf11af
PM
1053}
1054
1055void flush_thread(void)
1056{
48abec07 1057 discard_lazy_cpu_state();
14cf11af 1058
e0780b72 1059#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1060 flush_ptrace_hw_breakpoint(current);
e0780b72 1061#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1062 set_debug_reg_defaults(&current->thread);
e0780b72 1063#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1064}
1065
1066void
1067release_thread(struct task_struct *t)
1068{
1069}
1070
1071/*
55ccf3fe
SS
1072 * this gets called so that we can store coprocessor state into memory and
1073 * copy the current task into the new thread.
14cf11af 1074 */
55ccf3fe 1075int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1076{
55ccf3fe
SS
1077 flush_fp_to_thread(src);
1078 flush_altivec_to_thread(src);
1079 flush_vsx_to_thread(src);
1080 flush_spe_to_thread(src);
621b5060
MN
1081 /*
1082 * Flush TM state out so we can copy it. __switch_to_tm() does this
1083 * flush but it removes the checkpointed state from the current CPU and
1084 * transitions the CPU out of TM mode. Hence we need to call
1085 * tm_recheckpoint_new_task() (on the same task) to restore the
1086 * checkpointed state back and the TM mode.
1087 */
1088 __switch_to_tm(src);
1089 tm_recheckpoint_new_task(src);
330a1eb7 1090
55ccf3fe 1091 *dst = *src;
330a1eb7
ME
1092
1093 clear_task_ebb(dst);
1094
55ccf3fe 1095 return 0;
14cf11af
PM
1096}
1097
1098/*
1099 * Copy a thread..
1100 */
efcac658
AK
1101extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
1102
6f2c55b8 1103int copy_thread(unsigned long clone_flags, unsigned long usp,
afa86fc4 1104 unsigned long arg, struct task_struct *p)
14cf11af
PM
1105{
1106 struct pt_regs *childregs, *kregs;
1107 extern void ret_from_fork(void);
58254e10
AV
1108 extern void ret_from_kernel_thread(void);
1109 void (*f)(void);
0cec6fd1 1110 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
14cf11af 1111
14cf11af
PM
1112 /* Copy registers */
1113 sp -= sizeof(struct pt_regs);
1114 childregs = (struct pt_regs *) sp;
ab75819d 1115 if (unlikely(p->flags & PF_KTHREAD)) {
138d1ce8 1116 struct thread_info *ti = (void *)task_stack_page(p);
58254e10 1117 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 1118 childregs->gpr[1] = sp + sizeof(struct pt_regs);
7cedd601
AB
1119 /* function */
1120 if (usp)
1121 childregs->gpr[14] = ppc_function_entry((void *)usp);
58254e10 1122#ifdef CONFIG_PPC64
b5e2fc1c 1123 clear_tsk_thread_flag(p, TIF_32BIT);
138d1ce8 1124 childregs->softe = 1;
06d67d54 1125#endif
58254e10 1126 childregs->gpr[15] = arg;
14cf11af 1127 p->thread.regs = NULL; /* no user register state */
138d1ce8 1128 ti->flags |= _TIF_RESTOREALL;
58254e10 1129 f = ret_from_kernel_thread;
14cf11af 1130 } else {
afa86fc4 1131 struct pt_regs *regs = current_pt_regs();
58254e10
AV
1132 CHECK_FULL_REGS(regs);
1133 *childregs = *regs;
ea516b11
AV
1134 if (usp)
1135 childregs->gpr[1] = usp;
14cf11af 1136 p->thread.regs = childregs;
58254e10 1137 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
1138 if (clone_flags & CLONE_SETTLS) {
1139#ifdef CONFIG_PPC64
9904b005 1140 if (!is_32bit_task())
06d67d54
PM
1141 childregs->gpr[13] = childregs->gpr[6];
1142 else
1143#endif
1144 childregs->gpr[2] = childregs->gpr[6];
1145 }
58254e10
AV
1146
1147 f = ret_from_fork;
14cf11af 1148 }
14cf11af 1149 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
1150
1151 /*
1152 * The way this works is that at some point in the future
1153 * some task will call _switch to switch to the new task.
1154 * That will pop off the stack frame created below and start
1155 * the new task running at ret_from_fork. The new task will
1156 * do some house keeping and then return from the fork or clone
1157 * system call, using the stack frame created above.
1158 */
af945cf4 1159 ((unsigned long *)sp)[0] = 0;
14cf11af
PM
1160 sp -= sizeof(struct pt_regs);
1161 kregs = (struct pt_regs *) sp;
1162 sp -= STACK_FRAME_OVERHEAD;
1163 p->thread.ksp = sp;
cbc9565e 1164#ifdef CONFIG_PPC32
85218827
KG
1165 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1166 _ALIGN_UP(sizeof(struct thread_info), 16);
cbc9565e 1167#endif
28d170ab
ON
1168#ifdef CONFIG_HAVE_HW_BREAKPOINT
1169 p->thread.ptrace_bps[0] = NULL;
1170#endif
1171
18461960
PM
1172 p->thread.fp_save_area = NULL;
1173#ifdef CONFIG_ALTIVEC
1174 p->thread.vr_save_area = NULL;
1175#endif
1176
94491685 1177#ifdef CONFIG_PPC_STD_MMU_64
13b3d13b 1178 {
1189be65 1179 unsigned long sp_vsid;
3c726f8d 1180 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
06d67d54 1181
44ae3ab3 1182 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1189be65
PM
1183 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1184 << SLB_VSID_SHIFT_1T;
1185 else
1186 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1187 << SLB_VSID_SHIFT;
3c726f8d 1188 sp_vsid |= SLB_VSID_KERNEL | llp;
06d67d54
PM
1189 p->thread.ksp_vsid = sp_vsid;
1190 }
747bea91 1191#endif /* CONFIG_PPC_STD_MMU_64 */
efcac658
AK
1192#ifdef CONFIG_PPC64
1193 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26
AB
1194 p->thread.dscr_inherit = current->thread.dscr_inherit;
1195 p->thread.dscr = current->thread.dscr;
efcac658 1196 }
92779245
HM
1197 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1198 p->thread.ppr = INIT_PPR;
efcac658 1199#endif
7cedd601 1200 kregs->nip = ppc_function_entry(f);
14cf11af
PM
1201 return 0;
1202}
1203
1204/*
1205 * Set up a thread for executing a new program
1206 */
06d67d54 1207void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1208{
90eac727
ME
1209#ifdef CONFIG_PPC64
1210 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1211#endif
1212
06d67d54
PM
1213 /*
1214 * If we exec out of a kernel thread then thread.regs will not be
1215 * set. Do it now.
1216 */
1217 if (!current->thread.regs) {
0cec6fd1
AV
1218 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1219 current->thread.regs = regs - 1;
06d67d54
PM
1220 }
1221
14cf11af
PM
1222 memset(regs->gpr, 0, sizeof(regs->gpr));
1223 regs->ctr = 0;
1224 regs->link = 0;
1225 regs->xer = 0;
1226 regs->ccr = 0;
14cf11af 1227 regs->gpr[1] = sp;
06d67d54 1228
474f8196
RM
1229 /*
1230 * We have just cleared all the nonvolatile GPRs, so make
1231 * FULL_REGS(regs) return true. This is necessary to allow
1232 * ptrace to examine the thread immediately after exec.
1233 */
1234 regs->trap &= ~1UL;
1235
06d67d54
PM
1236#ifdef CONFIG_PPC32
1237 regs->mq = 0;
1238 regs->nip = start;
14cf11af 1239 regs->msr = MSR_USER;
06d67d54 1240#else
9904b005 1241 if (!is_32bit_task()) {
94af3abf 1242 unsigned long entry;
06d67d54 1243
94af3abf
RR
1244 if (is_elf2_task()) {
1245 /* Look ma, no function descriptors! */
1246 entry = start;
06d67d54 1247
94af3abf
RR
1248 /*
1249 * Ulrich says:
1250 * The latest iteration of the ABI requires that when
1251 * calling a function (at its global entry point),
1252 * the caller must ensure r12 holds the entry point
1253 * address (so that the function can quickly
1254 * establish addressability).
1255 */
1256 regs->gpr[12] = start;
1257 /* Make sure that's restored on entry to userspace. */
1258 set_thread_flag(TIF_RESTOREALL);
1259 } else {
1260 unsigned long toc;
1261
1262 /* start is a relocated pointer to the function
1263 * descriptor for the elf _start routine. The first
1264 * entry in the function descriptor is the entry
1265 * address of _start and the second entry is the TOC
1266 * value we need to use.
1267 */
1268 __get_user(entry, (unsigned long __user *)start);
1269 __get_user(toc, (unsigned long __user *)start+1);
1270
1271 /* Check whether the e_entry function descriptor entries
1272 * need to be relocated before we can use them.
1273 */
1274 if (load_addr != 0) {
1275 entry += load_addr;
1276 toc += load_addr;
1277 }
1278 regs->gpr[2] = toc;
06d67d54
PM
1279 }
1280 regs->nip = entry;
06d67d54 1281 regs->msr = MSR_USER64;
d4bf9a78
SR
1282 } else {
1283 regs->nip = start;
1284 regs->gpr[2] = 0;
1285 regs->msr = MSR_USER32;
06d67d54
PM
1286 }
1287#endif
48abec07 1288 discard_lazy_cpu_state();
ce48b210
MN
1289#ifdef CONFIG_VSX
1290 current->thread.used_vsr = 0;
1291#endif
de79f7b9 1292 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1293 current->thread.fp_save_area = NULL;
14cf11af 1294#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1295 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1296 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1297 current->thread.vr_save_area = NULL;
14cf11af
PM
1298 current->thread.vrsave = 0;
1299 current->thread.used_vr = 0;
1300#endif /* CONFIG_ALTIVEC */
1301#ifdef CONFIG_SPE
1302 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1303 current->thread.acc = 0;
1304 current->thread.spefscr = 0;
1305 current->thread.used_spe = 0;
1306#endif /* CONFIG_SPE */
bc2a9408
MN
1307#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1308 if (cpu_has_feature(CPU_FTR_TM))
1309 regs->msr |= MSR_TM;
1310 current->thread.tm_tfhar = 0;
1311 current->thread.tm_texasr = 0;
1312 current->thread.tm_tfiar = 0;
1313#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
14cf11af
PM
1314}
1315
1316#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1317 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1318
1319int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1320{
1321 struct pt_regs *regs = tsk->thread.regs;
1322
1323 /* This is a bit hairy. If we are an SPE enabled processor
1324 * (have embedded fp) we store the IEEE exception enable flags in
1325 * fpexc_mode. fpexc_mode is also used for setting FP exception
1326 * mode (asyn, precise, disabled) for 'Classic' FP. */
1327 if (val & PR_FP_EXC_SW_ENABLE) {
1328#ifdef CONFIG_SPE
5e14d21e 1329 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
1330 /*
1331 * When the sticky exception bits are set
1332 * directly by userspace, it must call prctl
1333 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1334 * in the existing prctl settings) or
1335 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1336 * the bits being set). <fenv.h> functions
1337 * saving and restoring the whole
1338 * floating-point environment need to do so
1339 * anyway to restore the prctl settings from
1340 * the saved environment.
1341 */
1342 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
1343 tsk->thread.fpexc_mode = val &
1344 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1345 return 0;
1346 } else {
1347 return -EINVAL;
1348 }
14cf11af
PM
1349#else
1350 return -EINVAL;
1351#endif
14cf11af 1352 }
06d67d54
PM
1353
1354 /* on a CONFIG_SPE this does not hurt us. The bits that
1355 * __pack_fe01 use do not overlap with bits used for
1356 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1357 * on CONFIG_SPE implementations are reserved so writing to
1358 * them does not change anything */
1359 if (val > PR_FP_EXC_PRECISE)
1360 return -EINVAL;
1361 tsk->thread.fpexc_mode = __pack_fe01(val);
1362 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1363 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1364 | tsk->thread.fpexc_mode;
14cf11af
PM
1365 return 0;
1366}
1367
1368int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1369{
1370 unsigned int val;
1371
1372 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1373#ifdef CONFIG_SPE
640e9225
JM
1374 if (cpu_has_feature(CPU_FTR_SPE)) {
1375 /*
1376 * When the sticky exception bits are set
1377 * directly by userspace, it must call prctl
1378 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1379 * in the existing prctl settings) or
1380 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1381 * the bits being set). <fenv.h> functions
1382 * saving and restoring the whole
1383 * floating-point environment need to do so
1384 * anyway to restore the prctl settings from
1385 * the saved environment.
1386 */
1387 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 1388 val = tsk->thread.fpexc_mode;
640e9225 1389 } else
5e14d21e 1390 return -EINVAL;
14cf11af
PM
1391#else
1392 return -EINVAL;
1393#endif
1394 else
1395 val = __unpack_fe01(tsk->thread.fpexc_mode);
1396 return put_user(val, (unsigned int __user *) adr);
1397}
1398
fab5db97
PM
1399int set_endian(struct task_struct *tsk, unsigned int val)
1400{
1401 struct pt_regs *regs = tsk->thread.regs;
1402
1403 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1404 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1405 return -EINVAL;
1406
1407 if (regs == NULL)
1408 return -EINVAL;
1409
1410 if (val == PR_ENDIAN_BIG)
1411 regs->msr &= ~MSR_LE;
1412 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1413 regs->msr |= MSR_LE;
1414 else
1415 return -EINVAL;
1416
1417 return 0;
1418}
1419
1420int get_endian(struct task_struct *tsk, unsigned long adr)
1421{
1422 struct pt_regs *regs = tsk->thread.regs;
1423 unsigned int val;
1424
1425 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1426 !cpu_has_feature(CPU_FTR_REAL_LE))
1427 return -EINVAL;
1428
1429 if (regs == NULL)
1430 return -EINVAL;
1431
1432 if (regs->msr & MSR_LE) {
1433 if (cpu_has_feature(CPU_FTR_REAL_LE))
1434 val = PR_ENDIAN_LITTLE;
1435 else
1436 val = PR_ENDIAN_PPC_LITTLE;
1437 } else
1438 val = PR_ENDIAN_BIG;
1439
1440 return put_user(val, (unsigned int __user *)adr);
1441}
1442
e9370ae1
PM
1443int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1444{
1445 tsk->thread.align_ctl = val;
1446 return 0;
1447}
1448
1449int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1450{
1451 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1452}
1453
bb72c481
PM
1454static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1455 unsigned long nbytes)
1456{
1457 unsigned long stack_page;
1458 unsigned long cpu = task_cpu(p);
1459
1460 /*
1461 * Avoid crashing if the stack has overflowed and corrupted
1462 * task_cpu(p), which is in the thread_info struct.
1463 */
1464 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1465 stack_page = (unsigned long) hardirq_ctx[cpu];
1466 if (sp >= stack_page + sizeof(struct thread_struct)
1467 && sp <= stack_page + THREAD_SIZE - nbytes)
1468 return 1;
1469
1470 stack_page = (unsigned long) softirq_ctx[cpu];
1471 if (sp >= stack_page + sizeof(struct thread_struct)
1472 && sp <= stack_page + THREAD_SIZE - nbytes)
1473 return 1;
1474 }
1475 return 0;
1476}
1477
2f25194d 1478int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1479 unsigned long nbytes)
1480{
0cec6fd1 1481 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1482
1483 if (sp >= stack_page + sizeof(struct thread_struct)
1484 && sp <= stack_page + THREAD_SIZE - nbytes)
1485 return 1;
1486
bb72c481 1487 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1488}
1489
2f25194d
AB
1490EXPORT_SYMBOL(validate_sp);
1491
14cf11af
PM
1492unsigned long get_wchan(struct task_struct *p)
1493{
1494 unsigned long ip, sp;
1495 int count = 0;
1496
1497 if (!p || p == current || p->state == TASK_RUNNING)
1498 return 0;
1499
1500 sp = p->thread.ksp;
ec2b36b9 1501 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1502 return 0;
1503
1504 do {
1505 sp = *(unsigned long *)sp;
ec2b36b9 1506 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1507 return 0;
1508 if (count > 0) {
ec2b36b9 1509 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1510 if (!in_sched_functions(ip))
1511 return ip;
1512 }
1513 } while (count++ < 16);
1514 return 0;
1515}
06d67d54 1516
c4d04be1 1517static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
1518
1519void show_stack(struct task_struct *tsk, unsigned long *stack)
1520{
1521 unsigned long sp, ip, lr, newsp;
1522 int count = 0;
1523 int firstframe = 1;
6794c782
SR
1524#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1525 int curr_frame = current->curr_ret_stack;
1526 extern void return_to_handler(void);
9135c3cc
SR
1527 unsigned long rth = (unsigned long)return_to_handler;
1528 unsigned long mrth = -1;
6794c782 1529#ifdef CONFIG_PPC64
9135c3cc
SR
1530 extern void mod_return_to_handler(void);
1531 rth = *(unsigned long *)rth;
1532 mrth = (unsigned long)mod_return_to_handler;
1533 mrth = *(unsigned long *)mrth;
6794c782
SR
1534#endif
1535#endif
06d67d54
PM
1536
1537 sp = (unsigned long) stack;
1538 if (tsk == NULL)
1539 tsk = current;
1540 if (sp == 0) {
1541 if (tsk == current)
1542 asm("mr %0,1" : "=r" (sp));
1543 else
1544 sp = tsk->thread.ksp;
1545 }
1546
1547 lr = 0;
1548 printk("Call Trace:\n");
1549 do {
ec2b36b9 1550 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1551 return;
1552
1553 stack = (unsigned long *) sp;
1554 newsp = stack[0];
ec2b36b9 1555 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 1556 if (!firstframe || ip != lr) {
058c78f4 1557 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 1558#ifdef CONFIG_FUNCTION_GRAPH_TRACER
9135c3cc 1559 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
6794c782
SR
1560 printk(" (%pS)",
1561 (void *)current->ret_stack[curr_frame].ret);
1562 curr_frame--;
1563 }
1564#endif
06d67d54
PM
1565 if (firstframe)
1566 printk(" (unreliable)");
1567 printk("\n");
1568 }
1569 firstframe = 0;
1570
1571 /*
1572 * See if this is an exception frame.
1573 * We look for the "regshere" marker in the current frame.
1574 */
ec2b36b9
BH
1575 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1576 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1577 struct pt_regs *regs = (struct pt_regs *)
1578 (sp + STACK_FRAME_OVERHEAD);
06d67d54 1579 lr = regs->link;
058c78f4
BH
1580 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1581 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
1582 firstframe = 1;
1583 }
1584
1585 sp = newsp;
1586 } while (count++ < kstack_depth_to_print);
1587}
1588
cb2c9b27 1589#ifdef CONFIG_PPC64
fe1952fc 1590/* Called with hard IRQs off */
0e37739b 1591void notrace __ppc64_runlatch_on(void)
cb2c9b27 1592{
fe1952fc 1593 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1594 unsigned long ctrl;
1595
fe1952fc
BH
1596 ctrl = mfspr(SPRN_CTRLF);
1597 ctrl |= CTRL_RUNLATCH;
1598 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1599
fae2e0fb 1600 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
1601}
1602
fe1952fc 1603/* Called with hard IRQs off */
0e37739b 1604void notrace __ppc64_runlatch_off(void)
cb2c9b27 1605{
fe1952fc 1606 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1607 unsigned long ctrl;
1608
fae2e0fb 1609 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 1610
4138d653
AB
1611 ctrl = mfspr(SPRN_CTRLF);
1612 ctrl &= ~CTRL_RUNLATCH;
1613 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1614}
fe1952fc 1615#endif /* CONFIG_PPC64 */
f6a61680 1616
d839088c
AB
1617unsigned long arch_align_stack(unsigned long sp)
1618{
1619 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1620 sp -= get_random_int() & ~PAGE_MASK;
1621 return sp & ~0xf;
1622}
912f9ee2
AB
1623
1624static inline unsigned long brk_rnd(void)
1625{
1626 unsigned long rnd = 0;
1627
1628 /* 8MB for 32bit, 1GB for 64bit */
1629 if (is_32bit_task())
1630 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1631 else
1632 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1633
1634 return rnd << PAGE_SHIFT;
1635}
1636
1637unsigned long arch_randomize_brk(struct mm_struct *mm)
1638{
8bbde7a7
AB
1639 unsigned long base = mm->brk;
1640 unsigned long ret;
1641
ce7a35c7 1642#ifdef CONFIG_PPC_STD_MMU_64
8bbde7a7
AB
1643 /*
1644 * If we are using 1TB segments and we are allowed to randomise
1645 * the heap, we can put it above 1TB so it is backed by a 1TB
1646 * segment. Otherwise the heap will be in the bottom 1TB
1647 * which always uses 256MB segments and this may result in a
1648 * performance penalty.
1649 */
1650 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1651 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1652#endif
1653
1654 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
1655
1656 if (ret < mm->brk)
1657 return mm->brk;
1658
1659 return ret;
1660}
501cb16d
AB
1661
1662unsigned long randomize_et_dyn(unsigned long base)
1663{
1664 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1665
1666 if (ret < base)
1667 return base;
1668
1669 return ret;
1670}