]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/powerpc/kernel/process.c
powerpc: Fix context switch DSCR on POWER8
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
14cf11af
PM
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
28#include <linux/init.h>
29#include <linux/prctl.h>
30#include <linux/init_task.h>
4b16f8e2 31#include <linux/export.h>
14cf11af
PM
32#include <linux/kallsyms.h>
33#include <linux/mqueue.h>
34#include <linux/hardirq.h>
06d67d54 35#include <linux/utsname.h>
6794c782 36#include <linux/ftrace.h>
79741dd3 37#include <linux/kernel_stat.h>
d839088c
AB
38#include <linux/personality.h>
39#include <linux/random.h>
5aae8a53 40#include <linux/hw_breakpoint.h>
14cf11af
PM
41
42#include <asm/pgtable.h>
43#include <asm/uaccess.h>
14cf11af
PM
44#include <asm/io.h>
45#include <asm/processor.h>
46#include <asm/mmu.h>
47#include <asm/prom.h>
76032de8 48#include <asm/machdep.h>
c6622f63 49#include <asm/time.h>
ae3a197e 50#include <asm/runlatch.h>
a7f31841 51#include <asm/syscalls.h>
ae3a197e 52#include <asm/switch_to.h>
fb09692e 53#include <asm/tm.h>
ae3a197e 54#include <asm/debug.h>
06d67d54
PM
55#ifdef CONFIG_PPC64
56#include <asm/firmware.h>
06d67d54 57#endif
d6a61bfc
LM
58#include <linux/kprobes.h>
59#include <linux/kdebug.h>
14cf11af 60
8b3c34cf
MN
61/* Transactional Memory debug */
62#ifdef TM_DEBUG_SW
63#define TM_DEBUG(x...) printk(KERN_INFO x)
64#else
65#define TM_DEBUG(x...) do { } while(0)
66#endif
67
14cf11af
PM
68extern unsigned long _get_SP(void);
69
70#ifndef CONFIG_SMP
71struct task_struct *last_task_used_math = NULL;
72struct task_struct *last_task_used_altivec = NULL;
ce48b210 73struct task_struct *last_task_used_vsx = NULL;
14cf11af
PM
74struct task_struct *last_task_used_spe = NULL;
75#endif
76
14cf11af
PM
77/*
78 * Make sure the floating-point register state in the
79 * the thread_struct is up to date for task tsk.
80 */
81void flush_fp_to_thread(struct task_struct *tsk)
82{
83 if (tsk->thread.regs) {
84 /*
85 * We need to disable preemption here because if we didn't,
86 * another process could get scheduled after the regs->msr
87 * test but before we have finished saving the FP registers
88 * to the thread_struct. That process could take over the
89 * FPU, and then when we get scheduled again we would store
90 * bogus values for the remaining FP registers.
91 */
92 preempt_disable();
93 if (tsk->thread.regs->msr & MSR_FP) {
94#ifdef CONFIG_SMP
95 /*
96 * This should only ever be called for current or
97 * for a stopped child process. Since we save away
98 * the FP register state on context switch on SMP,
99 * there is something wrong if a stopped child appears
100 * to still have its FP state in the CPU registers.
101 */
102 BUG_ON(tsk != current);
103#endif
0ee6c15e 104 giveup_fpu(tsk);
14cf11af
PM
105 }
106 preempt_enable();
107 }
108}
de56a948 109EXPORT_SYMBOL_GPL(flush_fp_to_thread);
14cf11af
PM
110
111void enable_kernel_fp(void)
112{
113 WARN_ON(preemptible());
114
115#ifdef CONFIG_SMP
116 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
117 giveup_fpu(current);
118 else
119 giveup_fpu(NULL); /* just enables FP for kernel */
120#else
121 giveup_fpu(last_task_used_math);
122#endif /* CONFIG_SMP */
123}
124EXPORT_SYMBOL(enable_kernel_fp);
125
14cf11af
PM
126#ifdef CONFIG_ALTIVEC
127void enable_kernel_altivec(void)
128{
129 WARN_ON(preemptible());
130
131#ifdef CONFIG_SMP
132 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
133 giveup_altivec(current);
134 else
35000870 135 giveup_altivec_notask();
14cf11af
PM
136#else
137 giveup_altivec(last_task_used_altivec);
138#endif /* CONFIG_SMP */
139}
140EXPORT_SYMBOL(enable_kernel_altivec);
141
142/*
143 * Make sure the VMX/Altivec register state in the
144 * the thread_struct is up to date for task tsk.
145 */
146void flush_altivec_to_thread(struct task_struct *tsk)
147{
148 if (tsk->thread.regs) {
149 preempt_disable();
150 if (tsk->thread.regs->msr & MSR_VEC) {
151#ifdef CONFIG_SMP
152 BUG_ON(tsk != current);
153#endif
0ee6c15e 154 giveup_altivec(tsk);
14cf11af
PM
155 }
156 preempt_enable();
157 }
158}
de56a948 159EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
14cf11af
PM
160#endif /* CONFIG_ALTIVEC */
161
ce48b210
MN
162#ifdef CONFIG_VSX
163#if 0
164/* not currently used, but some crazy RAID module might want to later */
165void enable_kernel_vsx(void)
166{
167 WARN_ON(preemptible());
168
169#ifdef CONFIG_SMP
170 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
171 giveup_vsx(current);
172 else
173 giveup_vsx(NULL); /* just enable vsx for kernel - force */
174#else
175 giveup_vsx(last_task_used_vsx);
176#endif /* CONFIG_SMP */
177}
178EXPORT_SYMBOL(enable_kernel_vsx);
179#endif
180
7c292170
MN
181void giveup_vsx(struct task_struct *tsk)
182{
183 giveup_fpu(tsk);
184 giveup_altivec(tsk);
185 __giveup_vsx(tsk);
186}
187
ce48b210
MN
188void flush_vsx_to_thread(struct task_struct *tsk)
189{
190 if (tsk->thread.regs) {
191 preempt_disable();
192 if (tsk->thread.regs->msr & MSR_VSX) {
193#ifdef CONFIG_SMP
194 BUG_ON(tsk != current);
195#endif
196 giveup_vsx(tsk);
197 }
198 preempt_enable();
199 }
200}
de56a948 201EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
ce48b210
MN
202#endif /* CONFIG_VSX */
203
14cf11af
PM
204#ifdef CONFIG_SPE
205
206void enable_kernel_spe(void)
207{
208 WARN_ON(preemptible());
209
210#ifdef CONFIG_SMP
211 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
212 giveup_spe(current);
213 else
214 giveup_spe(NULL); /* just enable SPE for kernel - force */
215#else
216 giveup_spe(last_task_used_spe);
217#endif /* __SMP __ */
218}
219EXPORT_SYMBOL(enable_kernel_spe);
220
221void flush_spe_to_thread(struct task_struct *tsk)
222{
223 if (tsk->thread.regs) {
224 preempt_disable();
225 if (tsk->thread.regs->msr & MSR_SPE) {
226#ifdef CONFIG_SMP
227 BUG_ON(tsk != current);
228#endif
685659ee 229 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 230 giveup_spe(tsk);
14cf11af
PM
231 }
232 preempt_enable();
233 }
234}
14cf11af
PM
235#endif /* CONFIG_SPE */
236
5388fb10 237#ifndef CONFIG_SMP
48abec07
PM
238/*
239 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
240 * and the current task has some state, discard it.
241 */
5388fb10 242void discard_lazy_cpu_state(void)
48abec07 243{
48abec07
PM
244 preempt_disable();
245 if (last_task_used_math == current)
246 last_task_used_math = NULL;
247#ifdef CONFIG_ALTIVEC
248 if (last_task_used_altivec == current)
249 last_task_used_altivec = NULL;
250#endif /* CONFIG_ALTIVEC */
ce48b210
MN
251#ifdef CONFIG_VSX
252 if (last_task_used_vsx == current)
253 last_task_used_vsx = NULL;
254#endif /* CONFIG_VSX */
48abec07
PM
255#ifdef CONFIG_SPE
256 if (last_task_used_spe == current)
257 last_task_used_spe = NULL;
258#endif
259 preempt_enable();
48abec07 260}
5388fb10 261#endif /* CONFIG_SMP */
48abec07 262
3bffb652
DK
263#ifdef CONFIG_PPC_ADV_DEBUG_REGS
264void do_send_trap(struct pt_regs *regs, unsigned long address,
265 unsigned long error_code, int signal_code, int breakpt)
266{
267 siginfo_t info;
268
41ab5266 269 current->thread.trap_nr = signal_code;
3bffb652
DK
270 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
271 11, SIGSEGV) == NOTIFY_STOP)
272 return;
273
274 /* Deliver the signal to userspace */
275 info.si_signo = SIGTRAP;
276 info.si_errno = breakpt; /* breakpoint or watchpoint id */
277 info.si_code = signal_code;
278 info.si_addr = (void __user *)address;
279 force_sig_info(SIGTRAP, &info, current);
280}
281#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 282void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
283 unsigned long error_code)
284{
285 siginfo_t info;
286
41ab5266 287 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
288 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
289 11, SIGSEGV) == NOTIFY_STOP)
290 return;
291
9422de3e 292 if (debugger_break_match(regs))
d6a61bfc
LM
293 return;
294
9422de3e
MN
295 /* Clear the breakpoint */
296 hw_breakpoint_disable();
d6a61bfc
LM
297
298 /* Deliver the signal to userspace */
299 info.si_signo = SIGTRAP;
300 info.si_errno = 0;
301 info.si_code = TRAP_HWBKPT;
302 info.si_addr = (void __user *)address;
303 force_sig_info(SIGTRAP, &info, current);
304}
3bffb652 305#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 306
9422de3e 307static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 308
3bffb652
DK
309#ifdef CONFIG_PPC_ADV_DEBUG_REGS
310/*
311 * Set the debug registers back to their default "safe" values.
312 */
313static void set_debug_reg_defaults(struct thread_struct *thread)
314{
315 thread->iac1 = thread->iac2 = 0;
316#if CONFIG_PPC_ADV_DEBUG_IACS > 2
317 thread->iac3 = thread->iac4 = 0;
318#endif
319 thread->dac1 = thread->dac2 = 0;
320#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
321 thread->dvc1 = thread->dvc2 = 0;
322#endif
323 thread->dbcr0 = 0;
324#ifdef CONFIG_BOOKE
325 /*
326 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
327 */
328 thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | \
329 DBCR1_IAC3US | DBCR1_IAC4US;
330 /*
331 * Force Data Address Compare User/Supervisor bits to be User-only
332 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
333 */
334 thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
335#else
336 thread->dbcr1 = 0;
337#endif
338}
339
340static void prime_debug_regs(struct thread_struct *thread)
341{
6cecf76b
SW
342 /*
343 * We could have inherited MSR_DE from userspace, since
344 * it doesn't get cleared on exception entry. Make sure
345 * MSR_DE is clear before we enable any debug events.
346 */
347 mtmsr(mfmsr() & ~MSR_DE);
348
3bffb652
DK
349 mtspr(SPRN_IAC1, thread->iac1);
350 mtspr(SPRN_IAC2, thread->iac2);
351#if CONFIG_PPC_ADV_DEBUG_IACS > 2
352 mtspr(SPRN_IAC3, thread->iac3);
353 mtspr(SPRN_IAC4, thread->iac4);
354#endif
355 mtspr(SPRN_DAC1, thread->dac1);
356 mtspr(SPRN_DAC2, thread->dac2);
357#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
358 mtspr(SPRN_DVC1, thread->dvc1);
359 mtspr(SPRN_DVC2, thread->dvc2);
360#endif
361 mtspr(SPRN_DBCR0, thread->dbcr0);
362 mtspr(SPRN_DBCR1, thread->dbcr1);
363#ifdef CONFIG_BOOKE
364 mtspr(SPRN_DBCR2, thread->dbcr2);
365#endif
366}
367/*
368 * Unless neither the old or new thread are making use of the
369 * debug registers, set the debug registers from the values
370 * stored in the new thread.
371 */
372static void switch_booke_debug_regs(struct thread_struct *new_thread)
373{
374 if ((current->thread.dbcr0 & DBCR0_IDM)
375 || (new_thread->dbcr0 & DBCR0_IDM))
376 prime_debug_regs(new_thread);
377}
378#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 379#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
380static void set_debug_reg_defaults(struct thread_struct *thread)
381{
9422de3e
MN
382 thread->hw_brk.address = 0;
383 thread->hw_brk.type = 0;
b9818c33 384 set_breakpoint(&thread->hw_brk);
3bffb652 385}
e0780b72 386#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
387#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
388
172ae2e7 389#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
390static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
391{
d6a61bfc 392 mtspr(SPRN_DAC1, dabr);
221c185d
DK
393#ifdef CONFIG_PPC_47x
394 isync();
395#endif
9422de3e
MN
396 return 0;
397}
c6c9eace 398#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
399static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
400{
c6c9eace 401 mtspr(SPRN_DABR, dabr);
82a9f16a
MN
402 if (cpu_has_feature(CPU_FTR_DABRX))
403 mtspr(SPRN_DABRX, dabrx);
cab0af98 404 return 0;
14cf11af 405}
9422de3e
MN
406#else
407static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
408{
409 return -EINVAL;
410}
411#endif
412
413static inline int set_dabr(struct arch_hw_breakpoint *brk)
414{
415 unsigned long dabr, dabrx;
416
417 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
418 dabrx = ((brk->type >> 3) & 0x7);
419
420 if (ppc_md.set_dabr)
421 return ppc_md.set_dabr(dabr, dabrx);
422
423 return __set_dabr(dabr, dabrx);
424}
425
bf99de36
MN
426static inline int set_dawr(struct arch_hw_breakpoint *brk)
427{
05d694ea 428 unsigned long dawr, dawrx, mrd;
bf99de36
MN
429
430 dawr = brk->address;
431
432 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
433 << (63 - 58); //* read/write bits */
434 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
435 << (63 - 59); //* translate */
436 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
437 >> 3; //* PRIM bits */
05d694ea
MN
438 /* dawr length is stored in field MDR bits 48:53. Matches range in
439 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
440 0b111111=64DW.
441 brk->len is in bytes.
442 This aligns up to double word size, shifts and does the bias.
443 */
444 mrd = ((brk->len + 7) >> 3) - 1;
445 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
446
447 if (ppc_md.set_dawr)
448 return ppc_md.set_dawr(dawr, dawrx);
449 mtspr(SPRN_DAWR, dawr);
450 mtspr(SPRN_DAWRX, dawrx);
451 return 0;
452}
453
b9818c33 454int set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e
MN
455{
456 __get_cpu_var(current_brk) = *brk;
457
bf99de36
MN
458 if (cpu_has_feature(CPU_FTR_DAWR))
459 return set_dawr(brk);
460
9422de3e
MN
461 return set_dabr(brk);
462}
14cf11af 463
06d67d54
PM
464#ifdef CONFIG_PPC64
465DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 466#endif
14cf11af 467
9422de3e
MN
468static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
469 struct arch_hw_breakpoint *b)
470{
471 if (a->address != b->address)
472 return false;
473 if (a->type != b->type)
474 return false;
475 if (a->len != b->len)
476 return false;
477 return true;
478}
fb09692e
MN
479#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
480static inline void tm_reclaim_task(struct task_struct *tsk)
481{
482 /* We have to work out if we're switching from/to a task that's in the
483 * middle of a transaction.
484 *
485 * In switching we need to maintain a 2nd register state as
486 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
487 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
488 * (current) FPRs into oldtask->thread.transact_fpr[].
489 *
490 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
491 */
492 struct thread_struct *thr = &tsk->thread;
493
494 if (!thr->regs)
495 return;
496
497 if (!MSR_TM_ACTIVE(thr->regs->msr))
498 goto out_and_saveregs;
499
500 /* Stash the original thread MSR, as giveup_fpu et al will
501 * modify it. We hold onto it to see whether the task used
502 * FP & vector regs.
503 */
504 thr->tm_orig_msr = thr->regs->msr;
505
506 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
507 "ccr=%lx, msr=%lx, trap=%lx)\n",
508 tsk->pid, thr->regs->nip,
509 thr->regs->ccr, thr->regs->msr,
510 thr->regs->trap);
511
512 tm_reclaim(thr, thr->regs->msr, TM_CAUSE_RESCHED);
513
514 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
515 tsk->pid);
516
517out_and_saveregs:
518 /* Always save the regs here, even if a transaction's not active.
519 * This context-switches a thread's TM info SPRs. We do it here to
520 * be consistent with the restore path (in recheckpoint) which
521 * cannot happen later in _switch().
522 */
523 tm_save_sprs(thr);
524}
525
bc2a9408 526static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e
MN
527{
528 unsigned long msr;
529
530 if (!cpu_has_feature(CPU_FTR_TM))
531 return;
532
533 /* Recheckpoint the registers of the thread we're about to switch to.
534 *
535 * If the task was using FP, we non-lazily reload both the original and
536 * the speculative FP register states. This is because the kernel
537 * doesn't see if/when a TM rollback occurs, so if we take an FP
538 * unavoidable later, we are unable to determine which set of FP regs
539 * need to be restored.
540 */
541 if (!new->thread.regs)
542 return;
543
544 /* The TM SPRs are restored here, so that TEXASR.FS can be set
545 * before the trecheckpoint and no explosion occurs.
546 */
547 tm_restore_sprs(&new->thread);
548
549 if (!MSR_TM_ACTIVE(new->thread.regs->msr))
550 return;
551 msr = new->thread.tm_orig_msr;
552 /* Recheckpoint to restore original checkpointed register state. */
553 TM_DEBUG("*** tm_recheckpoint of pid %d "
554 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
555 new->pid, new->thread.regs->msr, msr);
556
557 /* This loads the checkpointed FP/VEC state, if used */
558 tm_recheckpoint(&new->thread, msr);
559
560 /* This loads the speculative FP/VEC state, if used */
561 if (msr & MSR_FP) {
562 do_load_up_transact_fpu(&new->thread);
563 new->thread.regs->msr |=
564 (MSR_FP | new->thread.fpexc_mode);
565 }
f110c0c1 566#ifdef CONFIG_ALTIVEC
fb09692e
MN
567 if (msr & MSR_VEC) {
568 do_load_up_transact_altivec(&new->thread);
569 new->thread.regs->msr |= MSR_VEC;
570 }
f110c0c1 571#endif
fb09692e
MN
572 /* We may as well turn on VSX too since all the state is restored now */
573 if (msr & MSR_VSX)
574 new->thread.regs->msr |= MSR_VSX;
575
576 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
577 "(kernel msr 0x%lx)\n",
578 new->pid, mfmsr());
579}
580
581static inline void __switch_to_tm(struct task_struct *prev)
582{
583 if (cpu_has_feature(CPU_FTR_TM)) {
584 tm_enable();
585 tm_reclaim_task(prev);
586 }
587}
588#else
589#define tm_recheckpoint_new_task(new)
590#define __switch_to_tm(prev)
591#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 592
14cf11af
PM
593struct task_struct *__switch_to(struct task_struct *prev,
594 struct task_struct *new)
595{
596 struct thread_struct *new_thread, *old_thread;
597 unsigned long flags;
598 struct task_struct *last;
d6bf29b4
PZ
599#ifdef CONFIG_PPC_BOOK3S_64
600 struct ppc64_tlb_batch *batch;
601#endif
14cf11af 602
bc2a9408
MN
603 __switch_to_tm(prev);
604
14cf11af
PM
605#ifdef CONFIG_SMP
606 /* avoid complexity of lazy save/restore of fpu
607 * by just saving it every time we switch out if
608 * this task used the fpu during the last quantum.
609 *
610 * If it tries to use the fpu again, it'll trap and
611 * reload its fp regs. So we don't have to do a restore
612 * every switch, just a save.
613 * -- Cort
614 */
615 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
616 giveup_fpu(prev);
617#ifdef CONFIG_ALTIVEC
618 /*
619 * If the previous thread used altivec in the last quantum
620 * (thus changing altivec regs) then save them.
621 * We used to check the VRSAVE register but not all apps
622 * set it, so we don't rely on it now (and in fact we need
623 * to save & restore VSCR even if VRSAVE == 0). -- paulus
624 *
625 * On SMP we always save/restore altivec regs just to avoid the
626 * complexity of changing processors.
627 * -- Cort
628 */
629 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
630 giveup_altivec(prev);
14cf11af 631#endif /* CONFIG_ALTIVEC */
ce48b210
MN
632#ifdef CONFIG_VSX
633 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
7c292170
MN
634 /* VMX and FPU registers are already save here */
635 __giveup_vsx(prev);
ce48b210 636#endif /* CONFIG_VSX */
14cf11af
PM
637#ifdef CONFIG_SPE
638 /*
639 * If the previous thread used spe in the last quantum
640 * (thus changing spe regs) then save them.
641 *
642 * On SMP we always save/restore spe regs just to avoid the
643 * complexity of changing processors.
644 */
645 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
646 giveup_spe(prev);
c0c0d996
PM
647#endif /* CONFIG_SPE */
648
649#else /* CONFIG_SMP */
650#ifdef CONFIG_ALTIVEC
651 /* Avoid the trap. On smp this this never happens since
652 * we don't set last_task_used_altivec -- Cort
653 */
654 if (new->thread.regs && last_task_used_altivec == new)
655 new->thread.regs->msr |= MSR_VEC;
656#endif /* CONFIG_ALTIVEC */
ce48b210
MN
657#ifdef CONFIG_VSX
658 if (new->thread.regs && last_task_used_vsx == new)
659 new->thread.regs->msr |= MSR_VSX;
660#endif /* CONFIG_VSX */
c0c0d996 661#ifdef CONFIG_SPE
14cf11af
PM
662 /* Avoid the trap. On smp this this never happens since
663 * we don't set last_task_used_spe
664 */
665 if (new->thread.regs && last_task_used_spe == new)
666 new->thread.regs->msr |= MSR_SPE;
667#endif /* CONFIG_SPE */
c0c0d996 668
14cf11af
PM
669#endif /* CONFIG_SMP */
670
172ae2e7 671#ifdef CONFIG_PPC_ADV_DEBUG_REGS
3bffb652 672 switch_booke_debug_regs(&new->thread);
c6c9eace 673#else
5aae8a53
P
674/*
675 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
676 * schedule DABR
677 */
678#ifndef CONFIG_HAVE_HW_BREAKPOINT
9422de3e 679 if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
b9818c33 680 set_breakpoint(&new->thread.hw_brk);
5aae8a53 681#endif /* CONFIG_HAVE_HW_BREAKPOINT */
d6a61bfc
LM
682#endif
683
c6c9eace 684
14cf11af
PM
685 new_thread = &new->thread;
686 old_thread = &current->thread;
06d67d54
PM
687
688#ifdef CONFIG_PPC64
689 /*
690 * Collect processor utilization data per process
691 */
692 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
693 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
694 long unsigned start_tb, current_tb;
695 start_tb = old_thread->start_tb;
696 cu->current_tb = current_tb = mfspr(SPRN_PURR);
697 old_thread->accum_tb += (current_tb - start_tb);
698 new_thread->start_tb = current_tb;
699 }
d6bf29b4
PZ
700#endif /* CONFIG_PPC64 */
701
702#ifdef CONFIG_PPC_BOOK3S_64
703 batch = &__get_cpu_var(ppc64_tlb_batch);
704 if (batch->active) {
705 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
706 if (batch->index)
707 __flush_tlb_pending(batch);
708 batch->active = 0;
709 }
710#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 711
14cf11af 712 local_irq_save(flags);
c6622f63 713
44387e9f
AB
714 /*
715 * We can't take a PMU exception inside _switch() since there is a
716 * window where the kernel stack SLB and the kernel stack are out
717 * of sync. Hard disable here.
718 */
719 hard_irq_disable();
bc2a9408
MN
720
721 tm_recheckpoint_new_task(new);
722
14cf11af
PM
723 last = _switch(old_thread, new_thread);
724
d6bf29b4
PZ
725#ifdef CONFIG_PPC_BOOK3S_64
726 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
727 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
728 batch = &__get_cpu_var(ppc64_tlb_batch);
729 batch->active = 1;
730 }
731#endif /* CONFIG_PPC_BOOK3S_64 */
732
14cf11af
PM
733 local_irq_restore(flags);
734
735 return last;
736}
737
06d67d54
PM
738static int instructions_to_print = 16;
739
06d67d54
PM
740static void show_instructions(struct pt_regs *regs)
741{
742 int i;
743 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
744 sizeof(int));
745
746 printk("Instruction dump:");
747
748 for (i = 0; i < instructions_to_print; i++) {
749 int instr;
750
751 if (!(i % 8))
752 printk("\n");
753
0de2d820
SW
754#if !defined(CONFIG_BOOKE)
755 /* If executing with the IMMU off, adjust pc rather
756 * than print XXXXXXXX.
757 */
758 if (!(regs->msr & MSR_IR))
759 pc = (unsigned long)phys_to_virt(pc);
760#endif
761
af308377
SR
762 /* We use __get_user here *only* to avoid an OOPS on a
763 * bad address because the pc *should* only be a
764 * kernel address.
765 */
00ae36de
AB
766 if (!__kernel_text_address(pc) ||
767 __get_user(instr, (unsigned int __user *)pc)) {
40c8cefa 768 printk(KERN_CONT "XXXXXXXX ");
06d67d54
PM
769 } else {
770 if (regs->nip == pc)
40c8cefa 771 printk(KERN_CONT "<%08x> ", instr);
06d67d54 772 else
40c8cefa 773 printk(KERN_CONT "%08x ", instr);
06d67d54
PM
774 }
775
776 pc += sizeof(int);
777 }
778
779 printk("\n");
780}
781
782static struct regbit {
783 unsigned long bit;
784 const char *name;
785} msr_bits[] = {
3bfd0c9c
AB
786#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
787 {MSR_SF, "SF"},
788 {MSR_HV, "HV"},
789#endif
790 {MSR_VEC, "VEC"},
791 {MSR_VSX, "VSX"},
792#ifdef CONFIG_BOOKE
793 {MSR_CE, "CE"},
794#endif
06d67d54
PM
795 {MSR_EE, "EE"},
796 {MSR_PR, "PR"},
797 {MSR_FP, "FP"},
798 {MSR_ME, "ME"},
3bfd0c9c 799#ifdef CONFIG_BOOKE
1b98326b 800 {MSR_DE, "DE"},
3bfd0c9c
AB
801#else
802 {MSR_SE, "SE"},
803 {MSR_BE, "BE"},
804#endif
06d67d54
PM
805 {MSR_IR, "IR"},
806 {MSR_DR, "DR"},
3bfd0c9c
AB
807 {MSR_PMM, "PMM"},
808#ifndef CONFIG_BOOKE
809 {MSR_RI, "RI"},
810 {MSR_LE, "LE"},
811#endif
06d67d54
PM
812 {0, NULL}
813};
814
815static void printbits(unsigned long val, struct regbit *bits)
816{
817 const char *sep = "";
818
819 printk("<");
820 for (; bits->bit; ++bits)
821 if (val & bits->bit) {
822 printk("%s%s", sep, bits->name);
823 sep = ",";
824 }
825 printk(">");
826}
827
828#ifdef CONFIG_PPC64
f6f7dde3 829#define REG "%016lx"
06d67d54
PM
830#define REGS_PER_LINE 4
831#define LAST_VOLATILE 13
832#else
f6f7dde3 833#define REG "%08lx"
06d67d54
PM
834#define REGS_PER_LINE 8
835#define LAST_VOLATILE 12
836#endif
837
14cf11af
PM
838void show_regs(struct pt_regs * regs)
839{
840 int i, trap;
841
a43cb95d
TH
842 show_regs_print_info(KERN_DEFAULT);
843
06d67d54
PM
844 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
845 regs->nip, regs->link, regs->ctr);
846 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 847 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54
PM
848 printk("MSR: "REG" ", regs->msr);
849 printbits(regs->msr, msr_bits);
f6f7dde3 850 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
7230c564
BH
851#ifdef CONFIG_PPC64
852 printk("SOFTE: %ld\n", regs->softe);
853#endif
14cf11af 854 trap = TRAP(regs);
5115a026
MN
855 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
856 printk("CFAR: "REG"\n", regs->orig_gpr3);
14cf11af 857 if (trap == 0x300 || trap == 0x600)
ba28c9aa 858#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
14170789
KG
859 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
860#else
7071854b 861 printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
14170789 862#endif
14cf11af
PM
863
864 for (i = 0; i < 32; i++) {
06d67d54 865 if ((i % REGS_PER_LINE) == 0)
a2367194 866 printk("\nGPR%02d: ", i);
06d67d54
PM
867 printk(REG " ", regs->gpr[i]);
868 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
869 break;
870 }
871 printk("\n");
872#ifdef CONFIG_KALLSYMS
873 /*
874 * Lookup NIP late so we have the best change of getting the
875 * above info out without failing
876 */
058c78f4
BH
877 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
878 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
14cf11af 879#endif
afc07701
MN
880#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
881 printk("PACATMSCRATCH [%llx]\n", get_paca()->tm_scratch);
882#endif
14cf11af 883 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
884 if (!user_mode(regs))
885 show_instructions(regs);
14cf11af
PM
886}
887
888void exit_thread(void)
889{
48abec07 890 discard_lazy_cpu_state();
14cf11af
PM
891}
892
893void flush_thread(void)
894{
48abec07 895 discard_lazy_cpu_state();
14cf11af 896
e0780b72 897#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 898 flush_ptrace_hw_breakpoint(current);
e0780b72 899#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 900 set_debug_reg_defaults(&current->thread);
e0780b72 901#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
902}
903
904void
905release_thread(struct task_struct *t)
906{
907}
908
909/*
55ccf3fe
SS
910 * this gets called so that we can store coprocessor state into memory and
911 * copy the current task into the new thread.
14cf11af 912 */
55ccf3fe 913int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 914{
55ccf3fe
SS
915 flush_fp_to_thread(src);
916 flush_altivec_to_thread(src);
917 flush_vsx_to_thread(src);
918 flush_spe_to_thread(src);
330a1eb7 919
55ccf3fe 920 *dst = *src;
330a1eb7
ME
921
922 clear_task_ebb(dst);
923
55ccf3fe 924 return 0;
14cf11af
PM
925}
926
927/*
928 * Copy a thread..
929 */
efcac658
AK
930extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
931
6f2c55b8 932int copy_thread(unsigned long clone_flags, unsigned long usp,
afa86fc4 933 unsigned long arg, struct task_struct *p)
14cf11af
PM
934{
935 struct pt_regs *childregs, *kregs;
936 extern void ret_from_fork(void);
58254e10
AV
937 extern void ret_from_kernel_thread(void);
938 void (*f)(void);
0cec6fd1 939 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
14cf11af 940
14cf11af
PM
941 /* Copy registers */
942 sp -= sizeof(struct pt_regs);
943 childregs = (struct pt_regs *) sp;
ab75819d 944 if (unlikely(p->flags & PF_KTHREAD)) {
138d1ce8 945 struct thread_info *ti = (void *)task_stack_page(p);
58254e10 946 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 947 childregs->gpr[1] = sp + sizeof(struct pt_regs);
53b50f94 948 childregs->gpr[14] = usp; /* function */
58254e10 949#ifdef CONFIG_PPC64
b5e2fc1c 950 clear_tsk_thread_flag(p, TIF_32BIT);
138d1ce8 951 childregs->softe = 1;
06d67d54 952#endif
58254e10 953 childregs->gpr[15] = arg;
14cf11af 954 p->thread.regs = NULL; /* no user register state */
138d1ce8 955 ti->flags |= _TIF_RESTOREALL;
58254e10 956 f = ret_from_kernel_thread;
14cf11af 957 } else {
afa86fc4 958 struct pt_regs *regs = current_pt_regs();
58254e10
AV
959 CHECK_FULL_REGS(regs);
960 *childregs = *regs;
ea516b11
AV
961 if (usp)
962 childregs->gpr[1] = usp;
14cf11af 963 p->thread.regs = childregs;
58254e10 964 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
965 if (clone_flags & CLONE_SETTLS) {
966#ifdef CONFIG_PPC64
9904b005 967 if (!is_32bit_task())
06d67d54
PM
968 childregs->gpr[13] = childregs->gpr[6];
969 else
970#endif
971 childregs->gpr[2] = childregs->gpr[6];
972 }
58254e10
AV
973
974 f = ret_from_fork;
14cf11af 975 }
14cf11af 976 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
977
978 /*
979 * The way this works is that at some point in the future
980 * some task will call _switch to switch to the new task.
981 * That will pop off the stack frame created below and start
982 * the new task running at ret_from_fork. The new task will
983 * do some house keeping and then return from the fork or clone
984 * system call, using the stack frame created above.
985 */
af945cf4 986 ((unsigned long *)sp)[0] = 0;
14cf11af
PM
987 sp -= sizeof(struct pt_regs);
988 kregs = (struct pt_regs *) sp;
989 sp -= STACK_FRAME_OVERHEAD;
990 p->thread.ksp = sp;
85218827
KG
991 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
992 _ALIGN_UP(sizeof(struct thread_info), 16);
14cf11af 993
28d170ab
ON
994#ifdef CONFIG_HAVE_HW_BREAKPOINT
995 p->thread.ptrace_bps[0] = NULL;
996#endif
997
94491685 998#ifdef CONFIG_PPC_STD_MMU_64
44ae3ab3 999 if (mmu_has_feature(MMU_FTR_SLB)) {
1189be65 1000 unsigned long sp_vsid;
3c726f8d 1001 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
06d67d54 1002
44ae3ab3 1003 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1189be65
PM
1004 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1005 << SLB_VSID_SHIFT_1T;
1006 else
1007 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1008 << SLB_VSID_SHIFT;
3c726f8d 1009 sp_vsid |= SLB_VSID_KERNEL | llp;
06d67d54
PM
1010 p->thread.ksp_vsid = sp_vsid;
1011 }
747bea91 1012#endif /* CONFIG_PPC_STD_MMU_64 */
efcac658
AK
1013#ifdef CONFIG_PPC64
1014 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26
AB
1015 p->thread.dscr_inherit = current->thread.dscr_inherit;
1016 p->thread.dscr = current->thread.dscr;
efcac658 1017 }
92779245
HM
1018 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1019 p->thread.ppr = INIT_PPR;
efcac658 1020#endif
06d67d54
PM
1021 /*
1022 * The PPC64 ABI makes use of a TOC to contain function
1023 * pointers. The function (ret_from_except) is actually a pointer
1024 * to the TOC entry. The first entry is a pointer to the actual
1025 * function.
58254e10 1026 */
747bea91 1027#ifdef CONFIG_PPC64
58254e10 1028 kregs->nip = *((unsigned long *)f);
06d67d54 1029#else
58254e10 1030 kregs->nip = (unsigned long)f;
06d67d54 1031#endif
14cf11af
PM
1032 return 0;
1033}
1034
1035/*
1036 * Set up a thread for executing a new program
1037 */
06d67d54 1038void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1039{
90eac727
ME
1040#ifdef CONFIG_PPC64
1041 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1042#endif
1043
06d67d54
PM
1044 /*
1045 * If we exec out of a kernel thread then thread.regs will not be
1046 * set. Do it now.
1047 */
1048 if (!current->thread.regs) {
0cec6fd1
AV
1049 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1050 current->thread.regs = regs - 1;
06d67d54
PM
1051 }
1052
14cf11af
PM
1053 memset(regs->gpr, 0, sizeof(regs->gpr));
1054 regs->ctr = 0;
1055 regs->link = 0;
1056 regs->xer = 0;
1057 regs->ccr = 0;
14cf11af 1058 regs->gpr[1] = sp;
06d67d54 1059
474f8196
RM
1060 /*
1061 * We have just cleared all the nonvolatile GPRs, so make
1062 * FULL_REGS(regs) return true. This is necessary to allow
1063 * ptrace to examine the thread immediately after exec.
1064 */
1065 regs->trap &= ~1UL;
1066
06d67d54
PM
1067#ifdef CONFIG_PPC32
1068 regs->mq = 0;
1069 regs->nip = start;
14cf11af 1070 regs->msr = MSR_USER;
06d67d54 1071#else
9904b005 1072 if (!is_32bit_task()) {
90eac727 1073 unsigned long entry, toc;
06d67d54
PM
1074
1075 /* start is a relocated pointer to the function descriptor for
1076 * the elf _start routine. The first entry in the function
1077 * descriptor is the entry address of _start and the second
1078 * entry is the TOC value we need to use.
1079 */
1080 __get_user(entry, (unsigned long __user *)start);
1081 __get_user(toc, (unsigned long __user *)start+1);
1082
1083 /* Check whether the e_entry function descriptor entries
1084 * need to be relocated before we can use them.
1085 */
1086 if (load_addr != 0) {
1087 entry += load_addr;
1088 toc += load_addr;
1089 }
1090 regs->nip = entry;
1091 regs->gpr[2] = toc;
1092 regs->msr = MSR_USER64;
d4bf9a78
SR
1093 } else {
1094 regs->nip = start;
1095 regs->gpr[2] = 0;
1096 regs->msr = MSR_USER32;
06d67d54
PM
1097 }
1098#endif
48abec07 1099 discard_lazy_cpu_state();
ce48b210
MN
1100#ifdef CONFIG_VSX
1101 current->thread.used_vsr = 0;
1102#endif
14cf11af 1103 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
25c8a78b 1104 current->thread.fpscr.val = 0;
14cf11af
PM
1105#ifdef CONFIG_ALTIVEC
1106 memset(current->thread.vr, 0, sizeof(current->thread.vr));
1107 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
06d67d54 1108 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
14cf11af
PM
1109 current->thread.vrsave = 0;
1110 current->thread.used_vr = 0;
1111#endif /* CONFIG_ALTIVEC */
1112#ifdef CONFIG_SPE
1113 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1114 current->thread.acc = 0;
1115 current->thread.spefscr = 0;
1116 current->thread.used_spe = 0;
1117#endif /* CONFIG_SPE */
bc2a9408
MN
1118#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1119 if (cpu_has_feature(CPU_FTR_TM))
1120 regs->msr |= MSR_TM;
1121 current->thread.tm_tfhar = 0;
1122 current->thread.tm_texasr = 0;
1123 current->thread.tm_tfiar = 0;
1124#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
14cf11af
PM
1125}
1126
1127#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1128 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1129
1130int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1131{
1132 struct pt_regs *regs = tsk->thread.regs;
1133
1134 /* This is a bit hairy. If we are an SPE enabled processor
1135 * (have embedded fp) we store the IEEE exception enable flags in
1136 * fpexc_mode. fpexc_mode is also used for setting FP exception
1137 * mode (asyn, precise, disabled) for 'Classic' FP. */
1138 if (val & PR_FP_EXC_SW_ENABLE) {
1139#ifdef CONFIG_SPE
5e14d21e
KG
1140 if (cpu_has_feature(CPU_FTR_SPE)) {
1141 tsk->thread.fpexc_mode = val &
1142 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1143 return 0;
1144 } else {
1145 return -EINVAL;
1146 }
14cf11af
PM
1147#else
1148 return -EINVAL;
1149#endif
14cf11af 1150 }
06d67d54
PM
1151
1152 /* on a CONFIG_SPE this does not hurt us. The bits that
1153 * __pack_fe01 use do not overlap with bits used for
1154 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1155 * on CONFIG_SPE implementations are reserved so writing to
1156 * them does not change anything */
1157 if (val > PR_FP_EXC_PRECISE)
1158 return -EINVAL;
1159 tsk->thread.fpexc_mode = __pack_fe01(val);
1160 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1161 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1162 | tsk->thread.fpexc_mode;
14cf11af
PM
1163 return 0;
1164}
1165
1166int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1167{
1168 unsigned int val;
1169
1170 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1171#ifdef CONFIG_SPE
5e14d21e
KG
1172 if (cpu_has_feature(CPU_FTR_SPE))
1173 val = tsk->thread.fpexc_mode;
1174 else
1175 return -EINVAL;
14cf11af
PM
1176#else
1177 return -EINVAL;
1178#endif
1179 else
1180 val = __unpack_fe01(tsk->thread.fpexc_mode);
1181 return put_user(val, (unsigned int __user *) adr);
1182}
1183
fab5db97
PM
1184int set_endian(struct task_struct *tsk, unsigned int val)
1185{
1186 struct pt_regs *regs = tsk->thread.regs;
1187
1188 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1189 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1190 return -EINVAL;
1191
1192 if (regs == NULL)
1193 return -EINVAL;
1194
1195 if (val == PR_ENDIAN_BIG)
1196 regs->msr &= ~MSR_LE;
1197 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1198 regs->msr |= MSR_LE;
1199 else
1200 return -EINVAL;
1201
1202 return 0;
1203}
1204
1205int get_endian(struct task_struct *tsk, unsigned long adr)
1206{
1207 struct pt_regs *regs = tsk->thread.regs;
1208 unsigned int val;
1209
1210 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1211 !cpu_has_feature(CPU_FTR_REAL_LE))
1212 return -EINVAL;
1213
1214 if (regs == NULL)
1215 return -EINVAL;
1216
1217 if (regs->msr & MSR_LE) {
1218 if (cpu_has_feature(CPU_FTR_REAL_LE))
1219 val = PR_ENDIAN_LITTLE;
1220 else
1221 val = PR_ENDIAN_PPC_LITTLE;
1222 } else
1223 val = PR_ENDIAN_BIG;
1224
1225 return put_user(val, (unsigned int __user *)adr);
1226}
1227
e9370ae1
PM
1228int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1229{
1230 tsk->thread.align_ctl = val;
1231 return 0;
1232}
1233
1234int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1235{
1236 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1237}
1238
bb72c481
PM
1239static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1240 unsigned long nbytes)
1241{
1242 unsigned long stack_page;
1243 unsigned long cpu = task_cpu(p);
1244
1245 /*
1246 * Avoid crashing if the stack has overflowed and corrupted
1247 * task_cpu(p), which is in the thread_info struct.
1248 */
1249 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1250 stack_page = (unsigned long) hardirq_ctx[cpu];
1251 if (sp >= stack_page + sizeof(struct thread_struct)
1252 && sp <= stack_page + THREAD_SIZE - nbytes)
1253 return 1;
1254
1255 stack_page = (unsigned long) softirq_ctx[cpu];
1256 if (sp >= stack_page + sizeof(struct thread_struct)
1257 && sp <= stack_page + THREAD_SIZE - nbytes)
1258 return 1;
1259 }
1260 return 0;
1261}
1262
2f25194d 1263int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1264 unsigned long nbytes)
1265{
0cec6fd1 1266 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1267
1268 if (sp >= stack_page + sizeof(struct thread_struct)
1269 && sp <= stack_page + THREAD_SIZE - nbytes)
1270 return 1;
1271
bb72c481 1272 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1273}
1274
2f25194d
AB
1275EXPORT_SYMBOL(validate_sp);
1276
14cf11af
PM
1277unsigned long get_wchan(struct task_struct *p)
1278{
1279 unsigned long ip, sp;
1280 int count = 0;
1281
1282 if (!p || p == current || p->state == TASK_RUNNING)
1283 return 0;
1284
1285 sp = p->thread.ksp;
ec2b36b9 1286 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1287 return 0;
1288
1289 do {
1290 sp = *(unsigned long *)sp;
ec2b36b9 1291 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1292 return 0;
1293 if (count > 0) {
ec2b36b9 1294 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1295 if (!in_sched_functions(ip))
1296 return ip;
1297 }
1298 } while (count++ < 16);
1299 return 0;
1300}
06d67d54 1301
c4d04be1 1302static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
1303
1304void show_stack(struct task_struct *tsk, unsigned long *stack)
1305{
1306 unsigned long sp, ip, lr, newsp;
1307 int count = 0;
1308 int firstframe = 1;
6794c782
SR
1309#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1310 int curr_frame = current->curr_ret_stack;
1311 extern void return_to_handler(void);
9135c3cc
SR
1312 unsigned long rth = (unsigned long)return_to_handler;
1313 unsigned long mrth = -1;
6794c782 1314#ifdef CONFIG_PPC64
9135c3cc
SR
1315 extern void mod_return_to_handler(void);
1316 rth = *(unsigned long *)rth;
1317 mrth = (unsigned long)mod_return_to_handler;
1318 mrth = *(unsigned long *)mrth;
6794c782
SR
1319#endif
1320#endif
06d67d54
PM
1321
1322 sp = (unsigned long) stack;
1323 if (tsk == NULL)
1324 tsk = current;
1325 if (sp == 0) {
1326 if (tsk == current)
1327 asm("mr %0,1" : "=r" (sp));
1328 else
1329 sp = tsk->thread.ksp;
1330 }
1331
1332 lr = 0;
1333 printk("Call Trace:\n");
1334 do {
ec2b36b9 1335 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1336 return;
1337
1338 stack = (unsigned long *) sp;
1339 newsp = stack[0];
ec2b36b9 1340 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 1341 if (!firstframe || ip != lr) {
058c78f4 1342 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 1343#ifdef CONFIG_FUNCTION_GRAPH_TRACER
9135c3cc 1344 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
6794c782
SR
1345 printk(" (%pS)",
1346 (void *)current->ret_stack[curr_frame].ret);
1347 curr_frame--;
1348 }
1349#endif
06d67d54
PM
1350 if (firstframe)
1351 printk(" (unreliable)");
1352 printk("\n");
1353 }
1354 firstframe = 0;
1355
1356 /*
1357 * See if this is an exception frame.
1358 * We look for the "regshere" marker in the current frame.
1359 */
ec2b36b9
BH
1360 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1361 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1362 struct pt_regs *regs = (struct pt_regs *)
1363 (sp + STACK_FRAME_OVERHEAD);
06d67d54 1364 lr = regs->link;
058c78f4
BH
1365 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1366 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
1367 firstframe = 1;
1368 }
1369
1370 sp = newsp;
1371 } while (count++ < kstack_depth_to_print);
1372}
1373
cb2c9b27 1374#ifdef CONFIG_PPC64
fe1952fc 1375/* Called with hard IRQs off */
0e37739b 1376void notrace __ppc64_runlatch_on(void)
cb2c9b27 1377{
fe1952fc 1378 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1379 unsigned long ctrl;
1380
fe1952fc
BH
1381 ctrl = mfspr(SPRN_CTRLF);
1382 ctrl |= CTRL_RUNLATCH;
1383 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1384
fae2e0fb 1385 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
1386}
1387
fe1952fc 1388/* Called with hard IRQs off */
0e37739b 1389void notrace __ppc64_runlatch_off(void)
cb2c9b27 1390{
fe1952fc 1391 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1392 unsigned long ctrl;
1393
fae2e0fb 1394 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 1395
4138d653
AB
1396 ctrl = mfspr(SPRN_CTRLF);
1397 ctrl &= ~CTRL_RUNLATCH;
1398 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1399}
fe1952fc 1400#endif /* CONFIG_PPC64 */
f6a61680 1401
d839088c
AB
1402unsigned long arch_align_stack(unsigned long sp)
1403{
1404 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1405 sp -= get_random_int() & ~PAGE_MASK;
1406 return sp & ~0xf;
1407}
912f9ee2
AB
1408
1409static inline unsigned long brk_rnd(void)
1410{
1411 unsigned long rnd = 0;
1412
1413 /* 8MB for 32bit, 1GB for 64bit */
1414 if (is_32bit_task())
1415 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1416 else
1417 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1418
1419 return rnd << PAGE_SHIFT;
1420}
1421
1422unsigned long arch_randomize_brk(struct mm_struct *mm)
1423{
8bbde7a7
AB
1424 unsigned long base = mm->brk;
1425 unsigned long ret;
1426
ce7a35c7 1427#ifdef CONFIG_PPC_STD_MMU_64
8bbde7a7
AB
1428 /*
1429 * If we are using 1TB segments and we are allowed to randomise
1430 * the heap, we can put it above 1TB so it is backed by a 1TB
1431 * segment. Otherwise the heap will be in the bottom 1TB
1432 * which always uses 256MB segments and this may result in a
1433 * performance penalty.
1434 */
1435 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1436 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1437#endif
1438
1439 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
1440
1441 if (ret < mm->brk)
1442 return mm->brk;
1443
1444 return ret;
1445}
501cb16d
AB
1446
1447unsigned long randomize_et_dyn(unsigned long base)
1448{
1449 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1450
1451 if (ret < base)
1452 return base;
1453
1454 return ret;
1455}