]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/powerpc/kernel/process.c
Merge tag 'linux-kselftest-4.13-rc6-fixes' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
b17b0153 19#include <linux/sched/debug.h>
29930025 20#include <linux/sched/task.h>
68db0cf1 21#include <linux/sched/task_stack.h>
14cf11af
PM
22#include <linux/kernel.h>
23#include <linux/mm.h>
24#include <linux/smp.h>
14cf11af
PM
25#include <linux/stddef.h>
26#include <linux/unistd.h>
27#include <linux/ptrace.h>
28#include <linux/slab.h>
29#include <linux/user.h>
30#include <linux/elf.h>
14cf11af
PM
31#include <linux/prctl.h>
32#include <linux/init_task.h>
4b16f8e2 33#include <linux/export.h>
14cf11af
PM
34#include <linux/kallsyms.h>
35#include <linux/mqueue.h>
36#include <linux/hardirq.h>
06d67d54 37#include <linux/utsname.h>
6794c782 38#include <linux/ftrace.h>
79741dd3 39#include <linux/kernel_stat.h>
d839088c
AB
40#include <linux/personality.h>
41#include <linux/random.h>
5aae8a53 42#include <linux/hw_breakpoint.h>
7b051f66 43#include <linux/uaccess.h>
7f92bc56 44#include <linux/elf-randomize.h>
14cf11af
PM
45
46#include <asm/pgtable.h>
14cf11af
PM
47#include <asm/io.h>
48#include <asm/processor.h>
49#include <asm/mmu.h>
50#include <asm/prom.h>
76032de8 51#include <asm/machdep.h>
c6622f63 52#include <asm/time.h>
ae3a197e 53#include <asm/runlatch.h>
a7f31841 54#include <asm/syscalls.h>
ae3a197e 55#include <asm/switch_to.h>
fb09692e 56#include <asm/tm.h>
ae3a197e 57#include <asm/debug.h>
06d67d54
PM
58#ifdef CONFIG_PPC64
59#include <asm/firmware.h>
06d67d54 60#endif
7cedd601 61#include <asm/code-patching.h>
7f92bc56 62#include <asm/exec.h>
5d31a96e 63#include <asm/livepatch.h>
b92a226e 64#include <asm/cpu_has_feature.h>
0545d543 65#include <asm/asm-prototypes.h>
5d31a96e 66
d6a61bfc
LM
67#include <linux/kprobes.h>
68#include <linux/kdebug.h>
14cf11af 69
8b3c34cf
MN
70/* Transactional Memory debug */
71#ifdef TM_DEBUG_SW
72#define TM_DEBUG(x...) printk(KERN_INFO x)
73#else
74#define TM_DEBUG(x...) do { } while(0)
75#endif
76
14cf11af
PM
77extern unsigned long _get_SP(void);
78
d31626f7 79#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
b86fd2bd 80static void check_if_tm_restore_required(struct task_struct *tsk)
d31626f7
PM
81{
82 /*
83 * If we are saving the current thread's registers, and the
84 * thread is in a transactional state, set the TIF_RESTORE_TM
85 * bit so that we know to restore the registers before
86 * returning to userspace.
87 */
88 if (tsk == current && tsk->thread.regs &&
89 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
90 !test_thread_flag(TIF_RESTORE_TM)) {
829023df 91 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
d31626f7
PM
92 set_thread_flag(TIF_RESTORE_TM);
93 }
d31626f7 94}
dc16b553
CB
95
96static inline bool msr_tm_active(unsigned long msr)
97{
98 return MSR_TM_ACTIVE(msr);
99}
d31626f7 100#else
dc16b553 101static inline bool msr_tm_active(unsigned long msr) { return false; }
b86fd2bd 102static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
d31626f7
PM
103#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
104
3eb5d588
AB
105bool strict_msr_control;
106EXPORT_SYMBOL(strict_msr_control);
107
108static int __init enable_strict_msr_control(char *str)
109{
110 strict_msr_control = true;
111 pr_info("Enabling strict facility control\n");
112
113 return 0;
114}
115early_param("ppc_strict_facility_enable", enable_strict_msr_control);
116
3cee070a 117unsigned long msr_check_and_set(unsigned long bits)
98da581e 118{
a0e72cf1
AB
119 unsigned long oldmsr = mfmsr();
120 unsigned long newmsr;
98da581e 121
a0e72cf1 122 newmsr = oldmsr | bits;
98da581e 123
98da581e 124#ifdef CONFIG_VSX
a0e72cf1 125 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
98da581e
AB
126 newmsr |= MSR_VSX;
127#endif
a0e72cf1 128
98da581e
AB
129 if (oldmsr != newmsr)
130 mtmsr_isync(newmsr);
3cee070a
CB
131
132 return newmsr;
a0e72cf1 133}
98da581e 134
3eb5d588 135void __msr_check_and_clear(unsigned long bits)
a0e72cf1
AB
136{
137 unsigned long oldmsr = mfmsr();
138 unsigned long newmsr;
139
140 newmsr = oldmsr & ~bits;
141
142#ifdef CONFIG_VSX
143 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
144 newmsr &= ~MSR_VSX;
145#endif
146
147 if (oldmsr != newmsr)
148 mtmsr_isync(newmsr);
149}
3eb5d588 150EXPORT_SYMBOL(__msr_check_and_clear);
a0e72cf1
AB
151
152#ifdef CONFIG_PPC_FPU
8792468d
CB
153void __giveup_fpu(struct task_struct *tsk)
154{
8eb98037
AB
155 unsigned long msr;
156
8792468d 157 save_fpu(tsk);
8eb98037
AB
158 msr = tsk->thread.regs->msr;
159 msr &= ~MSR_FP;
8792468d
CB
160#ifdef CONFIG_VSX
161 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 162 msr &= ~MSR_VSX;
8792468d 163#endif
8eb98037 164 tsk->thread.regs->msr = msr;
8792468d
CB
165}
166
a0e72cf1
AB
167void giveup_fpu(struct task_struct *tsk)
168{
169 check_if_tm_restore_required(tsk);
170
171 msr_check_and_set(MSR_FP);
98da581e 172 __giveup_fpu(tsk);
a0e72cf1 173 msr_check_and_clear(MSR_FP);
98da581e
AB
174}
175EXPORT_SYMBOL(giveup_fpu);
176
14cf11af
PM
177/*
178 * Make sure the floating-point register state in the
179 * the thread_struct is up to date for task tsk.
180 */
181void flush_fp_to_thread(struct task_struct *tsk)
182{
183 if (tsk->thread.regs) {
184 /*
185 * We need to disable preemption here because if we didn't,
186 * another process could get scheduled after the regs->msr
187 * test but before we have finished saving the FP registers
188 * to the thread_struct. That process could take over the
189 * FPU, and then when we get scheduled again we would store
190 * bogus values for the remaining FP registers.
191 */
192 preempt_disable();
193 if (tsk->thread.regs->msr & MSR_FP) {
14cf11af
PM
194 /*
195 * This should only ever be called for current or
196 * for a stopped child process. Since we save away
af1bbc3d 197 * the FP register state on context switch,
14cf11af
PM
198 * there is something wrong if a stopped child appears
199 * to still have its FP state in the CPU registers.
200 */
201 BUG_ON(tsk != current);
b86fd2bd 202 giveup_fpu(tsk);
14cf11af
PM
203 }
204 preempt_enable();
205 }
206}
de56a948 207EXPORT_SYMBOL_GPL(flush_fp_to_thread);
14cf11af
PM
208
209void enable_kernel_fp(void)
210{
e909fb83
CB
211 unsigned long cpumsr;
212
14cf11af
PM
213 WARN_ON(preemptible());
214
e909fb83 215 cpumsr = msr_check_and_set(MSR_FP);
611b0e5c 216
d64d02ce
AB
217 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
218 check_if_tm_restore_required(current);
e909fb83
CB
219 /*
220 * If a thread has already been reclaimed then the
221 * checkpointed registers are on the CPU but have definitely
222 * been saved by the reclaim code. Don't need to and *cannot*
223 * giveup as this would save to the 'live' structure not the
224 * checkpointed structure.
225 */
226 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
227 return;
a0e72cf1 228 __giveup_fpu(current);
d64d02ce 229 }
14cf11af
PM
230}
231EXPORT_SYMBOL(enable_kernel_fp);
70fe3d98
CB
232
233static int restore_fp(struct task_struct *tsk) {
dc16b553 234 if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
70fe3d98
CB
235 load_fp_state(&current->thread.fp_state);
236 current->thread.load_fp++;
237 return 1;
238 }
239 return 0;
240}
241#else
242static int restore_fp(struct task_struct *tsk) { return 0; }
d1e1cf2e 243#endif /* CONFIG_PPC_FPU */
14cf11af 244
14cf11af 245#ifdef CONFIG_ALTIVEC
70fe3d98
CB
246#define loadvec(thr) ((thr).load_vec)
247
6f515d84
CB
248static void __giveup_altivec(struct task_struct *tsk)
249{
8eb98037
AB
250 unsigned long msr;
251
6f515d84 252 save_altivec(tsk);
8eb98037
AB
253 msr = tsk->thread.regs->msr;
254 msr &= ~MSR_VEC;
6f515d84
CB
255#ifdef CONFIG_VSX
256 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 257 msr &= ~MSR_VSX;
6f515d84 258#endif
8eb98037 259 tsk->thread.regs->msr = msr;
6f515d84
CB
260}
261
98da581e
AB
262void giveup_altivec(struct task_struct *tsk)
263{
98da581e
AB
264 check_if_tm_restore_required(tsk);
265
a0e72cf1 266 msr_check_and_set(MSR_VEC);
98da581e 267 __giveup_altivec(tsk);
a0e72cf1 268 msr_check_and_clear(MSR_VEC);
98da581e
AB
269}
270EXPORT_SYMBOL(giveup_altivec);
271
14cf11af
PM
272void enable_kernel_altivec(void)
273{
e909fb83
CB
274 unsigned long cpumsr;
275
14cf11af
PM
276 WARN_ON(preemptible());
277
e909fb83 278 cpumsr = msr_check_and_set(MSR_VEC);
611b0e5c 279
d64d02ce
AB
280 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
281 check_if_tm_restore_required(current);
e909fb83
CB
282 /*
283 * If a thread has already been reclaimed then the
284 * checkpointed registers are on the CPU but have definitely
285 * been saved by the reclaim code. Don't need to and *cannot*
286 * giveup as this would save to the 'live' structure not the
287 * checkpointed structure.
288 */
289 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
290 return;
a0e72cf1 291 __giveup_altivec(current);
d64d02ce 292 }
14cf11af
PM
293}
294EXPORT_SYMBOL(enable_kernel_altivec);
295
296/*
297 * Make sure the VMX/Altivec register state in the
298 * the thread_struct is up to date for task tsk.
299 */
300void flush_altivec_to_thread(struct task_struct *tsk)
301{
302 if (tsk->thread.regs) {
303 preempt_disable();
304 if (tsk->thread.regs->msr & MSR_VEC) {
14cf11af 305 BUG_ON(tsk != current);
b86fd2bd 306 giveup_altivec(tsk);
14cf11af
PM
307 }
308 preempt_enable();
309 }
310}
de56a948 311EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
70fe3d98
CB
312
313static int restore_altivec(struct task_struct *tsk)
314{
dc16b553
CB
315 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
316 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
70fe3d98
CB
317 load_vr_state(&tsk->thread.vr_state);
318 tsk->thread.used_vr = 1;
319 tsk->thread.load_vec++;
320
321 return 1;
322 }
323 return 0;
324}
325#else
326#define loadvec(thr) 0
327static inline int restore_altivec(struct task_struct *tsk) { return 0; }
14cf11af
PM
328#endif /* CONFIG_ALTIVEC */
329
ce48b210 330#ifdef CONFIG_VSX
bf6a4d5b 331static void __giveup_vsx(struct task_struct *tsk)
a7d623d4 332{
a7d623d4
AB
333 if (tsk->thread.regs->msr & MSR_FP)
334 __giveup_fpu(tsk);
335 if (tsk->thread.regs->msr & MSR_VEC)
336 __giveup_altivec(tsk);
bf6a4d5b
CB
337 tsk->thread.regs->msr &= ~MSR_VSX;
338}
339
340static void giveup_vsx(struct task_struct *tsk)
341{
342 check_if_tm_restore_required(tsk);
343
344 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 345 __giveup_vsx(tsk);
a0e72cf1 346 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 347}
bf6a4d5b
CB
348
349static void save_vsx(struct task_struct *tsk)
350{
351 if (tsk->thread.regs->msr & MSR_FP)
352 save_fpu(tsk);
353 if (tsk->thread.regs->msr & MSR_VEC)
354 save_altivec(tsk);
355}
a7d623d4 356
ce48b210
MN
357void enable_kernel_vsx(void)
358{
e909fb83
CB
359 unsigned long cpumsr;
360
ce48b210
MN
361 WARN_ON(preemptible());
362
e909fb83 363 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
611b0e5c 364
a0e72cf1 365 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
d64d02ce 366 check_if_tm_restore_required(current);
e909fb83
CB
367 /*
368 * If a thread has already been reclaimed then the
369 * checkpointed registers are on the CPU but have definitely
370 * been saved by the reclaim code. Don't need to and *cannot*
371 * giveup as this would save to the 'live' structure not the
372 * checkpointed structure.
373 */
374 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
375 return;
a0e72cf1
AB
376 if (current->thread.regs->msr & MSR_FP)
377 __giveup_fpu(current);
378 if (current->thread.regs->msr & MSR_VEC)
379 __giveup_altivec(current);
380 __giveup_vsx(current);
611b0e5c 381 }
ce48b210
MN
382}
383EXPORT_SYMBOL(enable_kernel_vsx);
ce48b210
MN
384
385void flush_vsx_to_thread(struct task_struct *tsk)
386{
387 if (tsk->thread.regs) {
388 preempt_disable();
389 if (tsk->thread.regs->msr & MSR_VSX) {
ce48b210 390 BUG_ON(tsk != current);
ce48b210
MN
391 giveup_vsx(tsk);
392 }
393 preempt_enable();
394 }
395}
de56a948 396EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
70fe3d98
CB
397
398static int restore_vsx(struct task_struct *tsk)
399{
400 if (cpu_has_feature(CPU_FTR_VSX)) {
401 tsk->thread.used_vsr = 1;
402 return 1;
403 }
404
405 return 0;
406}
407#else
408static inline int restore_vsx(struct task_struct *tsk) { return 0; }
bf6a4d5b 409static inline void save_vsx(struct task_struct *tsk) { }
ce48b210
MN
410#endif /* CONFIG_VSX */
411
14cf11af 412#ifdef CONFIG_SPE
98da581e
AB
413void giveup_spe(struct task_struct *tsk)
414{
98da581e
AB
415 check_if_tm_restore_required(tsk);
416
a0e72cf1 417 msr_check_and_set(MSR_SPE);
98da581e 418 __giveup_spe(tsk);
a0e72cf1 419 msr_check_and_clear(MSR_SPE);
98da581e
AB
420}
421EXPORT_SYMBOL(giveup_spe);
14cf11af
PM
422
423void enable_kernel_spe(void)
424{
425 WARN_ON(preemptible());
426
a0e72cf1 427 msr_check_and_set(MSR_SPE);
611b0e5c 428
d64d02ce
AB
429 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
430 check_if_tm_restore_required(current);
a0e72cf1 431 __giveup_spe(current);
d64d02ce 432 }
14cf11af
PM
433}
434EXPORT_SYMBOL(enable_kernel_spe);
435
436void flush_spe_to_thread(struct task_struct *tsk)
437{
438 if (tsk->thread.regs) {
439 preempt_disable();
440 if (tsk->thread.regs->msr & MSR_SPE) {
14cf11af 441 BUG_ON(tsk != current);
685659ee 442 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 443 giveup_spe(tsk);
14cf11af
PM
444 }
445 preempt_enable();
446 }
447}
14cf11af
PM
448#endif /* CONFIG_SPE */
449
c2085059
AB
450static unsigned long msr_all_available;
451
452static int __init init_msr_all_available(void)
453{
454#ifdef CONFIG_PPC_FPU
455 msr_all_available |= MSR_FP;
456#endif
457#ifdef CONFIG_ALTIVEC
458 if (cpu_has_feature(CPU_FTR_ALTIVEC))
459 msr_all_available |= MSR_VEC;
460#endif
461#ifdef CONFIG_VSX
462 if (cpu_has_feature(CPU_FTR_VSX))
463 msr_all_available |= MSR_VSX;
464#endif
465#ifdef CONFIG_SPE
466 if (cpu_has_feature(CPU_FTR_SPE))
467 msr_all_available |= MSR_SPE;
468#endif
469
470 return 0;
471}
472early_initcall(init_msr_all_available);
473
474void giveup_all(struct task_struct *tsk)
475{
476 unsigned long usermsr;
477
478 if (!tsk->thread.regs)
479 return;
480
481 usermsr = tsk->thread.regs->msr;
482
483 if ((usermsr & msr_all_available) == 0)
484 return;
485
486 msr_check_and_set(msr_all_available);
b0f16b46 487 check_if_tm_restore_required(tsk);
c2085059
AB
488
489#ifdef CONFIG_PPC_FPU
490 if (usermsr & MSR_FP)
491 __giveup_fpu(tsk);
492#endif
493#ifdef CONFIG_ALTIVEC
494 if (usermsr & MSR_VEC)
495 __giveup_altivec(tsk);
496#endif
497#ifdef CONFIG_VSX
498 if (usermsr & MSR_VSX)
499 __giveup_vsx(tsk);
500#endif
501#ifdef CONFIG_SPE
502 if (usermsr & MSR_SPE)
503 __giveup_spe(tsk);
504#endif
505
506 msr_check_and_clear(msr_all_available);
507}
508EXPORT_SYMBOL(giveup_all);
509
70fe3d98
CB
510void restore_math(struct pt_regs *regs)
511{
512 unsigned long msr;
513
dc16b553
CB
514 if (!msr_tm_active(regs->msr) &&
515 !current->thread.load_fp && !loadvec(current->thread))
70fe3d98
CB
516 return;
517
518 msr = regs->msr;
519 msr_check_and_set(msr_all_available);
520
521 /*
522 * Only reload if the bit is not set in the user MSR, the bit BEING set
523 * indicates that the registers are hot
524 */
525 if ((!(msr & MSR_FP)) && restore_fp(current))
526 msr |= MSR_FP | current->thread.fpexc_mode;
527
528 if ((!(msr & MSR_VEC)) && restore_altivec(current))
529 msr |= MSR_VEC;
530
531 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
532 restore_vsx(current)) {
533 msr |= MSR_VSX;
534 }
535
536 msr_check_and_clear(msr_all_available);
537
538 regs->msr = msr;
539}
540
de2a20aa
CB
541void save_all(struct task_struct *tsk)
542{
543 unsigned long usermsr;
544
545 if (!tsk->thread.regs)
546 return;
547
548 usermsr = tsk->thread.regs->msr;
549
550 if ((usermsr & msr_all_available) == 0)
551 return;
552
553 msr_check_and_set(msr_all_available);
554
bf6a4d5b
CB
555 /*
556 * Saving the way the register space is in hardware, save_vsx boils
557 * down to a save_fpu() and save_altivec()
558 */
559 if (usermsr & MSR_VSX) {
560 save_vsx(tsk);
561 } else {
562 if (usermsr & MSR_FP)
563 save_fpu(tsk);
564
565 if (usermsr & MSR_VEC)
566 save_altivec(tsk);
567 }
de2a20aa
CB
568
569 if (usermsr & MSR_SPE)
570 __giveup_spe(tsk);
571
572 msr_check_and_clear(msr_all_available);
573}
574
579e633e
AB
575void flush_all_to_thread(struct task_struct *tsk)
576{
577 if (tsk->thread.regs) {
578 preempt_disable();
579 BUG_ON(tsk != current);
de2a20aa 580 save_all(tsk);
579e633e
AB
581
582#ifdef CONFIG_SPE
583 if (tsk->thread.regs->msr & MSR_SPE)
584 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
585#endif
586
587 preempt_enable();
588 }
589}
590EXPORT_SYMBOL(flush_all_to_thread);
591
3bffb652
DK
592#ifdef CONFIG_PPC_ADV_DEBUG_REGS
593void do_send_trap(struct pt_regs *regs, unsigned long address,
594 unsigned long error_code, int signal_code, int breakpt)
595{
596 siginfo_t info;
597
41ab5266 598 current->thread.trap_nr = signal_code;
3bffb652
DK
599 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
600 11, SIGSEGV) == NOTIFY_STOP)
601 return;
602
603 /* Deliver the signal to userspace */
604 info.si_signo = SIGTRAP;
605 info.si_errno = breakpt; /* breakpoint or watchpoint id */
606 info.si_code = signal_code;
607 info.si_addr = (void __user *)address;
608 force_sig_info(SIGTRAP, &info, current);
609}
610#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 611void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
612 unsigned long error_code)
613{
614 siginfo_t info;
615
41ab5266 616 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
617 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
618 11, SIGSEGV) == NOTIFY_STOP)
619 return;
620
9422de3e 621 if (debugger_break_match(regs))
d6a61bfc
LM
622 return;
623
9422de3e
MN
624 /* Clear the breakpoint */
625 hw_breakpoint_disable();
d6a61bfc
LM
626
627 /* Deliver the signal to userspace */
628 info.si_signo = SIGTRAP;
629 info.si_errno = 0;
630 info.si_code = TRAP_HWBKPT;
631 info.si_addr = (void __user *)address;
632 force_sig_info(SIGTRAP, &info, current);
633}
3bffb652 634#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 635
9422de3e 636static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 637
3bffb652
DK
638#ifdef CONFIG_PPC_ADV_DEBUG_REGS
639/*
640 * Set the debug registers back to their default "safe" values.
641 */
642static void set_debug_reg_defaults(struct thread_struct *thread)
643{
51ae8d4a 644 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 645#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 646 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 647#endif
51ae8d4a 648 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 649#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 650 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 651#endif
51ae8d4a 652 thread->debug.dbcr0 = 0;
3bffb652
DK
653#ifdef CONFIG_BOOKE
654 /*
655 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
656 */
51ae8d4a 657 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
658 DBCR1_IAC3US | DBCR1_IAC4US;
659 /*
660 * Force Data Address Compare User/Supervisor bits to be User-only
661 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
662 */
51ae8d4a 663 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 664#else
51ae8d4a 665 thread->debug.dbcr1 = 0;
3bffb652
DK
666#endif
667}
668
f5f97210 669static void prime_debug_regs(struct debug_reg *debug)
3bffb652 670{
6cecf76b
SW
671 /*
672 * We could have inherited MSR_DE from userspace, since
673 * it doesn't get cleared on exception entry. Make sure
674 * MSR_DE is clear before we enable any debug events.
675 */
676 mtmsr(mfmsr() & ~MSR_DE);
677
f5f97210
SW
678 mtspr(SPRN_IAC1, debug->iac1);
679 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 680#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
681 mtspr(SPRN_IAC3, debug->iac3);
682 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 683#endif
f5f97210
SW
684 mtspr(SPRN_DAC1, debug->dac1);
685 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 686#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
687 mtspr(SPRN_DVC1, debug->dvc1);
688 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 689#endif
f5f97210
SW
690 mtspr(SPRN_DBCR0, debug->dbcr0);
691 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 692#ifdef CONFIG_BOOKE
f5f97210 693 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
694#endif
695}
696/*
697 * Unless neither the old or new thread are making use of the
698 * debug registers, set the debug registers from the values
699 * stored in the new thread.
700 */
f5f97210 701void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 702{
51ae8d4a 703 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
704 || (new_debug->dbcr0 & DBCR0_IDM))
705 prime_debug_regs(new_debug);
3bffb652 706}
3743c9b8 707EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 708#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 709#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
710static void set_debug_reg_defaults(struct thread_struct *thread)
711{
9422de3e
MN
712 thread->hw_brk.address = 0;
713 thread->hw_brk.type = 0;
b9818c33 714 set_breakpoint(&thread->hw_brk);
3bffb652 715}
e0780b72 716#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
717#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
718
172ae2e7 719#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
720static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
721{
d6a61bfc 722 mtspr(SPRN_DAC1, dabr);
221c185d
DK
723#ifdef CONFIG_PPC_47x
724 isync();
725#endif
9422de3e
MN
726 return 0;
727}
c6c9eace 728#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
729static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
730{
c6c9eace 731 mtspr(SPRN_DABR, dabr);
82a9f16a
MN
732 if (cpu_has_feature(CPU_FTR_DABRX))
733 mtspr(SPRN_DABRX, dabrx);
cab0af98 734 return 0;
14cf11af 735}
4ad8622d
CL
736#elif defined(CONFIG_PPC_8xx)
737static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
738{
739 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
740 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
741 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
742
743 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
744 lctrl1 |= 0xa0000;
745 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
746 lctrl1 |= 0xf0000;
747 else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
748 lctrl2 = 0;
749
750 mtspr(SPRN_LCTRL2, 0);
751 mtspr(SPRN_CMPE, addr);
752 mtspr(SPRN_CMPF, addr + 4);
753 mtspr(SPRN_LCTRL1, lctrl1);
754 mtspr(SPRN_LCTRL2, lctrl2);
755
756 return 0;
757}
9422de3e
MN
758#else
759static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
760{
761 return -EINVAL;
762}
763#endif
764
765static inline int set_dabr(struct arch_hw_breakpoint *brk)
766{
767 unsigned long dabr, dabrx;
768
769 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
770 dabrx = ((brk->type >> 3) & 0x7);
771
772 if (ppc_md.set_dabr)
773 return ppc_md.set_dabr(dabr, dabrx);
774
775 return __set_dabr(dabr, dabrx);
776}
777
bf99de36
MN
778static inline int set_dawr(struct arch_hw_breakpoint *brk)
779{
05d694ea 780 unsigned long dawr, dawrx, mrd;
bf99de36
MN
781
782 dawr = brk->address;
783
784 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
785 << (63 - 58); //* read/write bits */
786 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
787 << (63 - 59); //* translate */
788 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
789 >> 3; //* PRIM bits */
05d694ea
MN
790 /* dawr length is stored in field MDR bits 48:53. Matches range in
791 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
792 0b111111=64DW.
793 brk->len is in bytes.
794 This aligns up to double word size, shifts and does the bias.
795 */
796 mrd = ((brk->len + 7) >> 3) - 1;
797 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
798
799 if (ppc_md.set_dawr)
800 return ppc_md.set_dawr(dawr, dawrx);
801 mtspr(SPRN_DAWR, dawr);
802 mtspr(SPRN_DAWRX, dawrx);
803 return 0;
804}
805
21f58507 806void __set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e 807{
69111bac 808 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
9422de3e 809
bf99de36 810 if (cpu_has_feature(CPU_FTR_DAWR))
04c32a51
PG
811 set_dawr(brk);
812 else
813 set_dabr(brk);
9422de3e 814}
14cf11af 815
21f58507
PG
816void set_breakpoint(struct arch_hw_breakpoint *brk)
817{
818 preempt_disable();
819 __set_breakpoint(brk);
820 preempt_enable();
821}
822
06d67d54
PM
823#ifdef CONFIG_PPC64
824DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 825#endif
14cf11af 826
9422de3e
MN
827static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
828 struct arch_hw_breakpoint *b)
829{
830 if (a->address != b->address)
831 return false;
832 if (a->type != b->type)
833 return false;
834 if (a->len != b->len)
835 return false;
836 return true;
837}
d31626f7 838
fb09692e 839#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
5d176f75
CB
840
841static inline bool tm_enabled(struct task_struct *tsk)
842{
843 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
844}
845
d31626f7
PM
846static void tm_reclaim_thread(struct thread_struct *thr,
847 struct thread_info *ti, uint8_t cause)
848{
7f821fc9
MN
849 /*
850 * Use the current MSR TM suspended bit to track if we have
851 * checkpointed state outstanding.
852 * On signal delivery, we'd normally reclaim the checkpointed
853 * state to obtain stack pointer (see:get_tm_stackpointer()).
854 * This will then directly return to userspace without going
855 * through __switch_to(). However, if the stack frame is bad,
856 * we need to exit this thread which calls __switch_to() which
857 * will again attempt to reclaim the already saved tm state.
858 * Hence we need to check that we've not already reclaimed
859 * this state.
860 * We do this using the current MSR, rather tracking it in
861 * some specific thread_struct bit, as it has the additional
027dfac6 862 * benefit of checking for a potential TM bad thing exception.
7f821fc9
MN
863 */
864 if (!MSR_TM_SUSPENDED(mfmsr()))
865 return;
866
f48e91e8
MN
867 /*
868 * If we are in a transaction and FP is off then we can't have
869 * used FP inside that transaction. Hence the checkpointed
870 * state is the same as the live state. We need to copy the
871 * live state to the checkpointed state so that when the
872 * transaction is restored, the checkpointed state is correct
873 * and the aborted transaction sees the correct state. We use
874 * ckpt_regs.msr here as that's what tm_reclaim will use to
875 * determine if it's going to write the checkpointed state or
876 * not. So either this will write the checkpointed registers,
877 * or reclaim will. Similarly for VMX.
878 */
879 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
880 memcpy(&thr->ckfp_state, &thr->fp_state,
881 sizeof(struct thread_fp_state));
882 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
883 memcpy(&thr->ckvr_state, &thr->vr_state,
884 sizeof(struct thread_vr_state));
885
dc310669 886 giveup_all(container_of(thr, struct task_struct, thread));
d31626f7 887
dc310669 888 tm_reclaim(thr, thr->ckpt_regs.msr, cause);
d31626f7
PM
889}
890
891void tm_reclaim_current(uint8_t cause)
892{
893 tm_enable();
894 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
895}
896
fb09692e
MN
897static inline void tm_reclaim_task(struct task_struct *tsk)
898{
899 /* We have to work out if we're switching from/to a task that's in the
900 * middle of a transaction.
901 *
902 * In switching we need to maintain a 2nd register state as
903 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
000ec280
CB
904 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
905 * ckvr_state
fb09692e
MN
906 *
907 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
908 */
909 struct thread_struct *thr = &tsk->thread;
910
911 if (!thr->regs)
912 return;
913
914 if (!MSR_TM_ACTIVE(thr->regs->msr))
915 goto out_and_saveregs;
916
fb09692e
MN
917 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
918 "ccr=%lx, msr=%lx, trap=%lx)\n",
919 tsk->pid, thr->regs->nip,
920 thr->regs->ccr, thr->regs->msr,
921 thr->regs->trap);
922
d31626f7 923 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
fb09692e
MN
924
925 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
926 tsk->pid);
927
928out_and_saveregs:
929 /* Always save the regs here, even if a transaction's not active.
930 * This context-switches a thread's TM info SPRs. We do it here to
931 * be consistent with the restore path (in recheckpoint) which
932 * cannot happen later in _switch().
933 */
934 tm_save_sprs(thr);
935}
936
e6b8fd02
MN
937extern void __tm_recheckpoint(struct thread_struct *thread,
938 unsigned long orig_msr);
939
940void tm_recheckpoint(struct thread_struct *thread,
941 unsigned long orig_msr)
942{
943 unsigned long flags;
944
5d176f75
CB
945 if (!(thread->regs->msr & MSR_TM))
946 return;
947
e6b8fd02
MN
948 /* We really can't be interrupted here as the TEXASR registers can't
949 * change and later in the trecheckpoint code, we have a userspace R1.
950 * So let's hard disable over this region.
951 */
952 local_irq_save(flags);
953 hard_irq_disable();
954
955 /* The TM SPRs are restored here, so that TEXASR.FS can be set
956 * before the trecheckpoint and no explosion occurs.
957 */
958 tm_restore_sprs(thread);
959
960 __tm_recheckpoint(thread, orig_msr);
961
962 local_irq_restore(flags);
963}
964
bc2a9408 965static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e
MN
966{
967 unsigned long msr;
968
969 if (!cpu_has_feature(CPU_FTR_TM))
970 return;
971
972 /* Recheckpoint the registers of the thread we're about to switch to.
973 *
974 * If the task was using FP, we non-lazily reload both the original and
975 * the speculative FP register states. This is because the kernel
976 * doesn't see if/when a TM rollback occurs, so if we take an FP
dc310669 977 * unavailable later, we are unable to determine which set of FP regs
fb09692e
MN
978 * need to be restored.
979 */
5d176f75 980 if (!tm_enabled(new))
fb09692e
MN
981 return;
982
e6b8fd02
MN
983 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
984 tm_restore_sprs(&new->thread);
fb09692e 985 return;
e6b8fd02 986 }
829023df 987 msr = new->thread.ckpt_regs.msr;
fb09692e
MN
988 /* Recheckpoint to restore original checkpointed register state. */
989 TM_DEBUG("*** tm_recheckpoint of pid %d "
990 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
991 new->pid, new->thread.regs->msr, msr);
992
fb09692e
MN
993 tm_recheckpoint(&new->thread, msr);
994
dc310669
CB
995 /*
996 * The checkpointed state has been restored but the live state has
997 * not, ensure all the math functionality is turned off to trigger
998 * restore_math() to reload.
999 */
1000 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
fb09692e
MN
1001
1002 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1003 "(kernel msr 0x%lx)\n",
1004 new->pid, mfmsr());
1005}
1006
dc310669
CB
1007static inline void __switch_to_tm(struct task_struct *prev,
1008 struct task_struct *new)
fb09692e
MN
1009{
1010 if (cpu_has_feature(CPU_FTR_TM)) {
5d176f75
CB
1011 if (tm_enabled(prev) || tm_enabled(new))
1012 tm_enable();
1013
1014 if (tm_enabled(prev)) {
1015 prev->thread.load_tm++;
1016 tm_reclaim_task(prev);
1017 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1018 prev->thread.regs->msr &= ~MSR_TM;
1019 }
1020
dc310669 1021 tm_recheckpoint_new_task(new);
fb09692e
MN
1022 }
1023}
d31626f7
PM
1024
1025/*
1026 * This is called if we are on the way out to userspace and the
1027 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1028 * FP and/or vector state and does so if necessary.
1029 * If userspace is inside a transaction (whether active or
1030 * suspended) and FP/VMX/VSX instructions have ever been enabled
1031 * inside that transaction, then we have to keep them enabled
1032 * and keep the FP/VMX/VSX state loaded while ever the transaction
1033 * continues. The reason is that if we didn't, and subsequently
1034 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1035 * we don't know whether it's the same transaction, and thus we
1036 * don't know which of the checkpointed state and the transactional
1037 * state to use.
1038 */
1039void restore_tm_state(struct pt_regs *regs)
1040{
1041 unsigned long msr_diff;
1042
dc310669
CB
1043 /*
1044 * This is the only moment we should clear TIF_RESTORE_TM as
1045 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1046 * again, anything else could lead to an incorrect ckpt_msr being
1047 * saved and therefore incorrect signal contexts.
1048 */
d31626f7
PM
1049 clear_thread_flag(TIF_RESTORE_TM);
1050 if (!MSR_TM_ACTIVE(regs->msr))
1051 return;
1052
829023df 1053 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
d31626f7 1054 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
70fe3d98 1055
dc16b553
CB
1056 /* Ensure that restore_math() will restore */
1057 if (msr_diff & MSR_FP)
1058 current->thread.load_fp = 1;
39715bf9 1059#ifdef CONFIG_ALTIVEC
dc16b553
CB
1060 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1061 current->thread.load_vec = 1;
1062#endif
70fe3d98
CB
1063 restore_math(regs);
1064
d31626f7
PM
1065 regs->msr |= msr_diff;
1066}
1067
fb09692e
MN
1068#else
1069#define tm_recheckpoint_new_task(new)
dc310669 1070#define __switch_to_tm(prev, new)
fb09692e 1071#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 1072
152d523e
AB
1073static inline void save_sprs(struct thread_struct *t)
1074{
1075#ifdef CONFIG_ALTIVEC
01d7c2a2 1076 if (cpu_has_feature(CPU_FTR_ALTIVEC))
152d523e
AB
1077 t->vrsave = mfspr(SPRN_VRSAVE);
1078#endif
1079#ifdef CONFIG_PPC_BOOK3S_64
1080 if (cpu_has_feature(CPU_FTR_DSCR))
1081 t->dscr = mfspr(SPRN_DSCR);
1082
1083 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1084 t->bescr = mfspr(SPRN_BESCR);
1085 t->ebbhr = mfspr(SPRN_EBBHR);
1086 t->ebbrr = mfspr(SPRN_EBBRR);
1087
1088 t->fscr = mfspr(SPRN_FSCR);
1089
1090 /*
1091 * Note that the TAR is not available for use in the kernel.
1092 * (To provide this, the TAR should be backed up/restored on
1093 * exception entry/exit instead, and be in pt_regs. FIXME,
1094 * this should be in pt_regs anyway (for debug).)
1095 */
1096 t->tar = mfspr(SPRN_TAR);
1097 }
1098#endif
1099}
1100
1101static inline void restore_sprs(struct thread_struct *old_thread,
1102 struct thread_struct *new_thread)
1103{
1104#ifdef CONFIG_ALTIVEC
1105 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1106 old_thread->vrsave != new_thread->vrsave)
1107 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1108#endif
1109#ifdef CONFIG_PPC_BOOK3S_64
1110 if (cpu_has_feature(CPU_FTR_DSCR)) {
1111 u64 dscr = get_paca()->dscr_default;
b57bd2de 1112 if (new_thread->dscr_inherit)
152d523e 1113 dscr = new_thread->dscr;
152d523e
AB
1114
1115 if (old_thread->dscr != dscr)
1116 mtspr(SPRN_DSCR, dscr);
152d523e
AB
1117 }
1118
1119 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1120 if (old_thread->bescr != new_thread->bescr)
1121 mtspr(SPRN_BESCR, new_thread->bescr);
1122 if (old_thread->ebbhr != new_thread->ebbhr)
1123 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1124 if (old_thread->ebbrr != new_thread->ebbrr)
1125 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1126
b57bd2de
MN
1127 if (old_thread->fscr != new_thread->fscr)
1128 mtspr(SPRN_FSCR, new_thread->fscr);
1129
152d523e
AB
1130 if (old_thread->tar != new_thread->tar)
1131 mtspr(SPRN_TAR, new_thread->tar);
1132 }
1133#endif
1134}
1135
07d2a628
NP
1136#ifdef CONFIG_PPC_BOOK3S_64
1137#define CP_SIZE 128
1138static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1139#endif
1140
14cf11af
PM
1141struct task_struct *__switch_to(struct task_struct *prev,
1142 struct task_struct *new)
1143{
1144 struct thread_struct *new_thread, *old_thread;
14cf11af 1145 struct task_struct *last;
d6bf29b4
PZ
1146#ifdef CONFIG_PPC_BOOK3S_64
1147 struct ppc64_tlb_batch *batch;
1148#endif
14cf11af 1149
152d523e
AB
1150 new_thread = &new->thread;
1151 old_thread = &current->thread;
1152
7ba5fef7
MN
1153 WARN_ON(!irqs_disabled());
1154
06d67d54
PM
1155#ifdef CONFIG_PPC64
1156 /*
1157 * Collect processor utilization data per process
1158 */
1159 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
69111bac 1160 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
06d67d54
PM
1161 long unsigned start_tb, current_tb;
1162 start_tb = old_thread->start_tb;
1163 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1164 old_thread->accum_tb += (current_tb - start_tb);
1165 new_thread->start_tb = current_tb;
1166 }
d6bf29b4
PZ
1167#endif /* CONFIG_PPC64 */
1168
caca285e 1169#ifdef CONFIG_PPC_STD_MMU_64
69111bac 1170 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1171 if (batch->active) {
1172 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1173 if (batch->index)
1174 __flush_tlb_pending(batch);
1175 batch->active = 0;
1176 }
caca285e 1177#endif /* CONFIG_PPC_STD_MMU_64 */
06d67d54 1178
f3d885cc
AB
1179#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1180 switch_booke_debug_regs(&new->thread.debug);
1181#else
1182/*
1183 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1184 * schedule DABR
1185 */
1186#ifndef CONFIG_HAVE_HW_BREAKPOINT
1187 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1188 __set_breakpoint(&new->thread.hw_brk);
1189#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1190#endif
1191
1192 /*
1193 * We need to save SPRs before treclaim/trecheckpoint as these will
1194 * change a number of them.
1195 */
1196 save_sprs(&prev->thread);
1197
f3d885cc
AB
1198 /* Save FPU, Altivec, VSX and SPE state */
1199 giveup_all(prev);
1200
dc310669
CB
1201 __switch_to_tm(prev, new);
1202
e4c0fc5f
NP
1203 if (!radix_enabled()) {
1204 /*
1205 * We can't take a PMU exception inside _switch() since there
1206 * is a window where the kernel stack SLB and the kernel stack
1207 * are out of sync. Hard disable here.
1208 */
1209 hard_irq_disable();
1210 }
bc2a9408 1211
20dbe670
AB
1212 /*
1213 * Call restore_sprs() before calling _switch(). If we move it after
1214 * _switch() then we miss out on calling it for new tasks. The reason
1215 * for this is we manually create a stack frame for new tasks that
1216 * directly returns through ret_from_fork() or
1217 * ret_from_kernel_thread(). See copy_thread() for details.
1218 */
f3d885cc
AB
1219 restore_sprs(old_thread, new_thread);
1220
20dbe670
AB
1221 last = _switch(old_thread, new_thread);
1222
caca285e 1223#ifdef CONFIG_PPC_STD_MMU_64
d6bf29b4
PZ
1224 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1225 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
69111bac 1226 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1227 batch->active = 1;
1228 }
70fe3d98 1229
07d2a628 1230 if (current_thread_info()->task->thread.regs) {
70fe3d98 1231 restore_math(current_thread_info()->task->thread.regs);
07d2a628
NP
1232
1233 /*
1234 * The copy-paste buffer can only store into foreign real
1235 * addresses, so unprivileged processes can not see the
1236 * data or use it in any way unless they have foreign real
1237 * mappings. We don't have a VAS driver that allocates those
1238 * yet, so no cpabort is required.
1239 */
1240 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
1241 /*
1242 * DD1 allows paste into normal system memory, so we
1243 * do an unpaired copy here to clear the buffer and
1244 * prevent a covert channel being set up.
1245 *
1246 * cpabort is not used because it is quite expensive.
1247 */
1248 asm volatile(PPC_COPY(%0, %1)
1249 : : "r"(dummy_copy_buffer), "r"(0));
1250 }
1251 }
caca285e 1252#endif /* CONFIG_PPC_STD_MMU_64 */
d6bf29b4 1253
14cf11af
PM
1254 return last;
1255}
1256
06d67d54
PM
1257static int instructions_to_print = 16;
1258
06d67d54
PM
1259static void show_instructions(struct pt_regs *regs)
1260{
1261 int i;
1262 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1263 sizeof(int));
1264
1265 printk("Instruction dump:");
1266
1267 for (i = 0; i < instructions_to_print; i++) {
1268 int instr;
1269
1270 if (!(i % 8))
2ffd04de 1271 pr_cont("\n");
06d67d54 1272
0de2d820
SW
1273#if !defined(CONFIG_BOOKE)
1274 /* If executing with the IMMU off, adjust pc rather
1275 * than print XXXXXXXX.
1276 */
1277 if (!(regs->msr & MSR_IR))
1278 pc = (unsigned long)phys_to_virt(pc);
1279#endif
1280
00ae36de 1281 if (!__kernel_text_address(pc) ||
7b051f66 1282 probe_kernel_address((unsigned int __user *)pc, instr)) {
2ffd04de 1283 pr_cont("XXXXXXXX ");
06d67d54
PM
1284 } else {
1285 if (regs->nip == pc)
2ffd04de 1286 pr_cont("<%08x> ", instr);
06d67d54 1287 else
2ffd04de 1288 pr_cont("%08x ", instr);
06d67d54
PM
1289 }
1290
1291 pc += sizeof(int);
1292 }
1293
2ffd04de 1294 pr_cont("\n");
06d67d54
PM
1295}
1296
801c0b2c 1297struct regbit {
06d67d54
PM
1298 unsigned long bit;
1299 const char *name;
801c0b2c
MN
1300};
1301
1302static struct regbit msr_bits[] = {
3bfd0c9c
AB
1303#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1304 {MSR_SF, "SF"},
1305 {MSR_HV, "HV"},
1306#endif
1307 {MSR_VEC, "VEC"},
1308 {MSR_VSX, "VSX"},
1309#ifdef CONFIG_BOOKE
1310 {MSR_CE, "CE"},
1311#endif
06d67d54
PM
1312 {MSR_EE, "EE"},
1313 {MSR_PR, "PR"},
1314 {MSR_FP, "FP"},
1315 {MSR_ME, "ME"},
3bfd0c9c 1316#ifdef CONFIG_BOOKE
1b98326b 1317 {MSR_DE, "DE"},
3bfd0c9c
AB
1318#else
1319 {MSR_SE, "SE"},
1320 {MSR_BE, "BE"},
1321#endif
06d67d54
PM
1322 {MSR_IR, "IR"},
1323 {MSR_DR, "DR"},
3bfd0c9c
AB
1324 {MSR_PMM, "PMM"},
1325#ifndef CONFIG_BOOKE
1326 {MSR_RI, "RI"},
1327 {MSR_LE, "LE"},
1328#endif
06d67d54
PM
1329 {0, NULL}
1330};
1331
801c0b2c 1332static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
06d67d54 1333{
801c0b2c 1334 const char *s = "";
06d67d54 1335
06d67d54
PM
1336 for (; bits->bit; ++bits)
1337 if (val & bits->bit) {
db5ba5ae 1338 pr_cont("%s%s", s, bits->name);
801c0b2c 1339 s = sep;
06d67d54 1340 }
801c0b2c
MN
1341}
1342
1343#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1344static struct regbit msr_tm_bits[] = {
1345 {MSR_TS_T, "T"},
1346 {MSR_TS_S, "S"},
1347 {MSR_TM, "E"},
1348 {0, NULL}
1349};
1350
1351static void print_tm_bits(unsigned long val)
1352{
1353/*
1354 * This only prints something if at least one of the TM bit is set.
1355 * Inside the TM[], the output means:
1356 * E: Enabled (bit 32)
1357 * S: Suspended (bit 33)
1358 * T: Transactional (bit 34)
1359 */
1360 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
db5ba5ae 1361 pr_cont(",TM[");
801c0b2c 1362 print_bits(val, msr_tm_bits, "");
db5ba5ae 1363 pr_cont("]");
801c0b2c
MN
1364 }
1365}
1366#else
1367static void print_tm_bits(unsigned long val) {}
1368#endif
1369
1370static void print_msr_bits(unsigned long val)
1371{
db5ba5ae 1372 pr_cont("<");
801c0b2c
MN
1373 print_bits(val, msr_bits, ",");
1374 print_tm_bits(val);
db5ba5ae 1375 pr_cont(">");
06d67d54
PM
1376}
1377
1378#ifdef CONFIG_PPC64
f6f7dde3 1379#define REG "%016lx"
06d67d54
PM
1380#define REGS_PER_LINE 4
1381#define LAST_VOLATILE 13
1382#else
f6f7dde3 1383#define REG "%08lx"
06d67d54
PM
1384#define REGS_PER_LINE 8
1385#define LAST_VOLATILE 12
1386#endif
1387
14cf11af
PM
1388void show_regs(struct pt_regs * regs)
1389{
1390 int i, trap;
1391
a43cb95d
TH
1392 show_regs_print_info(KERN_DEFAULT);
1393
06d67d54
PM
1394 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1395 regs->nip, regs->link, regs->ctr);
1396 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 1397 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54 1398 printk("MSR: "REG" ", regs->msr);
801c0b2c 1399 print_msr_bits(regs->msr);
f6f7dde3 1400 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 1401 trap = TRAP(regs);
5115a026 1402 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
7dae865f 1403 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
c5400649 1404 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
ba28c9aa 1405#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
7dae865f 1406 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
14170789 1407#else
7dae865f 1408 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
9db8bcfd
AB
1409#endif
1410#ifdef CONFIG_PPC64
7dae865f 1411 pr_cont("SOFTE: %ld ", regs->softe);
9db8bcfd
AB
1412#endif
1413#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a 1414 if (MSR_TM_ACTIVE(regs->msr))
7dae865f 1415 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 1416#endif
14cf11af
PM
1417
1418 for (i = 0; i < 32; i++) {
06d67d54 1419 if ((i % REGS_PER_LINE) == 0)
7dae865f
ME
1420 pr_cont("\nGPR%02d: ", i);
1421 pr_cont(REG " ", regs->gpr[i]);
06d67d54 1422 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
1423 break;
1424 }
7dae865f 1425 pr_cont("\n");
14cf11af
PM
1426#ifdef CONFIG_KALLSYMS
1427 /*
1428 * Lookup NIP late so we have the best change of getting the
1429 * above info out without failing
1430 */
058c78f4
BH
1431 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1432 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
afc07701 1433#endif
14cf11af 1434 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
1435 if (!user_mode(regs))
1436 show_instructions(regs);
14cf11af
PM
1437}
1438
14cf11af
PM
1439void flush_thread(void)
1440{
e0780b72 1441#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1442 flush_ptrace_hw_breakpoint(current);
e0780b72 1443#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1444 set_debug_reg_defaults(&current->thread);
e0780b72 1445#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1446}
1447
1448void
1449release_thread(struct task_struct *t)
1450{
1451}
1452
1453/*
55ccf3fe
SS
1454 * this gets called so that we can store coprocessor state into memory and
1455 * copy the current task into the new thread.
14cf11af 1456 */
55ccf3fe 1457int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1458{
579e633e 1459 flush_all_to_thread(src);
621b5060
MN
1460 /*
1461 * Flush TM state out so we can copy it. __switch_to_tm() does this
1462 * flush but it removes the checkpointed state from the current CPU and
1463 * transitions the CPU out of TM mode. Hence we need to call
1464 * tm_recheckpoint_new_task() (on the same task) to restore the
1465 * checkpointed state back and the TM mode.
5d176f75
CB
1466 *
1467 * Can't pass dst because it isn't ready. Doesn't matter, passing
1468 * dst is only important for __switch_to()
621b5060 1469 */
dc310669 1470 __switch_to_tm(src, src);
330a1eb7 1471
55ccf3fe 1472 *dst = *src;
330a1eb7
ME
1473
1474 clear_task_ebb(dst);
1475
55ccf3fe 1476 return 0;
14cf11af
PM
1477}
1478
cec15488
ME
1479static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1480{
1481#ifdef CONFIG_PPC_STD_MMU_64
1482 unsigned long sp_vsid;
1483 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1484
caca285e
AK
1485 if (radix_enabled())
1486 return;
1487
cec15488
ME
1488 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1489 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1490 << SLB_VSID_SHIFT_1T;
1491 else
1492 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1493 << SLB_VSID_SHIFT;
1494 sp_vsid |= SLB_VSID_KERNEL | llp;
1495 p->thread.ksp_vsid = sp_vsid;
1496#endif
1497}
1498
14cf11af
PM
1499/*
1500 * Copy a thread..
1501 */
efcac658 1502
6eca8933
AD
1503/*
1504 * Copy architecture-specific thread state
1505 */
6f2c55b8 1506int copy_thread(unsigned long clone_flags, unsigned long usp,
6eca8933 1507 unsigned long kthread_arg, struct task_struct *p)
14cf11af
PM
1508{
1509 struct pt_regs *childregs, *kregs;
1510 extern void ret_from_fork(void);
58254e10
AV
1511 extern void ret_from_kernel_thread(void);
1512 void (*f)(void);
0cec6fd1 1513 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
5d31a96e
ME
1514 struct thread_info *ti = task_thread_info(p);
1515
1516 klp_init_thread_info(ti);
14cf11af 1517
14cf11af
PM
1518 /* Copy registers */
1519 sp -= sizeof(struct pt_regs);
1520 childregs = (struct pt_regs *) sp;
ab75819d 1521 if (unlikely(p->flags & PF_KTHREAD)) {
6eca8933 1522 /* kernel thread */
58254e10 1523 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 1524 childregs->gpr[1] = sp + sizeof(struct pt_regs);
7cedd601
AB
1525 /* function */
1526 if (usp)
1527 childregs->gpr[14] = ppc_function_entry((void *)usp);
58254e10 1528#ifdef CONFIG_PPC64
b5e2fc1c 1529 clear_tsk_thread_flag(p, TIF_32BIT);
138d1ce8 1530 childregs->softe = 1;
06d67d54 1531#endif
6eca8933 1532 childregs->gpr[15] = kthread_arg;
14cf11af 1533 p->thread.regs = NULL; /* no user register state */
138d1ce8 1534 ti->flags |= _TIF_RESTOREALL;
58254e10 1535 f = ret_from_kernel_thread;
14cf11af 1536 } else {
6eca8933 1537 /* user thread */
afa86fc4 1538 struct pt_regs *regs = current_pt_regs();
58254e10
AV
1539 CHECK_FULL_REGS(regs);
1540 *childregs = *regs;
ea516b11
AV
1541 if (usp)
1542 childregs->gpr[1] = usp;
14cf11af 1543 p->thread.regs = childregs;
58254e10 1544 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
1545 if (clone_flags & CLONE_SETTLS) {
1546#ifdef CONFIG_PPC64
9904b005 1547 if (!is_32bit_task())
06d67d54
PM
1548 childregs->gpr[13] = childregs->gpr[6];
1549 else
1550#endif
1551 childregs->gpr[2] = childregs->gpr[6];
1552 }
58254e10
AV
1553
1554 f = ret_from_fork;
14cf11af 1555 }
d272f667 1556 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
14cf11af 1557 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
1558
1559 /*
1560 * The way this works is that at some point in the future
1561 * some task will call _switch to switch to the new task.
1562 * That will pop off the stack frame created below and start
1563 * the new task running at ret_from_fork. The new task will
1564 * do some house keeping and then return from the fork or clone
1565 * system call, using the stack frame created above.
1566 */
af945cf4 1567 ((unsigned long *)sp)[0] = 0;
14cf11af
PM
1568 sp -= sizeof(struct pt_regs);
1569 kregs = (struct pt_regs *) sp;
1570 sp -= STACK_FRAME_OVERHEAD;
1571 p->thread.ksp = sp;
cbc9565e 1572#ifdef CONFIG_PPC32
85218827
KG
1573 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1574 _ALIGN_UP(sizeof(struct thread_info), 16);
cbc9565e 1575#endif
28d170ab
ON
1576#ifdef CONFIG_HAVE_HW_BREAKPOINT
1577 p->thread.ptrace_bps[0] = NULL;
1578#endif
1579
18461960
PM
1580 p->thread.fp_save_area = NULL;
1581#ifdef CONFIG_ALTIVEC
1582 p->thread.vr_save_area = NULL;
1583#endif
1584
cec15488
ME
1585 setup_ksp_vsid(p, sp);
1586
efcac658
AK
1587#ifdef CONFIG_PPC64
1588 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26 1589 p->thread.dscr_inherit = current->thread.dscr_inherit;
db1231dc 1590 p->thread.dscr = mfspr(SPRN_DSCR);
efcac658 1591 }
92779245
HM
1592 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1593 p->thread.ppr = INIT_PPR;
efcac658 1594#endif
7cedd601 1595 kregs->nip = ppc_function_entry(f);
14cf11af
PM
1596 return 0;
1597}
1598
1599/*
1600 * Set up a thread for executing a new program
1601 */
06d67d54 1602void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1603{
90eac727
ME
1604#ifdef CONFIG_PPC64
1605 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1606#endif
1607
06d67d54
PM
1608 /*
1609 * If we exec out of a kernel thread then thread.regs will not be
1610 * set. Do it now.
1611 */
1612 if (!current->thread.regs) {
0cec6fd1
AV
1613 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1614 current->thread.regs = regs - 1;
06d67d54
PM
1615 }
1616
8e96a87c
CB
1617#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1618 /*
1619 * Clear any transactional state, we're exec()ing. The cause is
1620 * not important as there will never be a recheckpoint so it's not
1621 * user visible.
1622 */
1623 if (MSR_TM_SUSPENDED(mfmsr()))
1624 tm_reclaim_current(0);
1625#endif
1626
14cf11af
PM
1627 memset(regs->gpr, 0, sizeof(regs->gpr));
1628 regs->ctr = 0;
1629 regs->link = 0;
1630 regs->xer = 0;
1631 regs->ccr = 0;
14cf11af 1632 regs->gpr[1] = sp;
06d67d54 1633
474f8196
RM
1634 /*
1635 * We have just cleared all the nonvolatile GPRs, so make
1636 * FULL_REGS(regs) return true. This is necessary to allow
1637 * ptrace to examine the thread immediately after exec.
1638 */
1639 regs->trap &= ~1UL;
1640
06d67d54
PM
1641#ifdef CONFIG_PPC32
1642 regs->mq = 0;
1643 regs->nip = start;
14cf11af 1644 regs->msr = MSR_USER;
06d67d54 1645#else
9904b005 1646 if (!is_32bit_task()) {
94af3abf 1647 unsigned long entry;
06d67d54 1648
94af3abf
RR
1649 if (is_elf2_task()) {
1650 /* Look ma, no function descriptors! */
1651 entry = start;
06d67d54 1652
94af3abf
RR
1653 /*
1654 * Ulrich says:
1655 * The latest iteration of the ABI requires that when
1656 * calling a function (at its global entry point),
1657 * the caller must ensure r12 holds the entry point
1658 * address (so that the function can quickly
1659 * establish addressability).
1660 */
1661 regs->gpr[12] = start;
1662 /* Make sure that's restored on entry to userspace. */
1663 set_thread_flag(TIF_RESTOREALL);
1664 } else {
1665 unsigned long toc;
1666
1667 /* start is a relocated pointer to the function
1668 * descriptor for the elf _start routine. The first
1669 * entry in the function descriptor is the entry
1670 * address of _start and the second entry is the TOC
1671 * value we need to use.
1672 */
1673 __get_user(entry, (unsigned long __user *)start);
1674 __get_user(toc, (unsigned long __user *)start+1);
1675
1676 /* Check whether the e_entry function descriptor entries
1677 * need to be relocated before we can use them.
1678 */
1679 if (load_addr != 0) {
1680 entry += load_addr;
1681 toc += load_addr;
1682 }
1683 regs->gpr[2] = toc;
06d67d54
PM
1684 }
1685 regs->nip = entry;
06d67d54 1686 regs->msr = MSR_USER64;
d4bf9a78
SR
1687 } else {
1688 regs->nip = start;
1689 regs->gpr[2] = 0;
1690 regs->msr = MSR_USER32;
06d67d54
PM
1691 }
1692#endif
ce48b210
MN
1693#ifdef CONFIG_VSX
1694 current->thread.used_vsr = 0;
1695#endif
1195892c 1696 current->thread.load_fp = 0;
de79f7b9 1697 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1698 current->thread.fp_save_area = NULL;
14cf11af 1699#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1700 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1701 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1702 current->thread.vr_save_area = NULL;
14cf11af
PM
1703 current->thread.vrsave = 0;
1704 current->thread.used_vr = 0;
1195892c 1705 current->thread.load_vec = 0;
14cf11af
PM
1706#endif /* CONFIG_ALTIVEC */
1707#ifdef CONFIG_SPE
1708 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1709 current->thread.acc = 0;
1710 current->thread.spefscr = 0;
1711 current->thread.used_spe = 0;
1712#endif /* CONFIG_SPE */
bc2a9408 1713#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
bc2a9408
MN
1714 current->thread.tm_tfhar = 0;
1715 current->thread.tm_texasr = 0;
1716 current->thread.tm_tfiar = 0;
7f22ced4 1717 current->thread.load_tm = 0;
bc2a9408 1718#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
14cf11af 1719}
e1802b06 1720EXPORT_SYMBOL(start_thread);
14cf11af
PM
1721
1722#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1723 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1724
1725int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1726{
1727 struct pt_regs *regs = tsk->thread.regs;
1728
1729 /* This is a bit hairy. If we are an SPE enabled processor
1730 * (have embedded fp) we store the IEEE exception enable flags in
1731 * fpexc_mode. fpexc_mode is also used for setting FP exception
1732 * mode (asyn, precise, disabled) for 'Classic' FP. */
1733 if (val & PR_FP_EXC_SW_ENABLE) {
1734#ifdef CONFIG_SPE
5e14d21e 1735 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
1736 /*
1737 * When the sticky exception bits are set
1738 * directly by userspace, it must call prctl
1739 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1740 * in the existing prctl settings) or
1741 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1742 * the bits being set). <fenv.h> functions
1743 * saving and restoring the whole
1744 * floating-point environment need to do so
1745 * anyway to restore the prctl settings from
1746 * the saved environment.
1747 */
1748 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
1749 tsk->thread.fpexc_mode = val &
1750 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1751 return 0;
1752 } else {
1753 return -EINVAL;
1754 }
14cf11af
PM
1755#else
1756 return -EINVAL;
1757#endif
14cf11af 1758 }
06d67d54
PM
1759
1760 /* on a CONFIG_SPE this does not hurt us. The bits that
1761 * __pack_fe01 use do not overlap with bits used for
1762 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1763 * on CONFIG_SPE implementations are reserved so writing to
1764 * them does not change anything */
1765 if (val > PR_FP_EXC_PRECISE)
1766 return -EINVAL;
1767 tsk->thread.fpexc_mode = __pack_fe01(val);
1768 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1769 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1770 | tsk->thread.fpexc_mode;
14cf11af
PM
1771 return 0;
1772}
1773
1774int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1775{
1776 unsigned int val;
1777
1778 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1779#ifdef CONFIG_SPE
640e9225
JM
1780 if (cpu_has_feature(CPU_FTR_SPE)) {
1781 /*
1782 * When the sticky exception bits are set
1783 * directly by userspace, it must call prctl
1784 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1785 * in the existing prctl settings) or
1786 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1787 * the bits being set). <fenv.h> functions
1788 * saving and restoring the whole
1789 * floating-point environment need to do so
1790 * anyway to restore the prctl settings from
1791 * the saved environment.
1792 */
1793 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 1794 val = tsk->thread.fpexc_mode;
640e9225 1795 } else
5e14d21e 1796 return -EINVAL;
14cf11af
PM
1797#else
1798 return -EINVAL;
1799#endif
1800 else
1801 val = __unpack_fe01(tsk->thread.fpexc_mode);
1802 return put_user(val, (unsigned int __user *) adr);
1803}
1804
fab5db97
PM
1805int set_endian(struct task_struct *tsk, unsigned int val)
1806{
1807 struct pt_regs *regs = tsk->thread.regs;
1808
1809 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1810 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1811 return -EINVAL;
1812
1813 if (regs == NULL)
1814 return -EINVAL;
1815
1816 if (val == PR_ENDIAN_BIG)
1817 regs->msr &= ~MSR_LE;
1818 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1819 regs->msr |= MSR_LE;
1820 else
1821 return -EINVAL;
1822
1823 return 0;
1824}
1825
1826int get_endian(struct task_struct *tsk, unsigned long adr)
1827{
1828 struct pt_regs *regs = tsk->thread.regs;
1829 unsigned int val;
1830
1831 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1832 !cpu_has_feature(CPU_FTR_REAL_LE))
1833 return -EINVAL;
1834
1835 if (regs == NULL)
1836 return -EINVAL;
1837
1838 if (regs->msr & MSR_LE) {
1839 if (cpu_has_feature(CPU_FTR_REAL_LE))
1840 val = PR_ENDIAN_LITTLE;
1841 else
1842 val = PR_ENDIAN_PPC_LITTLE;
1843 } else
1844 val = PR_ENDIAN_BIG;
1845
1846 return put_user(val, (unsigned int __user *)adr);
1847}
1848
e9370ae1
PM
1849int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1850{
1851 tsk->thread.align_ctl = val;
1852 return 0;
1853}
1854
1855int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1856{
1857 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1858}
1859
bb72c481
PM
1860static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1861 unsigned long nbytes)
1862{
1863 unsigned long stack_page;
1864 unsigned long cpu = task_cpu(p);
1865
1866 /*
1867 * Avoid crashing if the stack has overflowed and corrupted
1868 * task_cpu(p), which is in the thread_info struct.
1869 */
1870 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1871 stack_page = (unsigned long) hardirq_ctx[cpu];
1872 if (sp >= stack_page + sizeof(struct thread_struct)
1873 && sp <= stack_page + THREAD_SIZE - nbytes)
1874 return 1;
1875
1876 stack_page = (unsigned long) softirq_ctx[cpu];
1877 if (sp >= stack_page + sizeof(struct thread_struct)
1878 && sp <= stack_page + THREAD_SIZE - nbytes)
1879 return 1;
1880 }
1881 return 0;
1882}
1883
2f25194d 1884int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1885 unsigned long nbytes)
1886{
0cec6fd1 1887 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1888
1889 if (sp >= stack_page + sizeof(struct thread_struct)
1890 && sp <= stack_page + THREAD_SIZE - nbytes)
1891 return 1;
1892
bb72c481 1893 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1894}
1895
2f25194d
AB
1896EXPORT_SYMBOL(validate_sp);
1897
14cf11af
PM
1898unsigned long get_wchan(struct task_struct *p)
1899{
1900 unsigned long ip, sp;
1901 int count = 0;
1902
1903 if (!p || p == current || p->state == TASK_RUNNING)
1904 return 0;
1905
1906 sp = p->thread.ksp;
ec2b36b9 1907 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1908 return 0;
1909
1910 do {
1911 sp = *(unsigned long *)sp;
ec2b36b9 1912 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1913 return 0;
1914 if (count > 0) {
ec2b36b9 1915 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1916 if (!in_sched_functions(ip))
1917 return ip;
1918 }
1919 } while (count++ < 16);
1920 return 0;
1921}
06d67d54 1922
c4d04be1 1923static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
1924
1925void show_stack(struct task_struct *tsk, unsigned long *stack)
1926{
1927 unsigned long sp, ip, lr, newsp;
1928 int count = 0;
1929 int firstframe = 1;
6794c782
SR
1930#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1931 int curr_frame = current->curr_ret_stack;
1932 extern void return_to_handler(void);
9135c3cc 1933 unsigned long rth = (unsigned long)return_to_handler;
6794c782 1934#endif
06d67d54
PM
1935
1936 sp = (unsigned long) stack;
1937 if (tsk == NULL)
1938 tsk = current;
1939 if (sp == 0) {
1940 if (tsk == current)
acf620ec 1941 sp = current_stack_pointer();
06d67d54
PM
1942 else
1943 sp = tsk->thread.ksp;
1944 }
1945
1946 lr = 0;
1947 printk("Call Trace:\n");
1948 do {
ec2b36b9 1949 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1950 return;
1951
1952 stack = (unsigned long *) sp;
1953 newsp = stack[0];
ec2b36b9 1954 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 1955 if (!firstframe || ip != lr) {
058c78f4 1956 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 1957#ifdef CONFIG_FUNCTION_GRAPH_TRACER
7d56c65a 1958 if ((ip == rth) && curr_frame >= 0) {
9a1f490f 1959 pr_cont(" (%pS)",
6794c782
SR
1960 (void *)current->ret_stack[curr_frame].ret);
1961 curr_frame--;
1962 }
1963#endif
06d67d54 1964 if (firstframe)
9a1f490f
ME
1965 pr_cont(" (unreliable)");
1966 pr_cont("\n");
06d67d54
PM
1967 }
1968 firstframe = 0;
1969
1970 /*
1971 * See if this is an exception frame.
1972 * We look for the "regshere" marker in the current frame.
1973 */
ec2b36b9
BH
1974 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1975 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1976 struct pt_regs *regs = (struct pt_regs *)
1977 (sp + STACK_FRAME_OVERHEAD);
06d67d54 1978 lr = regs->link;
9be9be2e 1979 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
058c78f4 1980 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
1981 firstframe = 1;
1982 }
1983
1984 sp = newsp;
1985 } while (count++ < kstack_depth_to_print);
1986}
1987
cb2c9b27 1988#ifdef CONFIG_PPC64
fe1952fc 1989/* Called with hard IRQs off */
0e37739b 1990void notrace __ppc64_runlatch_on(void)
cb2c9b27 1991{
fe1952fc 1992 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1993 unsigned long ctrl;
1994
fe1952fc
BH
1995 ctrl = mfspr(SPRN_CTRLF);
1996 ctrl |= CTRL_RUNLATCH;
1997 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1998
fae2e0fb 1999 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
2000}
2001
fe1952fc 2002/* Called with hard IRQs off */
0e37739b 2003void notrace __ppc64_runlatch_off(void)
cb2c9b27 2004{
fe1952fc 2005 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
2006 unsigned long ctrl;
2007
fae2e0fb 2008 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 2009
4138d653
AB
2010 ctrl = mfspr(SPRN_CTRLF);
2011 ctrl &= ~CTRL_RUNLATCH;
2012 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 2013}
fe1952fc 2014#endif /* CONFIG_PPC64 */
f6a61680 2015
d839088c
AB
2016unsigned long arch_align_stack(unsigned long sp)
2017{
2018 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2019 sp -= get_random_int() & ~PAGE_MASK;
2020 return sp & ~0xf;
2021}
912f9ee2
AB
2022
2023static inline unsigned long brk_rnd(void)
2024{
2025 unsigned long rnd = 0;
2026
2027 /* 8MB for 32bit, 1GB for 64bit */
2028 if (is_32bit_task())
5ef11c35 2029 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
912f9ee2 2030 else
5ef11c35 2031 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
912f9ee2
AB
2032
2033 return rnd << PAGE_SHIFT;
2034}
2035
2036unsigned long arch_randomize_brk(struct mm_struct *mm)
2037{
8bbde7a7
AB
2038 unsigned long base = mm->brk;
2039 unsigned long ret;
2040
ce7a35c7 2041#ifdef CONFIG_PPC_STD_MMU_64
8bbde7a7
AB
2042 /*
2043 * If we are using 1TB segments and we are allowed to randomise
2044 * the heap, we can put it above 1TB so it is backed by a 1TB
2045 * segment. Otherwise the heap will be in the bottom 1TB
2046 * which always uses 256MB segments and this may result in a
caca285e
AK
2047 * performance penalty. We don't need to worry about radix. For
2048 * radix, mmu_highuser_ssize remains unchanged from 256MB.
8bbde7a7
AB
2049 */
2050 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2051 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2052#endif
2053
2054 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
2055
2056 if (ret < mm->brk)
2057 return mm->brk;
2058
2059 return ret;
2060}
501cb16d 2061